首页 > 最新文献

Annual review of chemical and biomolecular engineering最新文献

英文 中文
Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. 用于纳米材料可靠原位成像的液相透射电子显微镜。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-06-10 DOI: 10.1146/annurev-chembioeng-092120-034534
Jongbaek Sung, Yuna Bae, Hayoung Park, Sungsu Kang, Back Kyu Choi, Joodeok Kim, Jungwon Park
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
液相透射电子显微镜(ltem)是一种强大的原位可视化技术,可以直接表征纳米材料的液态。尽管它在许多领域得到了成功的应用,但在获得更准确和可靠的观测结果方面仍然存在一些挑战。我们介绍了LPTEM在化学和生物学上的应用,包括纳米颗粒、电池系统、催化、生物分子和有机系统的形态转化和动力学研究。我们描述了在观察过程中电子束对样品可能的相互作用和影响,并提出了特定样品的方法来减轻和控制这些电子束效应。我们提供了在液相结构和动力学研究中实现原子级分辨率的最新进展。此外,我们还讨论了液细胞平台的发展以及引入定量和客观的LPTEM分析的机器学习数据处理。
{"title":"Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials.","authors":"Jongbaek Sung, Yuna Bae, Hayoung Park, Sungsu Kang, Back Kyu Choi, Joodeok Kim, Jungwon Park","doi":"10.1146/annurev-chembioeng-092120-034534","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-034534","url":null,"abstract":"Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44274199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells. 人多能干细胞制造心肌细胞的研究进展。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-06-10 DOI: 10.1146/annurev-chembioeng-092120-033922
Martha E Floy, Fathima Shabnam, Aaron D Simmons, Vijesh J Bhute, Gyuhyung Jin, Will A Friedrich, Alexandra B Steinberg, Sean P Palecek

The emergence of human pluripotent stem cell (hPSC) technology over the past two decades has provided a source of normal and diseased human cells for a wide variety of in vitro and in vivo applications. Notably, hPSC-derived cardiomyocytes (hPSC-CMs) are widely used to model human heart development and disease and are in clinical trials for treating heart disease. The success of hPSC-CMs in these applications requires robust, scalable approaches to manufacture large numbers of safe and potent cells. Although significant advances have been made over the past decade in improving the purity and yield of hPSC-CMs and scaling the differentiation process from 2D to 3D, efforts to induce maturation phenotypes during manufacturing have been slow. Process monitoring and closed-loop manufacturing strategies are just being developed. We discuss recent advances in hPSC-CM manufacturing, including differentiation process development and scaling and downstream processes as well as separation and stabilization.

在过去的二十年中,人类多能干细胞(hPSC)技术的出现为各种体外和体内应用提供了正常和患病人类细胞的来源。值得注意的是,hpsc来源的心肌细胞(hPSC-CMs)被广泛用于模拟人类心脏发育和疾病,并在治疗心脏病的临床试验中。hPSC-CMs在这些应用中的成功需要强大的、可扩展的方法来制造大量安全和有效的细胞。尽管在过去十年中,在提高hPSC-CMs的纯度和产量以及将分化过程从2D扩展到3D方面取得了重大进展,但在制造过程中诱导成熟表型的努力进展缓慢。过程监控和闭环制造策略才刚刚发展起来。我们讨论了hPSC-CM制造的最新进展,包括差异化工艺开发和规模化以及下游工艺以及分离和稳定。
{"title":"Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells.","authors":"Martha E Floy,&nbsp;Fathima Shabnam,&nbsp;Aaron D Simmons,&nbsp;Vijesh J Bhute,&nbsp;Gyuhyung Jin,&nbsp;Will A Friedrich,&nbsp;Alexandra B Steinberg,&nbsp;Sean P Palecek","doi":"10.1146/annurev-chembioeng-092120-033922","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-033922","url":null,"abstract":"<p><p>The emergence of human pluripotent stem cell (hPSC) technology over the past two decades has provided a source of normal and diseased human cells for a wide variety of in vitro and in vivo applications. Notably, hPSC-derived cardiomyocytes (hPSC-CMs) are widely used to model human heart development and disease and are in clinical trials for treating heart disease. The success of hPSC-CMs in these applications requires robust, scalable approaches to manufacture large numbers of safe and potent cells. Although significant advances have been made over the past decade in improving the purity and yield of hPSC-CMs and scaling the differentiation process from 2D to 3D, efforts to induce maturation phenotypes during manufacturing have been slow. Process monitoring and closed-loop manufacturing strategies are just being developed. We discuss recent advances in hPSC-CM manufacturing, including differentiation process development and scaling and downstream processes as well as separation and stabilization.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197878/pdf/nihms-1800287.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9599789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hydrogen Production and Its Applications to Mobility. 氢气生产及其在流动性方面的应用。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-04-13 DOI: 10.1146/annurev-chembioeng-092220-010254
