首页 > 最新文献

Annual review of chemical and biomolecular engineering最新文献

英文 中文
RNAs as Sensors of Oxidative Stress in Bacteria. 作为细菌氧化应激传感器的 RNA。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 DOI: 10.1146/annurev-chembioeng-101121-070250
Ryan Buchser, Phillip Sweet, Aparna Anantharaman, Lydia Contreras

Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.

氧化应激是包括细菌在内的所有生物界都会遇到的一种重要而普遍的物理应激。在这篇综述中,我们简要描述了氧化应激的性质,重点介绍了作为氧化应激分子传感器标准的、以蛋白质为基础的活性氧传感器(转录因子),并介绍了探索 RNA 对氧化应激的直接敏感性的分子研究。最后,我们介绍了有关 RNA 传感器的知识缺口,特别是有关 RNA 核碱基化学修饰的知识缺口。RNA 传感器有望成为了解和调节细菌氧化应激反应中动态生物通路的一个重要层面,因此也是合成生物学的一个重要前沿领域。
{"title":"RNAs as Sensors of Oxidative Stress in Bacteria.","authors":"Ryan Buchser, Phillip Sweet, Aparna Anantharaman, Lydia Contreras","doi":"10.1146/annurev-chembioeng-101121-070250","DOIUrl":"10.1146/annurev-chembioeng-101121-070250","url":null,"abstract":"<p><p>Oxidative stress is an important and pervasive physical stress encountered by all kingdoms of life, including bacteria. In this review, we briefly describe the nature of oxidative stress, highlight well-characterized protein-based sensors (transcription factors) of reactive oxygen species that serve as standards for molecular sensors in oxidative stress, and describe molecular studies that have explored the potential of direct RNA sensitivity to oxidative stress. Finally, we describe the gaps in knowledge of RNA sensors-particularly regarding the chemical modification of RNA nucleobases. RNA sensors are poised to emerge as an essential layer of understanding and regulating dynamic biological pathways in oxidative stress responses in bacteria and, thus, also represent an important frontier of synthetic biology.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"265-281"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9606167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peptide-Based Vectors: A Biomolecular Engineering Strategy for Gene Delivery. 基于肽的载体:基因传递的生物分子工程策略。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 Epub Date: 2023-03-08 DOI: 10.1146/annurev-chembioeng-101121-070232
Sandeep Urandur, Millicent O Sullivan

From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration-approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle-targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.

从W.F. Anderson博士的首次临床试验到最近美国食品药品管理局批准的Luxturna(Spark Therapeutics,2017年)和Zolgensma(诺华,2019年),基因疗法改变了癌症治疗的思路和实践,提高了成人和儿童遗传病患者的生存率。要将基因疗法应用于更广泛的领域,面临的一大挑战是如何安全地将核酸输送到预定的作用位点。肽具有与生物大分子和细胞相互作用的多样性和可调性,因此具有改善核酸递送的独特潜力。细胞穿透肽和细胞内靶向肽由于有望改善基因疗法向细胞内的递送而受到特别关注。我们将重点介绍肽辅助靶向基因递送到肿瘤生长的癌症特异性标志物和亚细胞器靶向肽的主要实例,以及提高肽稳定性和生物利用度以支持长期应用的新兴策略。
{"title":"Peptide-Based Vectors: A Biomolecular Engineering Strategy for Gene Delivery.","authors":"Sandeep Urandur, Millicent O Sullivan","doi":"10.1146/annurev-chembioeng-101121-070232","DOIUrl":"10.1146/annurev-chembioeng-101121-070232","url":null,"abstract":"<p><p>From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration-approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle-targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"243-264"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9603997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Manufacturing Routes for Organic Chemical Commodities. 有机化学产品的电化学制造路线。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 Epub Date: 2023-03-17 DOI: 10.1146/annurev-chembioeng-101121-090840
Ricardo Mathison, Alexandra L Ramos Figueroa, Casey Bloomquist, Miguel A Modestino

Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.

有机化学产品的电化学合成为传统热化学生产提供了一种替代方法,可直接利用可再生电力减少化学工业的温室气体排放。我们讨论了利用丰富的碳原料生产最大石化前体和基本有机化学产品(轻烯烃、烯烃氧化衍生物、芳烃和甲醇)的电化学合成方法。首先,我们确定了电化学生产每种商品的可行路线,同时考虑了反应热力学、可用原料和竞争性热化学工艺。接下来,我们总结了成功的催化和反应工程方法,以克服阻碍电化学路线以高生产率、高选择性、高稳定性和高能量转换效率运行的技术挑战。最后,我们对实现大规模电化学生产主要有机化学产品所必须实施的战略进行了展望。
{"title":"Electrochemical Manufacturing Routes for Organic Chemical Commodities.","authors":"Ricardo Mathison, Alexandra L Ramos Figueroa, Casey Bloomquist, Miguel A Modestino","doi":"10.1146/annurev-chembioeng-101121-090840","DOIUrl":"10.1146/annurev-chembioeng-101121-090840","url":null,"abstract":"<p><p>Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"85-108"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drying Drops of Colloidal Dispersions. 胶体分散体的干燥滴剂。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 DOI: 10.1146/annurev-chembioeng-101121-085056
Sumesh P Thampi, Madivala G Basavaraj

Drying drops of colloidal dispersions have attracted attention from researchers since the nineteenth century. The multiscale nature of the problem involving physics at different scales, namely colloidal and interfacial phenomena as well as heat, mass, and momentum transport processes, combined with the seemingly simple yet nontrivial shape of the drops makes drying drop problems rich and interesting. The scope of such studies widens as the physical and chemical nature of dispersed entities in the drop vary and as evaporation occurs in more complex configurations. This review summarizes past and contemporary developments in the field, emphasizing the physicochemical and hydrodynamical principles that govern the processes occurring within a drying drop and the resulting variety of patterns generated on the substrate.

