Chao Pang, Yu-hao Deng, Ezat Kheradmand, Luis Moreno Hagelsieb, Yujie Guo, David Cheyns, Pieter Geiregat, Zeger Hens, Dries Van Thourhout
Silicon photonics faces a persistent challenge in extending photodetection capabilities beyond the 1.6 µm wavelength range, primarily due to the lack of appropriate epitaxial materials. Colloidal quantum dots present a promising solution here, offering distinct advantages, such as infrared wavelength tunability, cost-effectiveness, and facile deposition. Their unique properties position them as a potential candidate for enabling photodetection in silicon photonics beyond the conventional telecom wavelength, thereby expanding the potential applications and capabilities within this domain. In this study, we have successfully integrated lead sulfide (PbS) colloidal quantum dot photodiodes (QDPDs) onto silicon waveguides using standard process techniques. The integrated photodiodes exhibit a remarkable responsivity of 1.3 A/W (with an external quantum efficiency of 74.8%) at a wavelength of 2.1 µm, a low dark current of only 106 nA, and a bandwidth of 1.1 MHz under a −3 V bias. To demonstrate the scalability of our integration approach, we have developed a compact 8-channel spectrometer incorporating an array of QDPDs. This achievement marks a significant step toward realizing a cost-effective photodetector solution for silicon photonics, particularly tailored for a wide range of sensing applications around the 2 µm wavelength range.
{"title":"A silicon photonics waveguide-coupled colloidal quantum dot photodiode sensitive beyond 1.6 µm","authors":"Chao Pang, Yu-hao Deng, Ezat Kheradmand, Luis Moreno Hagelsieb, Yujie Guo, David Cheyns, Pieter Geiregat, Zeger Hens, Dries Van Thourhout","doi":"10.1063/5.0206386","DOIUrl":"https://doi.org/10.1063/5.0206386","url":null,"abstract":"Silicon photonics faces a persistent challenge in extending photodetection capabilities beyond the 1.6 µm wavelength range, primarily due to the lack of appropriate epitaxial materials. Colloidal quantum dots present a promising solution here, offering distinct advantages, such as infrared wavelength tunability, cost-effectiveness, and facile deposition. Their unique properties position them as a potential candidate for enabling photodetection in silicon photonics beyond the conventional telecom wavelength, thereby expanding the potential applications and capabilities within this domain. In this study, we have successfully integrated lead sulfide (PbS) colloidal quantum dot photodiodes (QDPDs) onto silicon waveguides using standard process techniques. The integrated photodiodes exhibit a remarkable responsivity of 1.3 A/W (with an external quantum efficiency of 74.8%) at a wavelength of 2.1 µm, a low dark current of only 106 nA, and a bandwidth of 1.1 MHz under a −3 V bias. To demonstrate the scalability of our integration approach, we have developed a compact 8-channel spectrometer incorporating an array of QDPDs. This achievement marks a significant step toward realizing a cost-effective photodetector solution for silicon photonics, particularly tailored for a wide range of sensing applications around the 2 µm wavelength range.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2012 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In multicolor fluorescence microscopy, it is crucial to orient biological structures at a single-cell resolution based on precise anatomical annotations of cytoarchitecture images. However, during synchronous multicolor imaging, due to spectral mixing, the crosstalk from the blue signals of 4′,6-diamidino-2-phenylindole (DAPI)-stained cytoarchitecture images to the green waveband hinders the visualization and identification of green signals. Here, we proposed a deep learning-based framework named the crosstalk elimination and cytoarchitecture enhancement pipeline (CECEP) to simultaneously acquire crosstalk-free signals in the green channel and high-contrast DAPI-stained cytoarchitecture images during multicolor fluorescence imaging. For the CECEP network, we proposed an unsupervised learning algorithm named the cytoarchitecture enhancement network (CENet), which increased the signal-to-background ratio (SBR) of the cytoarchitecture images from 1.5 to 15.0 at a reconstruction speed of 25 Hz for 1800 × 1800 pixel images. The CECEP network is widely applicable to images of different quality, different types of tissues, and different multicolor fluorescence microscopy. In addition, the CECEP network can also facilitate various downstream analysis tasks, such as cell recognition, structure tensor calculation, and brain region segmentation. With the CECEP network, we simultaneously acquired two specific fluorescence-labeled neuronal distributions and their colocated high-SBR cytoarchitecture images without crosstalk throughout the brain. Experimental results demonstrate that our method could potentially facilitate multicolor fluorescence imaging applications in biology, such as revealing and visualizing different types of biological structures with precise locations and orientations.