Andrés González-Garay, M. Bui, Diego Freire Ordóñez, Michael High, Adam Oxley, Nadine Moustafa, Paola A Sáenz Cavazos, P. Patrizio, Nixon Sunny, N. M. Dowell, Nilay Shah
Hydrogen has been identified as one of the key elements to bolster longer-term climate neutrality and strategic autonomy for several major countries. Multiple road maps emphasize the need to accelerate deployment across its supply chain and utilization. Being one of the major contributors to global CO2 emissions, the transportation sector finds in hydrogen an appealing alternative to reach sustainable development through either its direct use in fuel cells or further transformation to sustainable fuels. This review summarizes the latest developments in hydrogen use across the major energy-consuming transportation sectors. Rooted in a systems engineering perspective, we present an analysis of the entire hydrogen supply chain across its economic, environmental, and social dimensions. Providing an outlook on the sector, we discuss the challenges hydrogen faces in penetrating the different transportation markets. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
氢已被确定为支持几个主要国家长期气候中立和战略自主的关键因素之一。多个路线图强调需要加快整个供应链的部署和利用。作为全球二氧化碳排放的主要贡献者之一,运输部门发现氢是一种有吸引力的替代品,可以通过直接用于燃料电池或进一步转化为可持续燃料来实现可持续发展。这篇综述总结了主要能源消耗运输部门氢气使用的最新进展。从系统工程的角度出发,我们对整个氢气供应链的经济、环境和社会维度进行了分析。展望该行业,我们讨论了氢在渗透不同运输市场方面面临的挑战。《化学与生物分子工程年刊》第13卷预计最终在线出版日期为2022年10月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Hydrogen Production and Its Applications to Mobility.","authors":"Andrés González-Garay, M. Bui, Diego Freire Ordóñez, Michael High, Adam Oxley, Nadine Moustafa, Paola A Sáenz Cavazos, P. Patrizio, Nixon Sunny, N. M. Dowell, Nilay Shah","doi":"10.1146/annurev-chembioeng-092220-010254","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092220-010254","url":null,"abstract":"Hydrogen has been identified as one of the key elements to bolster longer-term climate neutrality and strategic autonomy for several major countries. Multiple road maps emphasize the need to accelerate deployment across its supply chain and utilization. Being one of the major contributors to global CO2 emissions, the transportation sector finds in hydrogen an appealing alternative to reach sustainable development through either its direct use in fuel cells or further transformation to sustainable fuels. This review summarizes the latest developments in hydrogen use across the major energy-consuming transportation sectors. Rooted in a systems engineering perspective, we present an analysis of the entire hydrogen supply chain across its economic, environmental, and social dimensions. Providing an outlook on the sector, we discuss the challenges hydrogen faces in penetrating the different transportation markets. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49643524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use. 咪唑酸沸石骨架膜:新的合成方法及工业应用进展。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-04-13 DOI: 10.1146/annurev-chembioeng-092320-120148
Dennis T. Lee, Peter Corkery, Sunghwan Park, Hae‐Kwon Jeong, M. Tsapatsis
In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
在过去的十年里,沸石咪唑酸酯骨架(ZIFs)因其作为选择性分离膜的潜力而被广泛研究。在这篇综述中,我们强调了ZIF的独特结构特性,使其能够实现某些重要的分离,如丙烯与丙烷的分离,并总结了ZIF薄膜在多孔基底上沉积及其合成后处理改性的技术现状。我们还回顾了已报道的具有代表性的膜合成方法的膜性能,并试图根据可扩展性的潜力对合成方法进行排名。为了比较膜性能对膜合成方法和操作条件的依赖性,我们绘制了所选ZIF-8膜用于丙烯/丙烷分离的通量和分离因子。最后,考虑到在工业相关条件下进一步提高可扩展性、成本效益和稳定性能的重要性,我们提供了未来的方向。《化学与生物分子工程年刊》第13卷预计最终在线出版日期为2022年10月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use.","authors":"Dennis T. Lee, Peter Corkery, Sunghwan Park, Hae‐Kwon Jeong, M. Tsapatsis","doi":"10.1146/annurev-chembioeng-092320-120148","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092320-120148","url":null,"abstract":"In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47559336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Medical 3D Printing: Tools and Techniques, Today and Tomorrow. 医疗3D打印:工具和技术,今天和明天。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-04-06 DOI: 10.1146/annurev-chembioeng-092220-015404
K. Willson, A. Atala
