首页 > 最新文献

APL Photonics最新文献

英文 中文
HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources HISOL:高能孤子动力学实现超快远紫外激光源
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-13 DOI: 10.1063/5.0206108
Christian Brahms, John C. Travers
Ultrafast laser sources in the far ultraviolet (100–300 nm) have been the subject of intense experimental efforts for several decades, driven primarily by the requirements of advanced experiments in ultrafast science. Resonant dispersive wave emission from high-energy laser pulses undergoing soliton self-compression in a gas-filled hollow capillary fiber promises to meet several of these requirements for the first time, most importantly by combining wide-ranging wavelength tuneability with the generation of extremely short pulses. In this Perspective, we give an overview of this approach to ultrafast far-ultraviolet sources, including its historical origin and underlying physical mechanism, the state of the art and current challenges, and our view of potential applications both within and beyond ultrafast science.
几十年来,远紫外(100-300 nm)的超快激光源一直是实验研究的热点,这主要是受超快科学先进实验要求的驱动。高能激光脉冲在充满气体的中空毛细管光纤中进行孤子自压缩时产生的共振色散波发射有望首次满足上述几项要求,其中最重要的是,它将大范围波长可调谐性与产生极短脉冲相结合。在本《视角》中,我们将概述这种超快远紫外光源的方法,包括其历史渊源和基本物理机制、技术现状和当前挑战,以及我们对超快科学内外潜在应用的看法。
{"title":"HISOL: High-energy soliton dynamics enable ultrafast far-ultraviolet laser sources","authors":"Christian Brahms, John C. Travers","doi":"10.1063/5.0206108","DOIUrl":"https://doi.org/10.1063/5.0206108","url":null,"abstract":"Ultrafast laser sources in the far ultraviolet (100–300 nm) have been the subject of intense experimental efforts for several decades, driven primarily by the requirements of advanced experiments in ultrafast science. Resonant dispersive wave emission from high-energy laser pulses undergoing soliton self-compression in a gas-filled hollow capillary fiber promises to meet several of these requirements for the first time, most importantly by combining wide-ranging wavelength tuneability with the generation of extremely short pulses. In this Perspective, we give an overview of this approach to ultrafast far-ultraviolet sources, including its historical origin and underlying physical mechanism, the state of the art and current challenges, and our view of potential applications both within and beyond ultrafast science.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"23 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double harmonic mode-locking in soliton fiber ring laser acquired through the resonant optoacoustic coupling 通过谐振光声耦合获得孤子光纤环形激光器中的双谐波锁模
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-13 DOI: 10.1063/5.0195623
V. A. Ribenek, P. A. Itrin, D. A. Korobko, A. A. Fotiadi
Passive harmonic mode-locking of a soliton fiber laser locked to optoacoustic resonance (OAR) in the cavity fiber ensures high-frequency laser operation, high pulse stability, and low timing jitter. However, the pulse repetition rate (PRR) of such lasers is limited to ∼1 GHz for standard fibers due to the available acoustic modes. Here, we address these limitations by demonstrating a soliton fiber laser built from standard fiber components and subjected to double harmonic mode-locking (DHML). As an example, the laser adjusted to operate at the 15th harmonic of its cavity matching the OAR at ∼199 MHz could be driven to operate at a high harmonic of this particular OAR frequency, thus reaching ∼12 GHz. This breakthrough is made possible through controllable optoacoustic interactions in a short, 50 cm segment of unjacketed cavity fiber. We propose that the precise alignment of the laser cavity harmonic and fiber acoustic modes leads to a long-lived narrow-band acoustic vibration. This vibration sets the pace for the pulses circulating in the cavity by suppressing modes that do not conform to the Vernier principle. The surviving modes, equally spaced by the OAR frequency, in cooperation with the gain depletion and recovery mechanism, facilitate the formation of stable high-frequency pulse sequences, enabling DHML. In this process, the OAR rather than the laser cavity defines the elementary step for laser PRR tuning. Throughout the entire PRR tuning range, the soliton fiber laser exhibits enhanced stability, demonstrating supermode suppression levels better than ∼40 dB and picosecond pulse timing jitter.
