Pub Date : 2023-06-08Epub Date: 2023-03-21DOI: 10.1146/annurev-chembioeng-092220-030446
Dirk J Smit, Joseph B Powell
Scientific and engineering capabilities in hydrocarbon supply chains developed over decades in international oil and gas companies (IOCs) uniquely position these companies to drive rapid scale-up and transition to a net-zero emission economy. Flexible large-scale production of energy carriers such as hydrogen, ammonia, methanol, and other synthetic fuels produced with low- or zero-emission renewable power, nuclear energy, or hydrogen derived from natural gas with carbon capture and storage will enable long-distance transport and permanent storage options for clean energy. Use of energy carriers can overcome the inherent constraints of a fully electrified energy system by providing the energy and power densities, as well as transport and storage capacity, required to achieve energy supply and security in a net-zero emission economy, and over time allow optimization to the lowest cost for a consumer anywhere on the globe.
{"title":"Role of International Oil Companies in the Net-Zero Emission Energy Transition.","authors":"Dirk J Smit, Joseph B Powell","doi":"10.1146/annurev-chembioeng-092220-030446","DOIUrl":"10.1146/annurev-chembioeng-092220-030446","url":null,"abstract":"<p><p>Scientific and engineering capabilities in hydrocarbon supply chains developed over decades in international oil and gas companies (IOCs) uniquely position these companies to drive rapid scale-up and transition to a net-zero emission economy. Flexible large-scale production of energy carriers such as hydrogen, ammonia, methanol, and other synthetic fuels produced with low- or zero-emission renewable power, nuclear energy, or hydrogen derived from natural gas with carbon capture and storage will enable long-distance transport and permanent storage options for clean energy. Use of energy carriers can overcome the inherent constraints of a fully electrified energy system by providing the energy and power densities, as well as transport and storage capacity, required to achieve energy supply and security in a net-zero emission economy, and over time allow optimization to the lowest cost for a consumer anywhere on the globe.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"301-322"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-08DOI: 10.1146/annurev-chembioeng-092220-111121
Ting Ma, Alexandra D Easley, Ratul Mitra Thakur, Khirabdhi T Mohanty, Chen Wang, Jodie L Lutkenhaus
The storage of electric energy in a safe and environmentally friendly way is of ever-growing importance for a modern, technology-based society. With future pressures predicted for batteries that contain strategic metals, there is increasing interest in metal-free electrode materials. Among candidate materials, nonconjugated redox-active polymers (NC-RAPs) have advantages in terms of cost-effectiveness, good processability, unique electrochemical properties, and precise tuning for different battery chemistries. Here, we review the current state of the art regarding the mechanisms of redox kinetics, molecular design, synthesis, and application of NC-RAPs in electrochemical energy storage and conversion. Different redox chemistries are compared, including polyquinones, polyimides, polyketones, sulfur-containing polymers, radical-containing polymers, polyphenylamines, polyphenazines, polyphenothiazines, polyphenoxazines, and polyviologens. We close with cell design principles considering electrolyte optimization and cell configuration. Finally, we point to fundamental and applied areas of future promise for designer NC-RAPs.