{"title":"Unsupervised learning enables multicolor synchronous fluorescence microscopy without cytoarchitecture crosstalk","authors":"Bolin Lu, Zhangheng Ding, Kefu Ning, Xiaoyu Zhang, Xiangning Li, Jiangjiang Zhao, Ruiheng Xie, Dan Shen, Jiahong Hu, Tao Jiang, Jianwei Chen, Hui Gong, Jing Yuan","doi":"10.1063/5.0202622","DOIUrl":"https://doi.org/10.1063/5.0202622","url":null,"abstract":"In multicolor fluorescence microscopy, it is crucial to orient biological structures at a single-cell resolution based on precise anatomical annotations of cytoarchitecture images. However, during synchronous multicolor imaging, due to spectral mixing, the crosstalk from the blue signals of 4′,6-diamidino-2-phenylindole (DAPI)-stained cytoarchitecture images to the green waveband hinders the visualization and identification of green signals. Here, we proposed a deep learning-based framework named the crosstalk elimination and cytoarchitecture enhancement pipeline (CECEP) to simultaneously acquire crosstalk-free signals in the green channel and high-contrast DAPI-stained cytoarchitecture images during multicolor fluorescence imaging. For the CECEP network, we proposed an unsupervised learning algorithm named the cytoarchitecture enhancement network (CENet), which increased the signal-to-background ratio (SBR) of the cytoarchitecture images from 1.5 to 15.0 at a reconstruction speed of 25 Hz for 1800 × 1800 pixel images. The CECEP network is widely applicable to images of different quality, different types of tissues, and different multicolor fluorescence microscopy. In addition, the CECEP network can also facilitate various downstream analysis tasks, such as cell recognition, structure tensor calculation, and brain region segmentation. With the CECEP network, we simultaneously acquired two specific fluorescence-labeled neuronal distributions and their colocated high-SBR cytoarchitecture images without crosstalk throughout the brain. Experimental results demonstrate that our method could potentially facilitate multicolor fluorescence imaging applications in biology, such as revealing and visualizing different types of biological structures with precise locations and orientations.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"28 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Di Gaetano, B. Keliehor, K. Gallacher, P. F. Griffin, M. Sorel, E. Riis, D. J. Paul
A new epitaxial layer design with a double mode expander layer, high refractive index claddings, and an aluminum-free active area has been used to demonstrate distributed feedback lasers operating at 778.1 nm wavelength with reduced Lorentzian linewidth aimed at miniature atomic clock applications. The design also reduces the vertical beam divergence to improve the modal matching with optical fibers as well as maintain the high power output and reduce the emission linewidth. The lasers demonstrate single-mode operation with an over 35 dB side-mode suppression ratio, a power output ≤58 mW, a coupling efficiency to tapered fibers ≤40%, and a Lorentzian linewidth of 3.7 kHz. The performance allowed the free-running distributed feedback lasers to demonstrate spectroscopy of Rb vapor, which resolved the 85Rb and 87Rb two-photon transitions.