孤子光纤激光器的被动谐波锁模锁定腔光纤中的光声共振(OAR),可确保激光器的高频率运行、高脉冲稳定性和低定时抖动。然而,由于可用声学模式的限制,这种激光器的脉冲重复率(PRR)在标准光纤中只能达到 ∼ 1 GHz。在此,我们展示了一种由标准光纤元件制成的孤子光纤激光器,并对其进行了双谐波模式锁定(DHML),从而解决了这些限制。举例来说,将激光器调整为在与频率为 199 MHz 的 OAR 相匹配的腔体的第 15 次谐波下工作,就能驱动激光器在这一特定 OAR 频率的高次谐波下工作,从而使频率达到 12 GHz。这一突破是在一段 50 厘米短的无套管空腔光纤中通过可控光声相互作用实现的。我们提出,激光腔谐波和光纤声学模式的精确对准导致了长寿命的窄带声学振动。这种振动通过抑制不符合维尼尔原理的模式,为在腔体内循环的脉冲设定了节奏。与 OAR 频率间隔相等的幸存模式与增益损耗和恢复机制合作,促进了稳定的高频脉冲序列的形成,从而实现了 DHML。在这个过程中,OAR 而不是激光腔决定了激光 PRR 调谐的基本步骤。在整个 PRR 调谐范围内,孤子光纤激光器表现出更高的稳定性,超模抑制水平优于 ∼ 40 dB,脉冲定时抖动为皮秒级。
{"title":"Double harmonic mode-locking in soliton fiber ring laser acquired through the resonant optoacoustic coupling","authors":"V. A. Ribenek, P. A. Itrin, D. A. Korobko, A. A. Fotiadi","doi":"10.1063/5.0195623","DOIUrl":"https://doi.org/10.1063/5.0195623","url":null,"abstract":"Passive harmonic mode-locking of a soliton fiber laser locked to optoacoustic resonance (OAR) in the cavity fiber ensures high-frequency laser operation, high pulse stability, and low timing jitter. However, the pulse repetition rate (PRR) of such lasers is limited to ∼1 GHz for standard fibers due to the available acoustic modes. Here, we address these limitations by demonstrating a soliton fiber laser built from standard fiber components and subjected to double harmonic mode-locking (DHML). As an example, the laser adjusted to operate at the 15th harmonic of its cavity matching the OAR at ∼199 MHz could be driven to operate at a high harmonic of this particular OAR frequency, thus reaching ∼12 GHz. This breakthrough is made possible through controllable optoacoustic interactions in a short, 50 cm segment of unjacketed cavity fiber. We propose that the precise alignment of the laser cavity harmonic and fiber acoustic modes leads to a long-lived narrow-band acoustic vibration. This vibration sets the pace for the pulses circulating in the cavity by suppressing modes that do not conform to the Vernier principle. The surviving modes, equally spaced by the OAR frequency, in cooperation with the gain depletion and recovery mechanism, facilitate the formation of stable high-frequency pulse sequences, enabling DHML. In this process, the OAR rather than the laser cavity defines the elementary step for laser PRR tuning. Throughout the entire PRR tuning range, the soliton fiber laser exhibits enhanced stability, demonstrating supermode suppression levels better than ∼40 dB and picosecond pulse timing jitter.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"191 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chip-scale all-optical complex-valued matrix inverter 芯片级全光学复值矩阵反相器
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-13 DOI: 10.1063/5.0200149
Xinyu Liu, Junwei Cheng, Hailong Zhou, Jianji Dong, Xinliang Zhang
Matrix inversion is a fundamental and widely utilized linear algebraic operation but computationally expensive in digital-clock-based platforms. Optical computing is a new computing paradigm with high speed and energy efficiency, and the computation can be realized through light propagation. However, there is a scarcity of experimentally implemented matrix inverters that exhibit both high integration density and the capability to perform complex-valued operations in existing optical systems. For the first time, we experimentally demonstrated an iterative all-optical chip-scale processor to perform the computation of complex-valued matrix inversion using the Richardson method. Our chip-scale processor achieves an iteration speed of 10 GHz, which can facilitate ultra-fast matrix inversion with the assistance of high-speed Mach–Zehnder interferometer modulators. The convergence can be attained within 20 iterations, yielding an accuracy of 90%. The proposed chip-scale all-optical complex-valued matrix inverter represents a distinctive innovation in the field of all-optical recursive systems, offering significant potential for solving computationally intensive mathematical problems.