{"title":"Nonconjugated Redox-Active Polymers: Electron Transfer Mechanisms, Energy Storage, and Chemical Versatility.","authors":"Ting Ma, Alexandra D Easley, Ratul Mitra Thakur, Khirabdhi T Mohanty, Chen Wang, Jodie L Lutkenhaus","doi":"10.1146/annurev-chembioeng-092220-111121","DOIUrl":"10.1146/annurev-chembioeng-092220-111121","url":null,"abstract":"<p><p>The storage of electric energy in a safe and environmentally friendly way is of ever-growing importance for a modern, technology-based society. With future pressures predicted for batteries that contain strategic metals, there is increasing interest in metal-free electrode materials. Among candidate materials, nonconjugated redox-active polymers (NC-RAPs) have advantages in terms of cost-effectiveness, good processability, unique electrochemical properties, and precise tuning for different battery chemistries. Here, we review the current state of the art regarding the mechanisms of redox kinetics, molecular design, synthesis, and application of NC-RAPs in electrochemical energy storage and conversion. Different redox chemistries are compared, including polyquinones, polyimides, polyketones, sulfur-containing polymers, radical-containing polymers, polyphenylamines, polyphenazines, polyphenothiazines, polyphenoxazines, and polyviologens. We close with cell design principles considering electrolyte optimization and cell configuration. Finally, we point to fundamental and applied areas of future promise for designer NC-RAPs.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"187-216"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9606166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-30DOI: 10.11648/j.cbe.20220704.11
Kennedy Costa da Conceicao, Patrick Alan Dantas Araujo, Alvaro Silva Lima, Laiza Canielas Krause, Alini Tinoco Fricks, Cleide Mara Farias Soares, Rebeca Yndira Cabrera-Padilla
{"title":"Biodegradation of Textile Dyes by Radish Peroxidase (<i>Raphanus sativus</i> L.) Immobilized on Coconut Fiber","authors":"Kennedy Costa da Conceicao, Patrick Alan Dantas Araujo, Alvaro Silva Lima, Laiza Canielas Krause, Alini Tinoco Fricks, Cleide Mara Farias Soares, Rebeca Yndira Cabrera-Padilla","doi":"10.11648/j.cbe.20220704.11","DOIUrl":"https://doi.org/10.11648/j.cbe.20220704.11","url":null,"abstract":"","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"32 1","pages":""},"PeriodicalIF":8.4,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85188216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-10Epub Date: 2022-03-02DOI: 10.1146/annurev-chembioeng-092120-025140
Antonio Del Rio Flores, Colin C Barber, Maanasa Narayanamoorthy, Di Gu, Yuanbo Shen, Wenjun Zhang
Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.
{"title":"Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products.","authors":"Antonio Del Rio Flores, Colin C Barber, Maanasa Narayanamoorthy, Di Gu, Yuanbo Shen, Wenjun Zhang","doi":"10.1146/annurev-chembioeng-092120-025140","DOIUrl":"10.1146/annurev-chembioeng-092120-025140","url":null,"abstract":"<p><p>Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"13 ","pages":"1-24"},"PeriodicalIF":7.6,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811556/pdf/nihms-1857862.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10484957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-10DOI: 10.1146/annurev-chembioeng-092220-030223
Jasmin J. Samaras, M. Micheletti, W. Ding
Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.
{"title":"Transformation of Biopharmaceutical Manufacturing Through Single-Use Technologies: Current State, Remaining Challenges, and Future Development.","authors":"Jasmin J. Samaras, M. Micheletti, W. Ding","doi":"10.1146/annurev-chembioeng-092220-030223","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092220-030223","url":null,"abstract":"Single-use technologies have transformed conventional biopharmaceutical manufacturing, and their adoption is increasing rapidly for emerging applications like antibody-drug conjugates and cell and gene therapy products. These disruptive technologies have also had a significant impact during the coronavirus disease 2019 pandemic, helping to advance process development to enable the manufacturing of new monoclonal antibody therapies and vaccines. Single-use systems provide closed plug-and-play solutions and enable process intensification and continuous processing. Several challenges remain, providing opportunities to advance single-use sensors and their integration with single-use systems, to develop novel plastic materials, and to standardize design for interchangeability. Because the industry is changing rapidly, a holistic analysis of the current single-use technologies is required, with a summary of the latest advancements in materials science and the implementation of these technologies in end-to-end bioprocesses.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"13 1","pages":"73-97"},"PeriodicalIF":8.4,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47343889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-10DOI: 10.1146/annurev-chembioeng-092120-092914
Tora Gao, Y. Chen
T cells engineered to express chimeric antigen receptors (CARs) have shown remarkable success in treating B-cell malignancies, reflected by multiple US Food and Drug Administration-approved CAR-T cell products currently on the market. However, various obstacles have thus far limited the use of approved products and constrained the efficacy of CAR-T cell therapy against solid tumors. Overcoming these obstacles will necessitate multidimensional CAR-T cell engineering approaches and better understanding of the intricate tumor microenvironment (TME). Key challenges include treatment-related toxicity, antigen escape and heterogeneity, and the highly immunosuppressive profile of the TME. Notably, the hypoxic and nutrient-deprived nature of the TME severely attenuates CAR-T cell fitness and efficacy, highlighting the need for more sophisticated engineering strategies. In this review, we examine recent advances in protein- and cell-engineering strategies to improve CAR-T cell safety and efficacy, with an emphasis on overcoming immunosuppression induced by tumor metabolism and hypoxia.