{"title":"778.1 nm distributed feedback lasers for Rb two-photon atomic systems with sub-4 kHz linewidths","authors":"E. Di Gaetano, B. Keliehor, K. Gallacher, P. F. Griffin, M. Sorel, E. Riis, D. J. Paul","doi":"10.1063/5.0191088","DOIUrl":"https://doi.org/10.1063/5.0191088","url":null,"abstract":"A new epitaxial layer design with a double mode expander layer, high refractive index claddings, and an aluminum-free active area has been used to demonstrate distributed feedback lasers operating at 778.1 nm wavelength with reduced Lorentzian linewidth aimed at miniature atomic clock applications. The design also reduces the vertical beam divergence to improve the modal matching with optical fibers as well as maintain the high power output and reduce the emission linewidth. The lasers demonstrate single-mode operation with an over 35 dB side-mode suppression ratio, a power output ≤58 mW, a coupling efficiency to tapered fibers ≤40%, and a Lorentzian linewidth of 3.7 kHz. The performance allowed the free-running distributed feedback lasers to demonstrate spectroscopy of Rb vapor, which resolved the 85Rb and 87Rb two-photon transitions.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2011 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we investigate the role of solar laser technology as a pivotal element in advancing sustainable and renewable energy. We begin by examining its wide-ranging applications across diverse fields, including remote communication, energy storage through magnesium production, and space exploration and communication. We address the current challenges faced by solar laser technology, which include the necessity for miniaturization, operation at natural sunlight intensity without the need for concentrated power, and efficient energy conversion. These improvements are essential to elevate their operational performance, beam quality, and cost-effectiveness. The promising prospects of space-based solar-pumped lasers and their potential role in magnesium generation for a sustainable energy future highlight some of the vast application opportunities that this novel technology could offer.
{"title":"Solar lasers: Why not?","authors":"Michael Küblböck, Jonathan Will, Hanieh Fattahi","doi":"10.1063/5.0209355","DOIUrl":"https://doi.org/10.1063/5.0209355","url":null,"abstract":"In this paper, we investigate the role of solar laser technology as a pivotal element in advancing sustainable and renewable energy. We begin by examining its wide-ranging applications across diverse fields, including remote communication, energy storage through magnesium production, and space exploration and communication. We address the current challenges faced by solar laser technology, which include the necessity for miniaturization, operation at natural sunlight intensity without the need for concentrated power, and efficient energy conversion. These improvements are essential to elevate their operational performance, beam quality, and cost-effectiveness. The promising prospects of space-based solar-pumped lasers and their potential role in magnesium generation for a sustainable energy future highlight some of the vast application opportunities that this novel technology could offer.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"28 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinan Jiang, Minglin Zhao, Yuanxiang Wang, Shuolin Wang, Jiantai Dou, Jun Liu, Bo Li, Youyou Hu
In this work, the second harmonic (SH) of higher-order Poincaré sphere (HOPS) beam was introduced and demonstrated with two orthogonal 5%MgO:PPLN crystals. Based on the quasi-phase-matching technique, the vectorial coupled wave equations were derived to simulate the SH of HOPS beams through the two crystals, including the cylindrical vector beams (CVBs), elliptically polarized CVBs (EPCVBs), and circularly polarized vortex beams. Then, the experimental setup was established to reveal that the SH of CVBs and EPCVBs present the four-lobed structure and still exhibit vector characteristics. Meanwhile, the circularly polarized vortex beams become the linearly polarized vortex beams with double phase topology, confirming the conservation of orbital angular momentum. Moreover, the maximum SH conversion efficiency of CVBs, EPCVBs, and circularly polarized vortex beams can reach 25.3%, 23.4%, and 29.4%, respectively, which may be instructive for promoting the SH generation of vector vortex beams with high efficiency.