矩阵反演是一种基本的线性代数运算,应用广泛,但在基于数字时钟的平台上计算成本高昂。光计算是一种具有高速度和高能效的新型计算模式,可通过光传播实现计算。然而,在现有光学系统中,既能实现高集成度,又能执行复值运算的矩阵反相器却很少见。我们首次在实验中展示了一种迭代式全光学芯片级处理器,利用理查森方法执行复值矩阵反演计算。我们的芯片级处理器的迭代速度达到了 10 GHz,在高速马赫-泽恩德干涉仪调制器的辅助下,可实现超快矩阵反演。收敛可在 20 次迭代内完成,精度可达 90%。所提出的芯片级全光复值矩阵反相器是全光递归系统领域的一项独特创新,为解决计算密集型数学问题提供了巨大潜力。
{"title":"Chip-scale all-optical complex-valued matrix inverter","authors":"Xinyu Liu, Junwei Cheng, Hailong Zhou, Jianji Dong, Xinliang Zhang","doi":"10.1063/5.0200149","DOIUrl":"https://doi.org/10.1063/5.0200149","url":null,"abstract":"Matrix inversion is a fundamental and widely utilized linear algebraic operation but computationally expensive in digital-clock-based platforms. Optical computing is a new computing paradigm with high speed and energy efficiency, and the computation can be realized through light propagation. However, there is a scarcity of experimentally implemented matrix inverters that exhibit both high integration density and the capability to perform complex-valued operations in existing optical systems. For the first time, we experimentally demonstrated an iterative all-optical chip-scale processor to perform the computation of complex-valued matrix inversion using the Richardson method. Our chip-scale processor achieves an iteration speed of 10 GHz, which can facilitate ultra-fast matrix inversion with the assistance of high-speed Mach–Zehnder interferometer modulators. The convergence can be attained within 20 iterations, yielding an accuracy of 90%. The proposed chip-scale all-optical complex-valued matrix inverter represents a distinctive innovation in the field of all-optical recursive systems, offering significant potential for solving computationally intensive mathematical problems.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanically induced optical loss mechanism due to thermal expansion coefficient mismatch in micro-cavities with all-around stressor layers 带有全方位应力层的微腔中的热膨胀系数失配导致的机械诱导光学损耗机制
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-10 DOI: 10.1063/5.0203305
Abdelrahman Z. Al-Attili, Daniel Burt, Tasmiat Rahman, Zuo Li, Naoki Higashitarumizu, Frederic Y. Gardes, Yasuhiko Ishikawa, Shinichi Saito
Various excitation-induced loss mechanisms have been identified during the development of direct-gap semiconductor lasers. Recently, indirect-gap laser sources, particularly germanium (Ge) or GeSn based, have emerged due to silicon industry compatibility. Tensile strain is crucial for optical gain or low-threshold room-temperature operation in such media. This study investigates an excitation-induced optical loss mechanism of mechanical origin in Ge-based micro-cavities with all-around stressor layers, a popular platform for strain-engineered laser sources. Using Raman spectroscopy, photoluminescence, and simulations, we find that excitation lowers the optical gain by altering the strain profile. Heating causes Ge micro-cavities to expand within a constraining stressor layer, inducing compressive strain, which is explained by the mismatch in thermal expansion coefficients.
在开发直接间隙半导体激光器的过程中,人们发现了各种激发引起的损耗机制。最近,由于硅工业的兼容性,出现了间接间隙激光源,特别是基于锗(Ge)或硒(GeSn)的激光源。拉伸应变对于此类介质的光学增益或低阈值室温操作至关重要。本研究调查了具有全方位应力层的 Ge 基微腔中的机械源激发诱导光学损耗机制,该微腔是应变工程激光源的常用平台。利用拉曼光谱、光致发光和模拟,我们发现激励通过改变应变曲线来降低光学增益。加热会使 Ge 微腔在约束应力层内膨胀,从而产生压缩应变,这可以用热膨胀系数的不匹配来解释。
{"title":"Mechanically induced optical loss mechanism due to thermal expansion coefficient mismatch in micro-cavities with all-around stressor layers","authors":"Abdelrahman Z. Al-Attili, Daniel Burt, Tasmiat Rahman, Zuo Li, Naoki Higashitarumizu, Frederic Y. Gardes, Yasuhiko Ishikawa, Shinichi Saito","doi":"10.1063/5.0203305","DOIUrl":"https://doi.org/10.1063/5.0203305","url":null,"abstract":"Various excitation-induced loss mechanisms have been identified during the development of direct-gap semiconductor lasers. Recently, indirect-gap laser sources, particularly germanium (Ge) or GeSn based, have emerged due to silicon industry compatibility. Tensile strain is crucial for optical gain or low-threshold room-temperature operation in such media. This study investigates an excitation-induced optical loss mechanism of mechanical origin in Ge-based micro-cavities with all-around stressor layers, a popular platform for strain-engineered laser sources. Using Raman spectroscopy, photoluminescence, and simulations, we find that excitation lowers the optical gain by altering the strain profile. Heating causes Ge micro-cavities to expand within a constraining stressor layer, inducing compressive strain, which is explained by the mismatch in thermal expansion coefficients.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"67 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended short-wave infrared high-speed all-GeSn PIN photodetectors on silicon 硅基扩展短波红外高速全硒化镓 PIN 光电探测器
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-09 DOI: 10.1063/5.0197018
M. R. M. Atalla, C. Lemieux-Leduc, S. Assali, S. Koelling, P. Daoust, O. Moutanabbir