{"title":"Engineering Next-Generation CAR-T Cells: Overcoming Tumor Hypoxia and Metabolism.","authors":"Tora Gao, Y. Chen","doi":"10.1146/annurev-chembioeng-092120-092914","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-092914","url":null,"abstract":"T cells engineered to express chimeric antigen receptors (CARs) have shown remarkable success in treating B-cell malignancies, reflected by multiple US Food and Drug Administration-approved CAR-T cell products currently on the market. However, various obstacles have thus far limited the use of approved products and constrained the efficacy of CAR-T cell therapy against solid tumors. Overcoming these obstacles will necessitate multidimensional CAR-T cell engineering approaches and better understanding of the intricate tumor microenvironment (TME). Key challenges include treatment-related toxicity, antigen escape and heterogeneity, and the highly immunosuppressive profile of the TME. Notably, the hypoxic and nutrient-deprived nature of the TME severely attenuates CAR-T cell fitness and efficacy, highlighting the need for more sophisticated engineering strategies. In this review, we examine recent advances in protein- and cell-engineering strategies to improve CAR-T cell safety and efficacy, with an emphasis on overcoming immunosuppression induced by tumor metabolism and hypoxia.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"13 1","pages":"193-216"},"PeriodicalIF":8.4,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42602972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-10DOI: 10.1146/annurev-chembioeng-092120-034534
Jongbaek Sung, Yuna Bae, Hayoung Park, Sungsu Kang, Back Kyu Choi, Joodeok Kim, Jungwon Park
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
{"title":"Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials.","authors":"Jongbaek Sung, Yuna Bae, Hayoung Park, Sungsu Kang, Back Kyu Choi, Joodeok Kim, Jungwon Park","doi":"10.1146/annurev-chembioeng-092120-034534","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-034534","url":null,"abstract":"Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"13 1","pages":"167-191"},"PeriodicalIF":8.4,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44274199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-10DOI: 10.1146/annurev-chembioeng-092120-033922
Martha E Floy, Fathima Shabnam, Aaron D Simmons, Vijesh J Bhute, Gyuhyung Jin, Will A Friedrich, Alexandra B Steinberg, Sean P Palecek
The emergence of human pluripotent stem cell (hPSC) technology over the past two decades has provided a source of normal and diseased human cells for a wide variety of in vitro and in vivo applications. Notably, hPSC-derived cardiomyocytes (hPSC-CMs) are widely used to model human heart development and disease and are in clinical trials for treating heart disease. The success of hPSC-CMs in these applications requires robust, scalable approaches to manufacture large numbers of safe and potent cells. Although significant advances have been made over the past decade in improving the purity and yield of hPSC-CMs and scaling the differentiation process from 2D to 3D, efforts to induce maturation phenotypes during manufacturing have been slow. Process monitoring and closed-loop manufacturing strategies are just being developed. We discuss recent advances in hPSC-CM manufacturing, including differentiation process development and scaling and downstream processes as well as separation and stabilization.