Three-dimensional printing is a still-emerging technology with high impact for the medical community, particularly in the development of tissues for the clinic. Many types of printers are under development, including extrusion, droplet, melt, and light-curing technologies. Herein we discuss the various types of 3D printers and their strengths and weaknesses concerning tissue engineering. Despite the advantages of 3D printing, challenges remain in the development of large, clinically relevant tissues. Advancements in bioink development, printer technology, tissue vascularization, and cellular sourcing/expansion are discussed, alongside future opportunities for the field. Trends regarding in situ printing, personalized medicine, and whole organ development are highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
三维打印是一种新兴的技术,对医学界有很大的影响,特别是在临床组织的开发方面。许多类型的打印机正在开发中,包括挤出、液滴、熔融和光固化技术。在这里,我们讨论了各种类型的3D打印机和他们的优缺点与组织工程。尽管3D打印具有诸多优势,但在开发大型临床相关组织方面仍存在挑战。讨论了生物墨水开发、打印机技术、组织血管化和细胞来源/扩展的进展,以及该领域未来的机会。强调了原位打印、个性化医疗和整个器官发展的趋势。预计《化学与生物分子工程年度评论》第13卷的最终在线出版日期为2022年10月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Medical 3D Printing: Tools and Techniques, Today and Tomorrow.","authors":"K. Willson, A. Atala","doi":"10.1146/annurev-chembioeng-092220-015404","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092220-015404","url":null,"abstract":"Three-dimensional printing is a still-emerging technology with high impact for the medical community, particularly in the development of tissues for the clinic. Many types of printers are under development, including extrusion, droplet, melt, and light-curing technologies. Herein we discuss the various types of 3D printers and their strengths and weaknesses concerning tissue engineering. Despite the advantages of 3D printing, challenges remain in the development of large, clinically relevant tissues. Advancements in bioink development, printer technology, tissue vascularization, and cellular sourcing/expansion are discussed, alongside future opportunities for the field. Trends regarding in situ printing, personalized medicine, and whole organ development are highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46747187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Multilevel Mesoscale Complexities in Mesoregimes: Challenges in Chemical and Biochemical Engineering. 中尺度体系中的多级中尺度复杂度:化学和生物化学工程中的挑战。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-04-04 DOI: 10.1146/annurev-chembioeng-092220-115031
Jianhua Chen, Ying Ren, Wenlai Huang, Lin Zhang, Jinghai Li
This review discusses the complex behaviors in diverse chemical and biochemical systems to elucidate their commonalities and thus help develop a mesoscience methodology to address the complexities in even broader topics. This could possibly build a new scientific paradigm for different disciplines and could meanwhile provide effective tools to tackle the big challenges in various fields, thus paving a path toward combining the paradigm shift in science with the breakthrough in technique developments. Starting with our relatively fruitful understanding of chemical systems, the discussion focuses on the relatively pristine but very intriguing biochemical systems. It is recognized that diverse complexities are multilevel in nature, with each level being multiscale and the complexity emerging always at mesoscales in mesoregimes. Relevant advances in theoretical understandings and mathematical tools are summarized as well based on case studies, and the convergence between physics and mathematics is highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
这篇综述讨论了不同化学和生物化学系统中的复杂行为,以阐明它们的共性,从而有助于开发一种介观科学方法来解决更广泛主题中的复杂性。这可能为不同学科建立一个新的科学范式,同时为应对各个领域的重大挑战提供有效的工具,从而为科学范式的转变与技术发展的突破相结合铺平道路。从我们对化学系统相对富有成果的理解开始,讨论的重点是相对原始但非常有趣的生物化学系统。人们认识到,不同的复杂性本质上是多层次的,每个层次都是多尺度的,并且复杂性总是在中尺度中的中尺度出现。在案例研究的基础上,总结了理论理解和数学工具的相关进展,并强调了物理学和数学之间的趋同。