Pub Date : 2021-06-07Epub Date: 2021-03-17DOI: 10.1146/annurev-chembioeng-091720-030636
Souvik Ghosal, Javon E Walker, Christopher A Alabi
Macromolecule-drug conjugates (MDCs) occupy a critical niche in modern pharmaceuticals that deals with the assembly and combination of a macromolecular carrier, a drug cargo, and a linker toward the creation of effective therapeutics. Macromolecular carriers such as synthetic biocompatible polymers and proteins are often exploited for their inherent ability to improve drug circulation, prevent off-target drug cytotoxicity, and widen the therapeutic index of drugs. One of the most significant challenges in MDC design involves tuning their drug release kinetics to achieve high spatiotemporal precision. This level of control requires a thorough qualitative and quantitative understanding of the bond cleavage event. In this review, we highlight specific research findings that emphasize the importance of establishing a precise structure-function relationship for MDCs that can be used to predict their bond cleavage and drug release kinetic parameters.
{"title":"Predictive Platforms of Bond Cleavage and Drug Release Kinetics for Macromolecule-Drug Conjugates.","authors":"Souvik Ghosal, Javon E Walker, Christopher A Alabi","doi":"10.1146/annurev-chembioeng-091720-030636","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-091720-030636","url":null,"abstract":"<p><p>Macromolecule-drug conjugates (MDCs) occupy a critical niche in modern pharmaceuticals that deals with the assembly and combination of a macromolecular carrier, a drug cargo, and a linker toward the creation of effective therapeutics. Macromolecular carriers such as synthetic biocompatible polymers and proteins are often exploited for their inherent ability to improve drug circulation, prevent off-target drug cytotoxicity, and widen the therapeutic index of drugs. One of the most significant challenges in MDC design involves tuning their drug release kinetics to achieve high spatiotemporal precision. This level of control requires a thorough qualitative and quantitative understanding of the bond cleavage event. In this review, we highlight specific research findings that emphasize the importance of establishing a precise structure-function relationship for MDCs that can be used to predict their bond cleavage and drug release kinetic parameters.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"241-261"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25487121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07Epub Date: 2021-04-14DOI: 10.1146/annurev-chembioeng-102620-015346
Boelo Schuur, Thomas Brouwer, Lisette M J Sprakel
The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO2-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.
{"title":"Recent Developments in Solvent-Based Fluid Separations.","authors":"Boelo Schuur, Thomas Brouwer, Lisette M J Sprakel","doi":"10.1146/annurev-chembioeng-102620-015346","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-102620-015346","url":null,"abstract":"<p><p>The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO<sub>2</sub>-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"573-591"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25587875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.1146/annurev-chembioeng-092220-100517
Michael Schlüter, Sonja Herres-Pawlis, Ulrich Nieken, Ute Tuttlies, Dieter Bothe
Improving the yield and selectivity of chemical reactions is one of the challenging tasks in paving the way for a more sustainable and climate-friendly economy. For the industrially highly relevant gas-liquid reactions, this can be achieved by tailoring the timescales of mixing to the requirements of the reaction. Although this has long been known for idealized reactors and time- and space-averaged processes, considerable progress has been made recently on the influence of local mixing processes. This progress has become possible through joint research between chemists, mathematicians, and engineers. We present the reaction systems with adjustable kinetics that have been developed, which are easy to handle and analyze. We show examples of how the selectivity of competitive-consecutive reactions can be controlled via local bubble wake structures. This is demonstrated for Taylor bubbles and bubbly flows under technical conditions. Highly resolvednumerical simulations confirm the importance of the bubble wake structure for the performance of a particular chemical reaction and indicate tremendous potential for future process improvements.
{"title":"Small-Scale Phenomena in Reactive Bubbly Flows: Experiments, Numerical Modeling, and Applications.","authors":"Michael Schlüter, Sonja Herres-Pawlis, Ulrich Nieken, Ute Tuttlies, Dieter Bothe","doi":"10.1146/annurev-chembioeng-092220-100517","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092220-100517","url":null,"abstract":"<p><p>Improving the yield and selectivity of chemical reactions is one of the challenging tasks in paving the way for a more sustainable and climate-friendly economy. For the industrially highly relevant gas-liquid reactions, this can be achieved by tailoring the timescales of mixing to the requirements of the reaction. Although this has long been known for idealized reactors and time- and space-averaged processes, considerable progress has been made recently on the influence of local mixing processes. This progress has become possible through joint research between chemists, mathematicians, and engineers. We present the reaction systems with adjustable kinetics that have been developed, which are easy to handle and analyze. We show examples of how the selectivity of competitive-consecutive reactions can be controlled via local bubble wake structures. This is demonstrated for Taylor bubbles and bubbly flows under technical conditions. Highly resolvednumerical simulations confirm the importance of the bubble wake structure for the performance of a particular chemical reaction and indicate tremendous potential for future process improvements.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"625-643"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39071349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.1146/annurev-chembioeng-101420-024336
Sung-Hyuk Sunwoo, Kyoung-Ho Ha, Sangkyu Lee, Nanshu Lu, Dae-Hyeong Kim
High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.