There is an increasing need for silicon-compatible high-bandwidth extended-short wave infrared (e-SWIR) photodetectors (PDs) to implement cost-effective and scalable optoelectronic devices. These systems are quintessential to address several technological bottlenecks in detection and ranging, surveillance, ultrafast spectroscopy, and imaging. In fact, current e-SWIR high-bandwidth PDs are predominantly made of III–V compound semiconductors and thus are costly and suffer a limited integration on silicon besides a low responsivity at wavelengths exceeding 2.3 μm. To circumvent these challenges, Ge1−xSnx semiconductors have been proposed as building blocks for silicon-integrated high-speed e-SWIR devices. Herein, this study demonstrates vertical all-GeSn PIN PDs consisting of p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-Ge0.89Sn0.11 and p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13 heterostructures grown on silicon following a step-graded temperature-controlled epitaxy protocol. The performance of these PDs was investigated as a function of the device diameter in the 10–30 μm range. The developed PD devices yield a high bandwidth of 12.4 GHz at a bias of 5 V for a device diameter of 10 μm. Moreover, these devices show a high responsivity of 0.24 A/W, a low noise, and a 2.8 μm cutoff wavelength, thus covering the whole e-SWIR range.
现在越来越需要与硅兼容的高带宽扩展短波红外(e-SWIR)光电探测器(PD),以实现具有成本效益和可扩展的光电设备。这些系统对于解决探测和测距、监控、超快光谱学和成像领域的若干技术瓶颈至关重要。事实上,目前的 e-SWIR 高带宽 PD 主要由 III-V 族化合物半导体制成,因此成本高昂,除了在波长超过 2.3 μm 时响应率低之外,在硅上的集成度也有限。为了规避这些挑战,有人提出将 Ge1-xSnx 半导体作为硅集成高速 e-SWIR 器件的构件。在此,本研究展示了垂直全锗锰 PIN PD,这些 PIN PD 由 p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-Ge0.89Sn0.11 和 p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13 异质结构组成,采用阶跃梯度温控外延协议在硅上生长。研究人员根据器件直径在 10-30 μm 范围内的函数对这些 PD 的性能进行了调查。在器件直径为 10 μm 时,所开发的 PD 器件在 5 V 的偏压下可产生 12.4 GHz 的高带宽。此外,这些器件还具有 0.24 A/W 的高响应率、低噪声和 2.8 μm 的截止波长,从而覆盖了整个 e-SWIR 范围。
{"title":"Extended short-wave infrared high-speed all-GeSn PIN photodetectors on silicon","authors":"M. R. M. Atalla, C. Lemieux-Leduc, S. Assali, S. Koelling, P. Daoust, O. Moutanabbir","doi":"10.1063/5.0197018","DOIUrl":"https://doi.org/10.1063/5.0197018","url":null,"abstract":"There is an increasing need for silicon-compatible high-bandwidth extended-short wave infrared (e-SWIR) photodetectors (PDs) to implement cost-effective and scalable optoelectronic devices. These systems are quintessential to address several technological bottlenecks in detection and ranging, surveillance, ultrafast spectroscopy, and imaging. In fact, current e-SWIR high-bandwidth PDs are predominantly made of III–V compound semiconductors and thus are costly and suffer a limited integration on silicon besides a low responsivity at wavelengths exceeding 2.3 μm. To circumvent these challenges, Ge1−xSnx semiconductors have been proposed as building blocks for silicon-integrated high-speed e-SWIR devices. Herein, this study demonstrates vertical all-GeSn PIN PDs consisting of p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-Ge0.89Sn0.11 and p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13 heterostructures grown on silicon following a step-graded temperature-controlled epitaxy protocol. The performance of these PDs was investigated as a function of the device diameter in the 10–30 μm range. The developed PD devices yield a high bandwidth of 12.4 GHz at a bias of 5 V for a device diameter of 10 μm. Moreover, these devices show a high responsivity of 0.24 A/W, a low noise, and a 2.8 μm cutoff wavelength, thus covering the whole e-SWIR range.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"34 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
k-space holographic multiplexing for synthetic aperture diffraction tomography 用于合成孔径衍射层析成像的 k 空间全息复用技术
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-07 DOI: 10.1063/5.0203117
Zhengzhong Huang, Liangcai Cao
Optical diffraction tomography can be performed with low phototoxicity and photobleaching to analyze 3D cells and tissues. It is desired to develop high throughput and powerful data processing capabilities. We propose high bandwidth holographic microscopy (HBHM). Based on the analyticity of complex amplitudes, the unified holographic multiplexing transfer function is established. A high bandwidth scattering field is achieved via the k-space optical origami of two 2D wavefronts from one interferogram. Scanning illumination modulates the high-horizontal and axial k-space to endow synthetic-aperture from 2D high space-bandwidth product (SBP) scattering fields. The bright-field counterpart SBP of a single scattering field from HBHM is 14.6 megapixels, while the number of pixels is only 13.7 megapixels. It achieves an eight-fold SBP enhancement under the same number of pixels and diffraction limit. The HBHM paves the way toward the performance of high throughput, large-scale, and non-invasive histopathology, cell biology, and industrial inspection.