《化学与生物分子工程年刊》第13卷预计最终在线出版日期为2022年10月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Multilevel Mesoscale Complexities in Mesoregimes: Challenges in Chemical and Biochemical Engineering.","authors":"Jianhua Chen, Ying Ren, Wenlai Huang, Lin Zhang, Jinghai Li","doi":"10.1146/annurev-chembioeng-092220-115031","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092220-115031","url":null,"abstract":"This review discusses the complex behaviors in diverse chemical and biochemical systems to elucidate their commonalities and thus help develop a mesoscience methodology to address the complexities in even broader topics. This could possibly build a new scientific paradigm for different disciplines and could meanwhile provide effective tools to tackle the big challenges in various fields, thus paving a path toward combining the paradigm shift in science with the breakthrough in technique developments. Starting with our relatively fruitful understanding of chemical systems, the discussion focuses on the relatively pristine but very intriguing biochemical systems. It is recognized that diverse complexities are multilevel in nature, with each level being multiscale and the complexity emerging always at mesoscales in mesoregimes. Relevant advances in theoretical understandings and mathematical tools are summarized as well based on case studies, and the convergence between physics and mathematics is highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49658184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes. 生物质Valorization改进塑料回收酶的经验教训。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-04-04 DOI: 10.1146/annurev-chembioeng-092120-091054
M. Gomes, Y. Rondelez, L. Leibler
Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with plastic production doubling every 15 years. The relatively low cost of petroleum-based polymers encourages their single use and overconsumption. Synthetic plastics are recalcitrant to biodegradation, and mismanagement of plastic waste leads to their accumulation in the ecosystem, resulting in a disastrous environmental footprint. Enzymes capable of depolymerizing plastics have been reported recently that may provide a starting point for eco-friendly plastic recycling routes. However, some questions remain about the mechanisms by which enzymes can digest insoluble solid substrates. We review the characterization and engineering of plastic-eating enzymes and provide some comparisons with the field of lignocellulosic biomass valorization. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
塑料等合成聚合物表现出许多有利的特性,使其成为我们日常生活的重要组成部分,塑料产量每15年翻一番。石油基聚合物相对较低的成本鼓励了它们的一次性使用和过度消费。合成塑料难以生物降解,塑料垃圾管理不善导致其在生态系统中积累,造成灾难性的环境足迹。最近有报道称,能够解聚塑料的酶可能为环保塑料回收路线提供一个起点。然而,关于酶消化不溶性固体底物的机制仍存在一些问题。我们综述了食用塑料酶的特性和工程,并与木质纤维素生物质的价格化领域进行了一些比较。《化学与生物分子工程年刊》第13卷预计最终在线出版日期为2022年10月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes.","authors":"M. Gomes, Y. Rondelez, L. Leibler","doi":"10.1146/annurev-chembioeng-092120-091054","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-091054","url":null,"abstract":"Synthetic polymers such as plastics exhibit numerous advantageous properties that have made them essential components of our daily lives, with plastic production doubling every 15 years. The relatively low cost of petroleum-based polymers encourages their single use and overconsumption. Synthetic plastics are recalcitrant to biodegradation, and mismanagement of plastic waste leads to their accumulation in the ecosystem, resulting in a disastrous environmental footprint. Enzymes capable of depolymerizing plastics have been reported recently that may provide a starting point for eco-friendly plastic recycling routes. However, some questions remain about the mechanisms by which enzymes can digest insoluble solid substrates. We review the characterization and engineering of plastic-eating enzymes and provide some comparisons with the field of lignocellulosic biomass valorization. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44615580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Technological Options for Direct Air Capture: A Comparative Process Engineering Review. 直接空气捕获的技术选择:比较工艺工程综述。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-04-01 DOI: 10.1146/annurev-chembioeng-102121-065047
Xiaowei Wu, R. Krishnamoorti, Praveen Bollini
The direct capture of CO2 from ambient air presents a means of decelerating the growth of global atmospheric CO2 concentrations. Considerations relating to process engineering are the focus of this review and have received significantly less attention than those relating to the design of materials for direct air capture (DAC). We summarize minimum thermodynamic energy requirements, second law efficiencies, major unit operations and associated energy requirements, capital and operating expenses, and potential alternative process designs. We also highlight process designs applied toward more concentrated sources of CO2 that, if extended to lower concentrations, could help move DAC units closer to more economical continuous operation. Addressing shortcomings highlighted here could aid in the design of improved DAC processes that overcome trade-offs between capture performance and DAC cost. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