{"title":"Second harmonic of higher-order Poincaré sphere beam with two orthogonal 5%MgO:PPLN crystals","authors":"Qinan Jiang, Minglin Zhao, Yuanxiang Wang, Shuolin Wang, Jiantai Dou, Jun Liu, Bo Li, Youyou Hu","doi":"10.1063/5.0198012","DOIUrl":"https://doi.org/10.1063/5.0198012","url":null,"abstract":"In this work, the second harmonic (SH) of higher-order Poincaré sphere (HOPS) beam was introduced and demonstrated with two orthogonal 5%MgO:PPLN crystals. Based on the quasi-phase-matching technique, the vectorial coupled wave equations were derived to simulate the SH of HOPS beams through the two crystals, including the cylindrical vector beams (CVBs), elliptically polarized CVBs (EPCVBs), and circularly polarized vortex beams. Then, the experimental setup was established to reveal that the SH of CVBs and EPCVBs present the four-lobed structure and still exhibit vector characteristics. Meanwhile, the circularly polarized vortex beams become the linearly polarized vortex beams with double phase topology, confirming the conservation of orbital angular momentum. Moreover, the maximum SH conversion efficiency of CVBs, EPCVBs, and circularly polarized vortex beams can reach 25.3%, 23.4%, and 29.4%, respectively, which may be instructive for promoting the SH generation of vector vortex beams with high efficiency.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"38 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141166274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-destructive testing (NDT) is crucial for ensuring product quality and safety across various industries. Conventional methods, such as ultrasonic, terahertz, and x-ray imaging, have limitations in terms of probe-contact requirement, depth resolution, or radiation risks. Optical coherence tomography (OCT) is a promising alternative to solve these limitations, but it suffers from strong scattering, limiting its penetration depth. Recently, OCT in the mid-infrared (MIR) spectral region has attracted attention with a significantly lower scattering rate than in the near-infrared region. However, the highest reported A-scan rate of MIR-OCT has been 3 kHz, which requires long data acquisition time to take an image, unsatisfying industrial demands for real-time diagnosis. Here, we present a high-speed MIR-OCT system operating in the 3–4 µm region that employs the frequency-swept spectrum detection in OCT technique based on time-stretch infrared spectroscopy. By integrating a broadband femtosecond MIR pulsed laser operating at a repetition rate of 50 MHz, we achieved an A-scan rate of 1 MHz with an axial resolution of 11.6 µm, a 10 dB roll-off depth of about 700 µm, and a sensitivity of 55 dB. As a proof-of-concept demonstration, we imaged the surface of substrates covered by highly scattering paint coatings. The demonstrated A-scan rate surpasses previous state of the art by more than two orders of magnitude, paving the way for real-time NDT of industrial products, cultural assets, and structures.
无损检测(NDT)对于确保各行各业的产品质量和安全至关重要。超声波、太赫兹和 X 射线成像等传统方法在探头接触要求、深度分辨率或辐射风险方面存在局限性。光学相干断层扫描(OCT)是解决这些局限性的一个很有前途的替代方法,但它的散射很强,限制了其穿透深度。最近,中红外(MIR)光谱区域的光学相干断层扫描技术引起了人们的关注,因为它的散射率明显低于近红外区域。然而,目前报道的 MIR-OCT 最高 A 扫描速率为 3 kHz,这就需要较长的数据采集时间来获取图像,无法满足实时诊断的工业需求。在此,我们提出了一种工作在 3-4 µm 区域的高速 MIR-OCT 系统,该系统在基于时间拉伸红外光谱学的 OCT 技术中采用了频扫光谱检测技术。通过集成一个以 50 MHz 重复频率工作的宽带飞秒 MIR 脉冲激光器,我们实现了 1 MHz 的 A 扫描频率,轴向分辨率为 11.6 µm,10 dB 滚降深度约为 700 µm,灵敏度为 55 dB。作为概念验证演示,我们对被高散射涂料覆盖的基底表面进行了成像。所演示的 A 扫描速率比以前的技术水平高出两个数量级以上,为工业产品、文化资产和结构的实时无损检测铺平了道路。
{"title":"Mid-infrared optical coherence tomography with MHz axial line rate for real-time non-destructive testing","authors":"Satoko Yagi, Takuma Nakamura, Kazuki Hashimoto, Shotaro Kawano, Takuro Ideguchi","doi":"10.1063/5.0202019","DOIUrl":"https://doi.org/10.1063/5.0202019","url":null,"abstract":"Non-destructive testing (NDT) is crucial for ensuring product quality and safety across various industries. Conventional methods, such as ultrasonic, terahertz, and x-ray imaging, have limitations in terms of probe-contact requirement, depth resolution, or radiation risks. Optical coherence tomography (OCT) is a promising alternative to solve these limitations, but it suffers from strong scattering, limiting its penetration depth. Recently, OCT in the mid-infrared (MIR) spectral region has attracted attention with a significantly lower scattering rate than in the near-infrared region. However, the highest reported A-scan rate of MIR-OCT has been 3 kHz, which requires long data acquisition time to take an image, unsatisfying