{"title":"Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells.","authors":"Martha E Floy, Fathima Shabnam, Aaron D Simmons, Vijesh J Bhute, Gyuhyung Jin, Will A Friedrich, Alexandra B Steinberg, Sean P Palecek","doi":"10.1146/annurev-chembioeng-092120-033922","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092120-033922","url":null,"abstract":"<p><p>The emergence of human pluripotent stem cell (hPSC) technology over the past two decades has provided a source of normal and diseased human cells for a wide variety of in vitro and in vivo applications. Notably, hPSC-derived cardiomyocytes (hPSC-CMs) are widely used to model human heart development and disease and are in clinical trials for treating heart disease. The success of hPSC-CMs in these applications requires robust, scalable approaches to manufacture large numbers of safe and potent cells. Although significant advances have been made over the past decade in improving the purity and yield of hPSC-CMs and scaling the differentiation process from 2D to 3D, efforts to induce maturation phenotypes during manufacturing have been slow. Process monitoring and closed-loop manufacturing strategies are just being developed. We discuss recent advances in hPSC-CM manufacturing, including differentiation process development and scaling and downstream processes as well as separation and stabilization.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"13 ","pages":"255-278"},"PeriodicalIF":8.4,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197878/pdf/nihms-1800287.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9599789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-13DOI: 10.1146/annurev-chembioeng-092220-010254
Andrés González-Garay, M. Bui, Diego Freire Ordóñez, Michael High, Adam Oxley, Nadine Moustafa, Paola A Sáenz Cavazos, P. Patrizio, Nixon Sunny, N. M. Dowell, Nilay Shah
Hydrogen has been identified as one of the key elements to bolster longer-term climate neutrality and strategic autonomy for several major countries. Multiple road maps emphasize the need to accelerate deployment across its supply chain and utilization. Being one of the major contributors to global CO2 emissions, the transportation sector finds in hydrogen an appealing alternative to reach sustainable development through either its direct use in fuel cells or further transformation to sustainable fuels. This review summarizes the latest developments in hydrogen use across the major energy-consuming transportation sectors. Rooted in a systems engineering perspective, we present an analysis of the entire hydrogen supply chain across its economic, environmental, and social dimensions. Providing an outlook on the sector, we discuss the challenges hydrogen faces in penetrating the different transportation markets. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Hydrogen Production and Its Applications to Mobility.","authors":"Andrés González-Garay, M. Bui, Diego Freire Ordóñez, Michael High, Adam Oxley, Nadine Moustafa, Paola A Sáenz Cavazos, P. Patrizio, Nixon Sunny, N. M. Dowell, Nilay Shah","doi":"10.1146/annurev-chembioeng-092220-010254","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092220-010254","url":null,"abstract":"Hydrogen has been identified as one of the key elements to bolster longer-term climate neutrality and strategic autonomy for several major countries. Multiple road maps emphasize the need to accelerate deployment across its supply chain and utilization. Being one of the major contributors to global CO2 emissions, the transportation sector finds in hydrogen an appealing alternative to reach sustainable development through either its direct use in fuel cells or further transformation to sustainable fuels. This review summarizes the latest developments in hydrogen use across the major energy-consuming transportation sectors. Rooted in a systems engineering perspective, we present an analysis of the entire hydrogen supply chain across its economic, environmental, and social dimensions. Providing an outlook on the sector, we discuss the challenges hydrogen faces in penetrating the different transportation markets. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":""},"PeriodicalIF":8.4,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49643524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-13DOI: 10.1146/annurev-chembioeng-092320-120148
Dennis T. Lee, Peter Corkery, Sunghwan Park, Hae‐Kwon Jeong, M. Tsapatsis
In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use.","authors":"Dennis T. Lee, Peter Corkery, Sunghwan Park, Hae‐Kwon Jeong, M. Tsapatsis","doi":"10.1146/annurev-chembioeng-092320-120148","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-092320-120148","url":null,"abstract":"In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":""},"PeriodicalIF":8.4,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47559336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}