从环境空气中直接捕获二氧化碳是减缓全球大气二氧化碳浓度增长的一种手段。与工艺工程相关的考虑因素是本次审查的重点,与直接空气捕获(DAC)材料设计相关的考虑事项相比,受到的关注要少得多。我们总结了最低热力学能量要求、第二定律效率、主要装置操作和相关能量要求、资本和运营费用以及潜在的替代工艺设计。我们还强调了适用于更浓缩的二氧化碳源的工艺设计,如果将其扩展到更低的浓度,可能有助于使DAC装置更接近更经济的连续操作。解决这里强调的缺点可以帮助设计改进的DAC过程,克服捕获性能和DAC成本之间的权衡。《化学与生物分子工程年刊》第13卷预计最终在线出版日期为2022年10月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Technological Options for Direct Air Capture: A Comparative Process Engineering Review.","authors":"Xiaowei Wu, R. Krishnamoorti, Praveen Bollini","doi":"10.1146/annurev-chembioeng-102121-065047","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-102121-065047","url":null,"abstract":"The direct capture of CO2 from ambient air presents a means of decelerating the growth of global atmospheric CO2 concentrations. Considerations relating to process engineering are the focus of this review and have received significantly less attention than those relating to the design of materials for direct air capture (DAC). We summarize minimum thermodynamic energy requirements, second law efficiencies, major unit operations and associated energy requirements, capital and operating expenses, and potential alternative process designs. We also highlight process designs applied toward more concentrated sources of CO2 that, if extended to lower concentrations, could help move DAC units closer to more economical continuous operation. Addressing shortcomings highlighted here could aid in the design of improved DAC processes that overcome trade-offs between capture performance and DAC cost. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47019602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Blockchain Technology in the Chemical Industry. 化工行业的区块链技术。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-04-01 DOI: 10.1146/annurev-chembioeng-092120-022935
Xiaochi Zhou, M. Kraft
This article presents a review of the application of blockchain and blockchain-based smart contracts in the chemical and related industries. We introduce the basic concepts of blockchain and smart contracts and explain how some of their features are enabled. We review several typical or novel applications of blockchain and smart contract technologies and their enabling concepts and underlying technologies. We classify the selected literature into five categories and discuss their motivations and technical designs. We recognize that the trend of decentralization creates a need to use blockchain and smart contracts to implement trust and distributed control mechanisms. We also speculate on future applications of blockchain and smart contracts. We believe that, in the future, blockchains with different consensus mechanisms will be studied and applied to achieve more efficient and practical decentralized systems. Also, blockchain-based smart contracts will be more widely applied to enhance autonomous distributed controls in decentralized systems. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
本文回顾了区块链和基于区块链的智能合约在化工及相关行业的应用。我们将介绍区块链和智能合约的基本概念,并解释它们的一些功能是如何启用的。我们回顾了区块链和智能合约技术的几个典型或新颖的应用,以及它们的使能概念和底层技术。我们将选择的文献分为五类,并讨论其动机和技术设计。我们认识到,去中心化的趋势创造了使用区块链和智能合约来实现信任和分布式控制机制的需求。我们还对区块链和智能合约的未来应用进行了推测。我们相信,在未来,不同共识机制的区块链将被研究和应用,以实现更高效、更实用的去中心化系统。此外,基于区块链的智能合约将更广泛地应用于增强分散系统中的自主分布式控制。预计《化学与生物分子工程年度评论》第13卷的最终在线出版日期为2022年10月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Blockchain Technology in the Chemical Industry.","authors":"Xiaochi Zhou, M. Kraft","doi":"10.1146/annurev-chembioeng-092120-022935","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-022935","url":null,"abstract":"This article presents a review of the application of blockchain and blockchain-based smart contracts in the chemical and related industries. We introduce the basic concepts of blockchain and smart contracts and explain how some of their features are enabled. We review several typical or novel applications of blockchain and smart contract technologies and their enabling concepts and underlying technologies. We classify the selected literature into five categories and discuss their motivations and technical designs. We recognize that the trend of decentralization creates a need to use blockchain and smart contracts to implement trust and distributed control mechanisms. We also speculate on future applications of blockchain and smart contracts. We believe that, in the future, blockchains with different consensus mechanisms will be studied and applied to achieve more efficient and practical decentralized systems. Also, blockchain-based smart contracts will be more widely applied to enhance autonomous distributed controls in decentralized systems. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46513967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Direct Air Capture of CO2 Using Solvents. 使用溶剂直接捕捉空气中的二氧化碳。
IF 8.4 2区 工程技术 Q1 Chemical Engineering Pub Date : 2022-02-18 DOI: 10.1146/annurev-chembioeng-092120-023936
R. Custelcean
Large-scale deployment of negative emissions technologies (NETs) that permanently remove CO2 from the atmosphere is now considered essential for limiting the global temperature increase to less than 2°C by the end of this century. One promising NET is direct air capture (DAC), a technology that employs engineered chemical processes to remove atmospheric carbon dioxide, potentially at the scale of billions of metric tons per year. This review highlights one of the two main approaches to DAC based on aqueous solvents. The discussion focuses on different aspects of DAC with solvents, starting with the fundamental chemistry that includes the chemical species and reactions involved and the thermodynamics and kinetics of CO2 binding and release. Chemical engineering aspects are also discussed, including air-liquid contactor design, process development, and techno-economic assessments to estimate the cost of the DAC technologies. Various solvents employed in DAC are reviewed, from aqueous alkaline solutions (NaOH, KOH) to aqueous amines, amino acids, and peptides, along with different solvent regeneration methods, from the traditional thermal swinging to the more exploratory carbonate crystallization with guanidines or electrochemical methods. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
大规模部署能永久清除大气中二氧化碳的负排放技术(NETs),现在被认为是到本世纪末将全球气温上升限制在2°C以内的关键。直接空气捕获(DAC)是一种很有前景的净技术,它采用工程化学过程来去除大气中的二氧化碳,每年可能达到数十亿公吨的规模。本文综述了两种主要的基于水性溶剂的DAC方法之一。讨论的重点是溶剂DAC的不同方面,从基础化学开始,包括化学种类和所涉及的反应以及二氧化碳结合和释放的热力学和动力学。化学工程方面也进行了讨论,包括气液接触器的设计,工艺开发和技术经济评估,以估计DAC技术的成本。回顾了DAC中使用的各种溶剂,从碱性水溶液(NaOH, KOH)到水性胺,氨基酸和肽,以及不同的溶剂再生方法,从传统的热摇摆到更具探索性的胍类或电化学方法的碳酸盐结晶。预计《化学与生物分子工程年度评论》第13卷的最终在线出版日期为2022年10月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
{"title":"Direct Air Capture of CO2 Using Solvents.","authors":"R. Custelcean","doi":"10.1146/annurev-chembioeng-092120-023936","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-023936","url":null,"abstract":"Large-scale deployment of negative emissions technologies (NETs) that permanently remove CO2 from the atmosphere is now considered essential for limiting the global temperature increase to less than 2°C by the end of this century. One promising NET is direct air capture (DAC), a technology that employs engineered chemical processes to remove atmospheric carbon dioxide, potentially at the scale of billions of metric tons per year. This review highlights one of the two main approaches to DAC based on aqueous solvents. The discussion focuses on different aspects of DAC with solvents, starting with the fundamental chemistry that includes the chemical species and reactions involved and the thermodynamics and kinetics of CO2 binding and release. Chemical engineering aspects are also discussed, including air-liquid contactor design, process development, and techno-economic assessments to estimate the cost of the DAC technologies. Various solvents employed in DAC are reviewed, from aqueous alkaline solutions (NaOH, KOH) to aqueous amines, amino acids, and peptides, along with different solvent regeneration methods, from the traditional thermal swinging to the more exploratory carbonate crystallization with guanidines or electrochemical methods. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":8.4,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42095573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
期刊
Annual review of chemical and biomolecular engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1