industrial demands for real-time diagnosis. Here, we present a high-speed MIR-OCT system operating in the 3–4 µm region that employs the frequency-swept spectrum detection in OCT technique based on time-stretch infrared spectroscopy. By integrating a broadband femtosecond MIR pulsed laser operating at a repetition rate of 50 MHz, we achieved an A-scan rate of 1 MHz with an axial resolution of 11.6 µm, a 10 dB roll-off depth of about 700 µm, and a sensitivity of 55 dB. As a proof-of-concept demonstration, we imaged the surface of substrates covered by highly scattering paint coatings. The demonstrated A-scan rate surpasses previous state of the art by more than two orders of magnitude, paving the way for real-time NDT of industrial products, cultural assets, and structures.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"130 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrafast laser sources in the far ultraviolet (100–300 nm) have been the subject of intense experimental efforts for several decades, driven primarily by the requirements of advanced experiments in ultrafast science. Resonant dispersive wave emission from high-energy laser pulses undergoing soliton self-compression in a gas-filled hollow capillary fiber promises to meet several of these requirements for the first time, most importantly by combining wide-ranging wavelength tuneability with the generation of extremely short pulses. In this Perspective, we give an overview of this approach to ultrafast far-ultraviolet sources, including its historical origin and underlying physical mechanism, the state of the art and current challenges, and our view of potential applications both within and beyond ultrafast science.
{"title":"HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources","authors":"Christian Brahms, John C. Travers","doi":"10.1063/5.0206108","DOIUrl":"https://doi.org/10.1063/5.0206108","url":null,"abstract":"Ultrafast laser sources in the far ultraviolet (100–300 nm) have been the subject of intense experimental efforts for several decades, driven primarily by the requirements of advanced experiments in ultrafast science. Resonant dispersive wave emission from high-energy laser pulses undergoing soliton self-compression in a gas-filled hollow capillary fiber promises to meet several of these requirements for the first time, most importantly by combining wide-ranging wavelength tuneability with the generation of extremely short pulses. In this Perspective, we give an overview of this approach to ultrafast far-ultraviolet sources, including its historical origin and underlying physical mechanism, the state of the art and current challenges, and our view of potential applications both within and beyond ultrafast science.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"23 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. A. Ribenek, P. A. Itrin, D. A. Korobko, A. A. Fotiadi
Passive harmonic mode-locking of a soliton fiber laser locked to optoacoustic resonance (OAR) in the cavity fiber ensures high-frequency laser operation, high pulse stability, and low timing jitter. However, the pulse repetition rate (PRR) of such lasers is limited to ∼1 GHz for standard fibers due to the available acoustic modes. Here, we address these limitations by demonstrating a soliton fiber laser built from standard fiber components and subjected to double harmonic mode-locking (DHML). As an example, the laser adjusted to operate at the 15th harmonic of its cavity matching the OAR at ∼199 MHz could be driven to operate at a high harmonic of this particular OAR frequency, thus reaching ∼12 GHz. This breakthrough is made possible through controllable optoacoustic interactions in a short, 50 cm segment of unjacketed cavity fiber. We propose that the precise alignment of the laser cavity harmonic and fiber acoustic modes leads to a long-lived narrow-band acoustic vibration. This vibration sets the pace for the pulses circulating in the cavity by suppressing modes that do not conform to the Vernier principle. The surviving modes, equally spaced by the OAR frequency, in cooperation with the gain depletion and recovery mechanism, facilitate the formation of stable high-frequency pulse sequences, enabling DHML. In this process, the OAR rather than the laser cavity defines the elementary step for laser PRR tuning. Throughout the entire PRR tuning range, the soliton fiber laser exhibits enhanced stability, demonstrating supermode suppression levels better than ∼40 dB and picosecond pulse timing jitter.