光学衍射断层扫描可以在低光毒性和光漂白的情况下分析三维细胞和组织。我们希望开发高通量和强大的数据处理能力。我们提出了高带宽全息显微技术(HBHM)。基于复振幅的可分析性,建立了统一的全息复用传递函数。通过一个干涉图的两个二维波面的 k 空间光学折纸,实现了高带宽散射场。扫描照明调制高水平和轴向 k 空间,赋予二维高空间带宽乘积(SBP)散射场合成孔径。HBHM 单个散射场的明场对应 SBP 为 1460 万像素,而像素数仅为 1370 万像素。在相同的像素数和衍射极限下,它实现了八倍的 SBP 增强。HBHM 为实现高通量、大规模和无创组织病理学、细胞生物学和工业检测铺平了道路。
{"title":"k-space holographic multiplexing for synthetic aperture diffraction tomography","authors":"Zhengzhong Huang, Liangcai Cao","doi":"10.1063/5.0203117","DOIUrl":"https://doi.org/10.1063/5.0203117","url":null,"abstract":"Optical diffraction tomography can be performed with low phototoxicity and photobleaching to analyze 3D cells and tissues. It is desired to develop high throughput and powerful data processing capabilities. We propose high bandwidth holographic microscopy (HBHM). Based on the analyticity of complex amplitudes, the unified holographic multiplexing transfer function is established. A high bandwidth scattering field is achieved via the k-space optical origami of two 2D wavefronts from one interferogram. Scanning illumination modulates the high-horizontal and axial k-space to endow synthetic-aperture from 2D high space-bandwidth product (SBP) scattering fields. The bright-field counterpart SBP of a single scattering field from HBHM is 14.6 megapixels, while the number of pixels is only 13.7 megapixels. It achieves an eight-fold SBP enhancement under the same number of pixels and diffraction limit. The HBHM paves the way toward the performance of high throughput, large-scale, and non-invasive histopathology, cell biology, and industrial inspection.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"65 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of non-Hermitian skin effect by staggered synthetic gauge fields 用交错合成规规场控制非赫米提皮肤效应
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-05-07 DOI: 10.1063/5.0196844
Huiyan Tang, Ziteng Wang, Liqin Tang, Daohong Song, Zhigang Chen, Hrvoje Buljan
Synthetic gauge fields introduce an unconventional degree of freedom for studying many fundamental phenomena in different branches of physics. Here, we propose a scheme to use staggered synthetic gauge fields for control of the non-Hermitian skin effect (NHSE). A modified Su–Schrieffer–Heeger model is employed, where two dimer chains with non-reciprocal coupling phases are coupled, exhibiting non-trivial point-gap topology and the NHSE. In contrast to previous studies, the skin modes in our model are solely determined by the coupling phase terms associated with the staggered synthetic gauge fields. By manipulating such gauge fields, we can achieve maneuvering of skin modes as well as the bipolar NHSE. As a typical example, we set up a domain wall by imposing different synthetic gauge fields on two sides of the wall, thereby demonstrating flexible control of the non-Hermitian skin modes at the domain wall. Our scheme opens a new avenue for the creation and manipulation of NHSE by synthetic gauge fields, which may find applications in beam shaping and non-Hermitian topological devices.