{"title":"Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies.","authors":"Sung-Hyuk Sunwoo, Kyoung-Ho Ha, Sangkyu Lee, Nanshu Lu, Dae-Hyeong Kim","doi":"10.1146/annurev-chembioeng-101420-024336","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-101420-024336","url":null,"abstract":"<p><p>High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"359-391"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39071351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.1146/annurev-ch-12-033021-100001
Rachel A Segalman, Michael F Doherty
{"title":"Introduction.","authors":"Rachel A Segalman, Michael F Doherty","doi":"10.1146/annurev-ch-12-033021-100001","DOIUrl":"https://doi.org/10.1146/annurev-ch-12-033021-100001","url":null,"abstract":"","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"i-ii"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39071352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07Epub Date: 2021-03-26DOI: 10.1146/annurev-chembioeng-101220-080338
Takayuki Nonoyama, Jian Ping Gong
Soft and wet hydrogels have many similarities to biological tissues, though their mechanical fragility had been one of the biggest obstacles in biomedical applications. Studies and developments in double network (DN) hydrogels have elucidated how to create tough gels universally based on sacrificial bond principles and opened a path for biomedical application of hydrogels in regenerative medicine and artificial soft connective tissues, such as cartilage, tendon, and ligament, which endure high tension and compression. This review explores a universal toughening mechanism for and biomedical studies of DN hydrogels. Moreover, because the term sacrificial bonds has been mentioned often in studies of bone tissues, consisting of biomacromolecules and biominerals, recent studies of gel-biomineral composites to understand early-stage osteogenesis and to simulate bony sacrificial bonds are also summarized.
{"title":"Tough Double Network Hydrogel and Its Biomedical Applications.","authors":"Takayuki Nonoyama, Jian Ping Gong","doi":"10.1146/annurev-chembioeng-101220-080338","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-101220-080338","url":null,"abstract":"<p><p>Soft and wet hydrogels have many similarities to biological tissues, though their mechanical fragility had been one of the biggest obstacles in biomedical applications. Studies and developments in double network (DN) hydrogels have elucidated how to create tough gels universally based on sacrificial bond principles and opened a path for biomedical application of hydrogels in regenerative medicine and artificial soft connective tissues, such as cartilage, tendon, and ligament, which endure high tension and compression. This review explores a universal toughening mechanism for and biomedical studies of DN hydrogels. Moreover, because the term sacrificial bonds has been mentioned often in studies of bone tissues, consisting of biomacromolecules and biominerals, recent studies of gel-biomineral composites to understand early-stage osteogenesis and to simulate bony sacrificial bonds are also summarized.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"393-410"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25520081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.1146/annurev-chembioeng-101420-014055
Walter Thavarajah, Laura M Hertz, David Z Bushhouse, Chloé M Archuleta, Julius B Lucks
RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.
{"title":"RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics.","authors":"Walter Thavarajah, Laura M Hertz, David Z Bushhouse, Chloé M Archuleta, Julius B Lucks","doi":"10.1146/annurev-chembioeng-101420-014055","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-101420-014055","url":null,"abstract":"<p><p>RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems to solve pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"12 ","pages":"263-286"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714562/pdf/nihms-1849307.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9178826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.1146/annurev-chembioeng-101220-093836
R Bharath Venkatesh, Neha Manohar, Yiwei Qiang, Haonan Wang, Hong Huy Tran, Baekmin Q Kim, Anastasia Neuman, Tian Ren, Zahra Fakhraai, Robert A Riggleman, Kathleen J Stebe, Kevin Turner, Daeyeon Lee
Polymer-infiltrated nanoparticle films (PINFs) are a new class of nanocomposites that offer synergistic properties and functionality derived from unusually high fractions of nanomaterials. Recently, two versatile techniques,capillary rise infiltration (CaRI) and solvent-driven infiltration of polymer (SIP), have been introduced that exploit capillary forces in films of densely packed nanoparticles. In CaRI, a highly loaded PINF is produced by thermally induced wicking of polymer melt into the nanoparticle packing pores. In SIP, exposure of a polymer-nanoparticle bilayer to solvent vapor atmosphere induces capillary condensation of solvent in the pores of nanoparticle packing, leading to infiltration of polymer into the solvent-filled pores. CaRI/SIP PINFs show superior properties compared with polymer nanocomposite films made using traditional methods, including superb mechanical properties, thermal stability, heat transfer, and optical properties. This review discusses fundamental aspects of the infiltration process and highlights potential applications in separations, structural coatings, and polymer upcycling-a process to convert polymer wastes into useful chemicals.