{"title":"Double harmonic mode-locking in soliton fiber ring laser acquired through the resonant optoacoustic coupling","authors":"V. A. Ribenek, P. A. Itrin, D. A. Korobko, A. A. Fotiadi","doi":"10.1063/5.0195623","DOIUrl":"https://doi.org/10.1063/5.0195623","url":null,"abstract":"Passive harmonic mode-locking of a soliton fiber laser locked to optoacoustic resonance (OAR) in the cavity fiber ensures high-frequency laser operation, high pulse stability, and low timing jitter. However, the pulse repetition rate (PRR) of such lasers is limited to ∼1 GHz for standard fibers due to the available acoustic modes. Here, we address these limitations by demonstrating a soliton fiber laser built from standard fiber components and subjected to double harmonic mode-locking (DHML). As an example, the laser adjusted to operate at the 15th harmonic of its cavity matching the OAR at ∼199 MHz could be driven to operate at a high harmonic of this particular OAR frequency, thus reaching ∼12 GHz. This breakthrough is made possible through controllable optoacoustic interactions in a short, 50 cm segment of unjacketed cavity fiber. We propose that the precise alignment of the laser cavity harmonic and fiber acoustic modes leads to a long-lived narrow-band acoustic vibration. This vibration sets the pace for the pulses circulating in the cavity by suppressing modes that do not conform to the Vernier principle. The surviving modes, equally spaced by the OAR frequency, in cooperation with the gain depletion and recovery mechanism, facilitate the formation of stable high-frequency pulse sequences, enabling DHML. In this process, the OAR rather than the laser cavity defines the elementary step for laser PRR tuning. Throughout the entire PRR tuning range, the soliton fiber laser exhibits enhanced stability, demonstrating supermode suppression levels better than ∼40 dB and picosecond pulse timing jitter.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"191 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matrix inversion is a fundamental and widely utilized linear algebraic operation but computationally expensive in digital-clock-based platforms. Optical computing is a new computing paradigm with high speed and energy efficiency, and the computation can be realized through light propagation. However, there is a scarcity of experimentally implemented matrix inverters that exhibit both high integration density and the capability to perform complex-valued operations in existing optical systems. For the first time, we experimentally demonstrated an iterative all-optical chip-scale processor to perform the computation of complex-valued matrix inversion using the Richardson method. Our chip-scale processor achieves an iteration speed of 10 GHz, which can facilitate ultra-fast matrix inversion with the assistance of high-speed Mach–Zehnder interferometer modulators. The convergence can be attained within 20 iterations, yielding an accuracy of 90%. The proposed chip-scale all-optical complex-valued matrix inverter represents a distinctive innovation in the field of all-optical recursive systems, offering significant potential for solving computationally intensive mathematical problems.