合成规规场为研究不同物理学分支的许多基本现象引入了一种非常规的自由度。在这里,我们提出了一种使用交错合成规规场来控制非赫米提趋肤效应(NHSE)的方案。我们采用了一个改进的苏-施里弗-希格模型,其中两个具有非对等耦合相的二聚体链被耦合在一起,表现出非对称的点隙拓扑和 NHSE。与以往的研究不同,我们模型中的集肤模式完全由与交错合成规规场相关的耦合相项决定。通过操纵这种规规场,我们可以实现集肤模式和双极 NHSE 的操纵。作为一个典型的例子,我们在畴壁的两侧施加了不同的合成规规场,从而建立了一个畴壁,展示了在畴壁上对非赫米态肤模的灵活控制。我们的方案为通过合成规规场创建和操纵 NHSE 开辟了一条新途径,可应用于光束整形和非赫米提拓扑器件。
{"title":"Control of non-Hermitian skin effect by staggered synthetic gauge fields","authors":"Huiyan Tang, Ziteng Wang, Liqin Tang, Daohong Song, Zhigang Chen, Hrvoje Buljan","doi":"10.1063/5.0196844","DOIUrl":"https://doi.org/10.1063/5.0196844","url":null,"abstract":"Synthetic gauge fields introduce an unconventional degree of freedom for studying many fundamental phenomena in different branches of physics. Here, we propose a scheme to use staggered synthetic gauge fields for control of the non-Hermitian skin effect (NHSE). A modified Su–Schrieffer–Heeger model is employed, where two dimer chains with non-reciprocal coupling phases are coupled, exhibiting non-trivial point-gap topology and the NHSE. In contrast to previous studies, the skin modes in our model are solely determined by the coupling phase terms associated with the staggered synthetic gauge fields. By manipulating such gauge fields, we can achieve maneuvering of skin modes as well as the bipolar NHSE. As a typical example, we set up a domain wall by imposing different synthetic gauge fields on two sides of the wall, thereby demonstrating flexible control of the non-Hermitian skin modes at the domain wall. Our scheme opens a new avenue for the creation and manipulation of NHSE by synthetic gauge fields, which may find applications in beam shaping and non-Hermitian topological devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"23 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140939681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting graded triangular gratings for optimal nano-focusing: A novel approach to enhance SERS efficiency 利用分级三角光栅实现最佳纳米聚焦:提高 SERS 效率的新方法
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-04-26 DOI: 10.1063/5.0195141
Ali Zeineddine, Moein Shayegannia, Nazir P. Kherani, Joel Y. Y. Loh
Plasmonic graded nano-gratings enable rainbow trapping of multiple resonant modes over a wide wavelength spectrum, useful for multi-channel Surface Enhanced Raman Spectroscopy (SERS) of molecular species. However, rectangular nano-gratings have limitations in achieving efficient rainbow trapping and localizing a wide spectrum of plasmonic modes due to their stepwise geometry, which induces high dissipation of surface plasmon polaritons into the substrate. An alternative platform of graded triangular nano-gratings enables increased localization and more efficient adiabatic transformation between neighboring grooves. Varying groove angles, depths, and periods in the tapered geometry allow for smooth adjustment of the surface plasmon polariton propagation constant, reducing losses and maximizing nano-focusing inside the groove tips. To overcome the limitation of low aspect ratio in wet-etching silicon, we employed a multi-step process of reactive ion etching of a SiO2 barrier layer to generate aperture width, followed by anisotropic wet-etching. The resulting graded triangular nano-gratings showed excellent SERS enhancement along three laser wavelength excitations. The enhancement factors of 638 and 785 nm wavelengths are 8.5 × 109 and 9 × 108, respectively, for the detection of 1 µM Rhodamine 6G. In addition, graded triangular nano-gratings show similar enhancement factors for other species, specifically the lipid DPEE-PEG, at the 532 nm laser excitation wavelength with an excellent SERS enhancement factor of 1.5 × 109. Owing to the ability of the graded triangular gratings to elicit pronounced SERS responses across three distinct laser excitations, they unequivocally qualify as “rainbow trapping” structures. Wider apertures, lower ohmic losses, and the ability to tune the groove angle beyond conventional etching methods bode well for graded triangular gratings as a superior platform for miniature sensors.