{"title":"Polymer-Infiltrated Nanoparticle Films Using Capillarity-Based Techniques: Toward Multifunctional Coatings and Membranes.","authors":"R Bharath Venkatesh, Neha Manohar, Yiwei Qiang, Haonan Wang, Hong Huy Tran, Baekmin Q Kim, Anastasia Neuman, Tian Ren, Zahra Fakhraai, Robert A Riggleman, Kathleen J Stebe, Kevin Turner, Daeyeon Lee","doi":"10.1146/annurev-chembioeng-101220-093836","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-101220-093836","url":null,"abstract":"<p><p>Polymer-infiltrated nanoparticle films (PINFs) are a new class of nanocomposites that offer synergistic properties and functionality derived from unusually high fractions of nanomaterials. Recently, two versatile techniques,capillary rise infiltration (CaRI) and solvent-driven infiltration of polymer (SIP), have been introduced that exploit capillary forces in films of densely packed nanoparticles. In CaRI, a highly loaded PINF is produced by thermally induced wicking of polymer melt into the nanoparticle packing pores. In SIP, exposure of a polymer-nanoparticle bilayer to solvent vapor atmosphere induces capillary condensation of solvent in the pores of nanoparticle packing, leading to infiltration of polymer into the solvent-filled pores. CaRI/SIP PINFs show superior properties compared with polymer nanocomposite films made using traditional methods, including superb mechanical properties, thermal stability, heat transfer, and optical properties. This review discusses fundamental aspects of the infiltration process and highlights potential applications in separations, structural coatings, and polymer upcycling-a process to convert polymer wastes into useful chemicals.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"411-437"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39071348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07Epub Date: 2021-03-29DOI: 10.1146/annurev-chembioeng-090920-015024
Darshan M Sivaloganathan, Mark P Brynildsen
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
{"title":"Phagosome-Bacteria Interactions from the Bottom Up.","authors":"Darshan M Sivaloganathan, Mark P Brynildsen","doi":"10.1146/annurev-chembioeng-090920-015024","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-090920-015024","url":null,"abstract":"<p><p>When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"309-331"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25529077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07Epub Date: 2021-03-29DOI: 10.1146/annurev-chembioeng-091720-034106
John M Baumann, Molly S Adam, Joel D Wood
Spray drying is a versatile technology that has been applied widely in the chemical, food, and, most recently, pharmaceutical industries. This review focuses on engineering advances and the most significant applications of spray drying for pharmaceuticals. An in-depth view of the process and its use is provided for amorphous solid dispersions, a major, growing drug-delivery approach. Enhanced understanding of the relationship of spray-drying process parameters to final product quality attributes has made robust product development possible to address a wide range of pharmaceutical problem statements. Formulation and process optimization have leveraged the knowledge gained as the technology has matured, enabling improved process development from early feasibility screening through commercial applications. Spray drying's use for approved small-molecule oral products is highlighted, as are emerging applications specific to delivery of biologics and non-oral delivery of dry powders. Based on the changing landscape of the industry, significant future opportunities exist for pharmaceutical spray drying.
{"title":"Engineering Advances in Spray Drying for Pharmaceuticals.","authors":"John M Baumann, Molly S Adam, Joel D Wood","doi":"10.1146/annurev-chembioeng-091720-034106","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-091720-034106","url":null,"abstract":"<p><p>Spray drying is a versatile technology that has been applied widely in the chemical, food, and, most recently, pharmaceutical industries. This review focuses on engineering advances and the most significant applications of spray drying for pharmaceuticals. An in-depth view of the process and its use is provided for amorphous solid dispersions, a major, growing drug-delivery approach. Enhanced understanding of the relationship of spray-drying process parameters to final product quality attributes has made robust product development possible to address a wide range of pharmaceutical problem statements. Formulation and process optimization have leveraged the knowledge gained as the technology has matured, enabling improved process development from early feasibility screening through commercial applications. Spray drying's use for approved small-molecule oral products is highlighted, as are emerging applications specific to delivery of biologics and non-oral delivery of dry powders. Based on the changing landscape of the industry, significant future opportunities exist for pharmaceutical spray drying.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"217-240"},"PeriodicalIF":8.4,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25529079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}