{"title":"Chip-scale all-optical complex-valued matrix inverter","authors":"Xinyu Liu, Junwei Cheng, Hailong Zhou, Jianji Dong, Xinliang Zhang","doi":"10.1063/5.0200149","DOIUrl":"https://doi.org/10.1063/5.0200149","url":null,"abstract":"Matrix inversion is a fundamental and widely utilized linear algebraic operation but computationally expensive in digital-clock-based platforms. Optical computing is a new computing paradigm with high speed and energy efficiency, and the computation can be realized through light propagation. However, there is a scarcity of experimentally implemented matrix inverters that exhibit both high integration density and the capability to perform complex-valued operations in existing optical systems. For the first time, we experimentally demonstrated an iterative all-optical chip-scale processor to perform the computation of complex-valued matrix inversion using the Richardson method. Our chip-scale processor achieves an iteration speed of 10 GHz, which can facilitate ultra-fast matrix inversion with the assistance of high-speed Mach–Zehnder interferometer modulators. The convergence can be attained within 20 iterations, yielding an accuracy of 90%. The proposed chip-scale all-optical complex-valued matrix inverter represents a distinctive innovation in the field of all-optical recursive systems, offering significant potential for solving computationally intensive mathematical problems.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelrahman Z. Al-Attili, Daniel Burt, Tasmiat Rahman, Zuo Li, Naoki Higashitarumizu, Frederic Y. Gardes, Yasuhiko Ishikawa, Shinichi Saito
Various excitation-induced loss mechanisms have been identified during the development of direct-gap semiconductor lasers. Recently, indirect-gap laser sources, particularly germanium (Ge) or GeSn based, have emerged due to silicon industry compatibility. Tensile strain is crucial for optical gain or low-threshold room-temperature operation in such media. This study investigates an excitation-induced optical loss mechanism of mechanical origin in Ge-based micro-cavities with all-around stressor layers, a popular platform for strain-engineered laser sources. Using Raman spectroscopy, photoluminescence, and simulations, we find that excitation lowers the optical gain by altering the strain profile. Heating causes Ge micro-cavities to expand within a constraining stressor layer, inducing compressive strain, which is explained by the mismatch in thermal expansion coefficients.
在开发直接间隙半导体激光器的过程中,人们发现了各种激发引起的损耗机制。最近,由于硅工业的兼容性,出现了间接间隙激光源,特别是基于锗(Ge)或硒(GeSn)的激光源。拉伸应变对于此类介质的光学增益或低阈值室温操作至关重要。本研究调查了具有全方位应力层的 Ge 基微腔中的机械源激发诱导光学损耗机制,该微腔是应变工程激光源的常用平台。利用拉曼光谱、光致发光和模拟,我们发现激励通过改变应变曲线来降低光学增益。加热会使 Ge 微腔在约束应力层内膨胀,从而产生压缩应变,这可以用热膨胀系数的不匹配来解释。
{"title":"Mechanically induced optical loss mechanism due to thermal expansion coefficient mismatch in micro-cavities with all-around stressor layers","authors":"Abdelrahman Z. Al-Attili, Daniel Burt, Tasmiat Rahman, Zuo Li, Naoki Higashitarumizu, Frederic Y. Gardes, Yasuhiko Ishikawa, Shinichi Saito","doi":"10.1063/5.0203305","DOIUrl":"https://doi.org/10.1063/5.0203305","url":null,"abstract":"Various excitation-induced loss mechanisms have been identified during the development of direct-gap semiconductor lasers. Recently, indirect-gap laser sources, particularly germanium (Ge) or GeSn based, have emerged due to silicon industry compatibility. Tensile strain is crucial for optical gain or low-threshold room-temperature operation in such media. This study investigates an excitation-induced optical loss mechanism of mechanical origin in Ge-based micro-cavities with all-around stressor layers, a popular platform for strain-engineered laser sources. Using Raman spectroscopy, photoluminescence, and simulations, we find that excitation lowers the optical gain by altering the strain profile. Heating causes Ge micro-cavities to expand within a constraining stressor layer, inducing compressive strain, which is explained by the mismatch in thermal expansion coefficients.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"67 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}