Following Forest Hills High School in New York City, I attended Cornell University for a five-year program leading to a Bachelor of Chemical Engineering degree. After spending one year at the University of Rochester to obtain a Master of Science in Chemical Engineering, I came to Princeton University in 1951. Four years later, with a fresh PhD, I joined the faculty at the University of California, Berkeley, where I remained, interrupted only by sabbatical leaves in Switzerland, Germany, England, New Zealand, and Australia. Most of my professional work has been in applied chemical thermodynamics for process design, in particular, development of molecular-thermodynamic models for calculating phase equilibria for large-scale separation operations. I have also worked on the properties of electrolytes and hydrates, critical phenomena in fluid mixtures, properties of polymers and gels, adsorption of fluid mixtures, and separation of biomolecules. For many years I was a consultant for Air Projects and Chemicals and for the Fluor Corporation. Throughout my long teaching career, I have stressed the importance of context and of integrating science and engineering with humanities and with the needs of society. Such integration makes better engineers and contributes to personal happiness.
Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.
Hydrogen is an important part of any discussion on sustainability and reduction in emissions across major energy sectors. In addition to being a feedstock and process gas for many industrial processes, hydrogen is emerging as a fuel alternative for transportation applications. Renewable sources of hydrogen are therefore required to increase in capacity. Low-temperature electrolysis of water is currently the most mature method for carbon-free hydrogen generation and is reaching relevant scales to impact the energy landscape. However, costs still need to be reduced to be economical with traditional hydrogen sources. Operating cost reductions are enabled by the recent availability of low-cost sources of renewable energy, and the potential exists for a large reduction in capital cost withmaterial and manufacturing optimization. This article focuses on the current status and development needs by component for the low-temperature electrolysis options.
Polymers play an essential role in drug formulation and production of medical devices, implants, and diagnostics. Following drug discovery, an appropriate formulation is selected to enable drug delivery. This task can be exceedingly challenging owing to the large number of potential delivery methods and formulation and process variables that can interact in complex ways. This evolving solubility challenge has inspired an increasing emphasis on the developability of drug candidates in early discovery as well as various advanced drug solubilization strategies. Among the latter, formulation approaches that lead to prolonged drug supersaturation to maximize the driving force for sustained intestinal absorption of an oral product, or to allow sufficient time for injection after reconstitution of a parenteral lyophile formulation, have attracted increasing interest. Although several kinetic and thermodynamic components are involved in stabilizing amorphous dispersions, it is generally assumed that maximum physical stability, defined in terms of inhibition of drug crystallization, requires that the drug and excipient remain intimately mixed. Phase separation of the drug from its excipient may be the first step that ultimately leads to crystallization. We discuss the role of advanced thermodynamics using two examples: ASD and vitamin E-stabilized ultrahigh-molecular weight polyethylene implants.
This review compares droplet-based microfluidic systems used to study crystallization fundamentals in chemistry and biology. An original high-throughput droplet-based microfluidic platform is presented. It uses nanoliter droplets, generates a chemical library, and directly solubilizes powder, thus economizing both material and time. It is compatible with all solvents without the need for surfactant. Its flexibility permits phase diagram determination and crystallization studies (screening and optimizing experiments) and makes it easy to use for nonspecialists in microfluidics. Moreover, it allows concentration measurement via ultraviolet spectroscopy and solid characterization via X-ray diffraction analysis.
In marine industries, the accumulation of organic matter and marine organisms on ship hulls and instruments limits performance, requiring frequent maintenance and increasing fuel costs. Current coatings technology to combat this biofouling relies heavily on the use of toxic, biocide-containing paints. These pose a serious threat to marine ecosystems, affecting both target and nontarget organisms. Innovation in the design of polymers offers an excellent platform for the development of alternatives, but the creation of a broad-spectrum, nontoxic material still poses quite a hurdle for researchers. Surface chemistry, physical properties, durability, and attachment scheme have been shown to play a vital role in the construction of a successful coating. This review explores why these characteristics are important and how recent research accounts for them in the design and synthesis of new environmentally benign antifouling and fouling release materials.
Products from chemical engineering are essential for human well-being, but they also contribute to the degradation of ecosystem goods and services that are essential for sustaining all human activities. To contribute to sustainability, chemical engineering needs to address this paradox by developing chemical products and processes that meet the needs of present and future generations. Unintended harm of chemical engineering has usually appeared outside the discipline's traditional system boundary due to shifting of impacts across space, time, flows, or disciplines, and exceeding nature's capacity to supply goods and services. Being a subdiscipline of chemical engineering, process systems engineering (PSE) is best suited for ensuring that chemical engineering makes net positive contributions to sustainable development. This article reviews the role of PSE in the quest toward a sustainable chemical engineering. It focuses on advances in metrics, process design, product design, and process dynamics and control toward sustainability. Efforts toward contributing to this quest have already expanded the boundary of PSE to consider economic, environmental, and societal aspects of processes, products, and their life cycles. Future efforts need to account for the role of ecosystems in supporting industrial activities, and the effects of human behavior and markets on the environmental impacts of chemical products. Close interaction is needed between the reductionism of chemical engineering science and the holism of process systems engineering, along with a shift in the engineering paradigm from wanting to dominate nature to learning from it and respecting its limits.
In recent years, 3D printing has led to a disruptive manufacturing revolution that allows complex architected materials and structures to be created by directly joining sequential layers into designed 3D components. However, customized feedstocks for specific 3D printing techniques and applications are limited or nonexistent, which greatly impedes the production of desired structural or functional materials. Colloids, with their stable biphasic nature, have tremendous potential to satisfy the requirements of various 3D printing methods owing to their tunable electrical, optical, mechanical, and rheological properties. This enables materials delivery and assembly across the multiple length scales required for multifunctionality. Here, a state-of-the-art review on advanced colloidal processing strategies for 3D printing of organic, ceramic, metallic, and carbonaceous materials is provided. It is believed that the concomitant innovations in colloid design and 3D printing will provide numerous possibilities for the fabrication of new constructs unobtainable using traditional methods, which will significantly broaden their applications.