等离子体分级纳米光栅可在宽波谱范围内实现多种共振模式的彩虹捕获,适用于分子物种的多通道表面增强拉曼光谱(SERS)。然而,矩形纳米光栅在实现高效彩虹捕获和定位宽光谱等离子体模式方面存在局限性,因为其阶梯式几何形状会导致表面等离子体极化子大量耗散到基底中。另一种分级三角形纳米凹槽平台可提高定位能力,并在相邻凹槽之间实现更有效的绝热转换。锥形几何中不同的凹槽角度、深度和周期可以平滑调整表面等离子体极化子的传播常数,从而减少损耗,并最大限度地实现凹槽尖端内部的纳米聚焦。为了克服湿法蚀刻硅的低纵横比限制,我们采用了一个多步骤工艺,即对二氧化硅阻挡层进行反应离子蚀刻以产生孔径宽度,然后再进行各向异性湿法蚀刻。由此产生的分级三角形纳米栅极在三种激光波长的激发下都表现出了极佳的 SERS 增强效果。在检测 1 µM 罗丹明 6G 时,638 和 785 nm 波长的增强因子分别为 8.5 × 109 和 9 × 108。此外,在 532 nm 激光激发波长下,分级三角形纳米栅对其他物种也显示出类似的增强因子,特别是对脂质 DPEE-PEG,其 SERS 增强因子高达 1.5 × 109。由于分级三角形光栅能够在三种不同的激光激发下产生明显的 SERS 反应,因此它们被明确称为 "彩虹捕获 "结构。更宽的孔径、更低的欧姆损耗以及超越传统蚀刻方法的沟槽角度调节能力,都预示着渐变三角光栅将成为微型传感器的卓越平台。
{"title":"Exploiting graded triangular gratings for optimal nano-focusing: A novel approach to enhance SERS efficiency","authors":"Ali Zeineddine, Moein Shayegannia, Nazir P. Kherani, Joel Y. Y. Loh","doi":"10.1063/5.0195141","DOIUrl":"https://doi.org/10.1063/5.0195141","url":null,"abstract":"Plasmonic graded nano-gratings enable rainbow trapping of multiple resonant modes over a wide wavelength spectrum, useful for multi-channel Surface Enhanced Raman Spectroscopy (SERS) of molecular species. However, rectangular nano-gratings have limitations in achieving efficient rainbow trapping and localizing a wide spectrum of plasmonic modes due to their stepwise geometry, which induces high dissipation of surface plasmon polaritons into the substrate. An alternative platform of graded triangular nano-gratings enables increased localization and more efficient adiabatic transformation between neighboring grooves. Varying groove angles, depths, and periods in the tapered geometry allow for smooth adjustment of the surface plasmon polariton propagation constant, reducing losses and maximizing nano-focusing inside the groove tips. To overcome the limitation of low aspect ratio in wet-etching silicon, we employed a multi-step process of reactive ion etching of a SiO2 barrier layer to generate aperture width, followed by anisotropic wet-etching. The resulting graded triangular nano-gratings showed excellent SERS enhancement along three laser wavelength excitations. The enhancement factors of 638 and 785 nm wavelengths are 8.5 × 109 and 9 × 108, respectively, for the detection of 1 µM Rhodamine 6G. In addition, graded triangular nano-gratings show similar enhancement factors for other species, specifically the lipid DPEE-PEG, at the 532 nm laser excitation wavelength with an excellent SERS enhancement factor of 1.5 × 109. Owing to the ability of the graded triangular gratings to elicit pronounced SERS responses across three distinct laser excitations, they unequivocally qualify as “rainbow trapping” structures. Wider apertures, lower ohmic losses, and the ability to tune the groove angle beyond conventional etching methods bode well for graded triangular gratings as a superior platform for miniature sensors.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"65 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring intrinsic chiroptical responses via twisted bilayer α-MoO3 separated by a VO2 film 通过由 VO2 薄膜隔开的扭曲双层 α-MoO3 来定制本征千扰响应
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-04-26 DOI: 10.1063/5.0197081
Junjian Lu, Tian Sang, Chui Pian, Siyuan Ouyang, Ze Jing
Flexible control of intrinsic chiroptical responses within compact nanostructures is crucial for flat optics, topological photonics, and chiroptics. However, previous approaches require complicated patterns with both in-plane and out-of-plane mirror symmetry breaking to achieve intrinsic chirality, and their chiroptical responses cannot be dynamically controlled as well. Herein, we demonstrated that near-perfect intrinsic circular dichroism (CD) can be achieved within a lithography-free structure consisting of the twisted bilayer α-MoO3 separated by a vanadium dioxide (VO2) film. By twisting the bilayer α-MoO3, dual-band intrinsic chiroptical responses can be realized due to the excitations of the hyperbolic phonon polaritons modes in the mid-infrared. It is the spin-selected average electric-field enhancement instead of the chiral absorption that is responsible for the intrinsic CD of the device. In addition, the chiroptical responses are insensitive to the variation of the thickness of the structure as well as the incident angle, and high contrast CD can be dynamically tuned by varying the volume fraction of VO2.
在紧凑的纳米结构中灵活控制本征自旋响应对于平面光学、拓扑光子学和自旋光学至关重要。然而,以往的方法需要同时打破平面内和平面外镜像对称性的复杂图案,才能实现本征手性,而且它们的自旋响应也无法动态控制。在这里,我们证明了可以在一种无光刻技术结构中实现近乎完美的本征圆二色性(CD),这种结构由被二氧化钒(VO2)薄膜隔开的扭曲双层α-MoO3组成。通过扭曲双层 α-MoO3,由于双曲声子极化子模式在中红外的激发,可以实现双波段本征自旋响应。是自旋选择的平均电场增强而不是手性吸收导致了该器件的本征 CD。此外,气光响应对结构厚度和入射角的变化不敏感,而且可以通过改变 VO2 的体积分数动态调节高对比度 CD。
{"title":"Tailoring intrinsic chiroptical responses via twisted bilayer α-MoO3 separated by a VO2 film","authors":"Junjian Lu, Tian Sang, Chui Pian, Siyuan Ouyang, Ze Jing","doi":"10.1063/5.0197081","DOIUrl":"https://doi.org/10.1063/5.0197081","url":null,"abstract":"Flexible control of intrinsic chiroptical responses within compact nanostructures is crucial for flat optics, topological photonics, and chiroptics. However, previous approaches require complicated patterns with both in-plane and out-of-plane mirror symmetry breaking to achieve intrinsic chirality, and their chiroptical responses cannot be dynamically controlled as well. Herein, we demonstrated that near-perfect intrinsic circular dichroism (CD) can be achieved within a lithography-free structure consisting of the twisted bilayer α-MoO3 separated by a vanadium dioxide (VO2) film. By twisting the bilayer α-MoO3, dual-band intrinsic chiroptical responses can be realized due to the excitations of the hyperbolic phonon polaritons modes in the mid-infrared. It is the spin-selected average electric-field enhancement instead of the chiral absorption that is responsible for the intrinsic CD of the device. In addition, the chiroptical responses are insensitive to the variation of the thickness of the structure as well as the incident angle, and high contrast CD can be dynamically tuned by varying the volume fraction of VO2.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"36 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feedback enhanced phonon lasing of a microwave frequency resonator 微波频率谐振器的反馈增强型声子激光
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-04-19 DOI: 10.1063/5.0172554
Peyman Parsa, Prasoon Kumar Shandilya, David P. Lake, Matthew E. Mitchell, Paul E. Barclay
The amplitude of self-oscillating mechanical resonators in cavity optomechanical systems is typically limited by nonlinearities arising from the cavity’s finite optical bandwidth. We propose and demonstrate a feedback technique for increasing this limit. By modulating the cavity input field with a signal derived from its output intensity, we increase the amplitude of a self-oscillating GHz frequency mechanical resonator by 22% (an increase in coherent phonon number of 50%), limited only by the achievable optomechanical cooperativity of the system. This technique will advance applications dependent on high dynamic mechanical stress, such as coherent spin-phonon coupling, as well as the implementation of sensors based on self-oscillating resonators.
腔体光机械系统中自振荡机械谐振器的振幅通常受到腔体有限光带宽所产生的非线性限制。我们提出并演示了一种提高这一限制的反馈技术。通过用源自空腔输出强度的信号调制空腔输入场,我们将自振荡 GHz 频率机械谐振器的振幅提高了 22%(相干声子数量增加了 50%),而这仅受限于系统可实现的光机电协同性。这项技术将推动依赖于高动态机械应力的应用,如相干自旋声子耦合,以及基于自振荡谐振器的传感器的实施。
{"title":"Feedback enhanced phonon lasing of a microwave frequency resonator","authors":"Peyman Parsa, Prasoon Kumar Shandilya, David P. Lake, Matthew E. Mitchell, Paul E. Barclay","doi":"10.1063/5.0172554","DOIUrl":"https://doi.org/10.1063/5.0172554","url":null,"abstract":"The amplitude of self-oscillating mechanical resonators in cavity optomechanical systems is typically limited by nonlinearities arising from the cavity’s finite optical bandwidth. We propose and demonstrate a feedback technique for increasing this limit. By modulating the cavity input field with a signal derived from its output intensity, we increase the amplitude of a self-oscillating GHz frequency mechanical resonator by 22% (an increase in coherent phonon number of 50%), limited only by the achievable optomechanical cooperativity of the system. This technique will advance applications dependent on high dynamic mechanical stress, such as coherent spin-phonon coupling, as well as the implementation of sensors based on self-oscillating resonators.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"87 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
APL Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1