自19世纪以来,胶体分散体的干燥液滴就引起了研究人员的注意。该问题的多尺度性质涉及不同尺度的物理,即胶体和界面现象以及热量,质量和动量传递过程,再加上液滴看似简单但不平凡的形状,使得干燥液滴问题丰富而有趣。随着液滴中分散实体的物理和化学性质的变化以及蒸发以更复杂的形态发生,这类研究的范围扩大了。这篇综述总结了该领域过去和当代的发展,强调了物理化学和流体动力学原理,这些原理支配着在干燥液滴内发生的过程以及在基材上产生的各种图案。
{"title":"Drying Drops of Colloidal Dispersions.","authors":"Sumesh P Thampi,&nbsp;Madivala G Basavaraj","doi":"10.1146/annurev-chembioeng-101121-085056","DOIUrl":"https://doi.org/10.1146/annurev-chembioeng-101121-085056","url":null,"abstract":"<p><p>Drying drops of colloidal dispersions have attracted attention from researchers since the nineteenth century. The multiscale nature of the problem involving physics at different scales, namely colloidal and interfacial phenomena as well as heat, mass, and momentum transport processes, combined with the seemingly simple yet nontrivial shape of the drops makes drying drop problems rich and interesting. The scope of such studies widens as the physical and chemical nature of dispersed entities in the drop vary and as evaporation occurs in more complex configurations. This review summarizes past and contemporary developments in the field, emphasizing the physicochemical and hydrodynamical principles that govern the processes occurring within a drying drop and the resulting variety of patterns generated on the substrate.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"53-83"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9602537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Active Colloids as Models, Materials, and Machines. 作为模型、材料和机器的活性胶体。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 Epub Date: 2023-03-17 DOI: 10.1146/annurev-chembioeng-101121-084939
Kyle J M Bishop, Sibani Lisa Biswal, Bhuvnesh Bharti

Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field.

活性胶体利用粒子级的能量输入来推动持续运动并引导动态组合。我们考虑了由化学反应、时变磁场和电流驱动的三种胶体。对于每种类型,我们都回顾了粒子层面的基本推进机制,并讨论了它们对粒子集合体集体行为的影响。这些微观系统为非平衡多体物理学提供了有用的实验模型,其中耗散电流打破了时间逆对称性。摆脱了热力学平衡的限制,活性胶体组装成可以移动、重组、愈合和适应的材料。基于工程粒子及其组装的胶体机器为自主水平不断提高的移动机器人提供了基础。本综述提供了一个概念框架,用于理解和应用活性胶体,以创建模仿生命物质功能的材料系统。我们强调了化学工程师为这一不断发展的领域做出贡献的机会。
{"title":"Active Colloids as Models, Materials, and Machines.","authors":"Kyle J M Bishop, Sibani Lisa Biswal, Bhuvnesh Bharti","doi":"10.1146/annurev-chembioeng-101121-084939","DOIUrl":"10.1146/annurev-chembioeng-101121-084939","url":null,"abstract":"<p><p>Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"1-30"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9658546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. 扩大光化学反应的规模:从实验室规模过渡到工业生产。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 Epub Date: 2023-03-13 DOI: 10.1146/annurev-chembioeng-101121-074313
Stefan D A Zondag, Daniele Mazzarella, Timothy Noël

In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.

在过去二十年里,我们目睹了新型、强大的光化学和光催化合成方法的迅速崛起。虽然这些方法大多在小规模上使用,但化学工业对高效扩大光化学规模的需求与日俱增。本综述总结并介绍了过去十年中在扩大光介导合成转化规模方面取得的进展。文中提供了简单的放大概念和重要的基本光化学定律,并讨论了合适的反应器设计,这些设计应有助于放大这类具有挑战性的有机反应。
{"title":"Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production.","authors":"Stefan D A Zondag, Daniele Mazzarella, Timothy Noël","doi":"10.1146/annurev-chembioeng-101121-074313","DOIUrl":"10.1146/annurev-chembioeng-101121-074313","url":null,"abstract":"<p><p>In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"283-300"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9605216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction. 介绍。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 DOI: 10.1146/annurev-ch-14-040723-100001
Michael F Doherty, Rachel A Segalman, Ravi S Kane
{"title":"Introduction.","authors":"Michael F Doherty,&nbsp;Rachel A Segalman,&nbsp;Ravi S Kane","doi":"10.1146/annurev-ch-14-040723-100001","DOIUrl":"https://doi.org/10.1146/annurev-ch-14-040723-100001","url":null,"abstract":"","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"i"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9606168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outsmarting Pathogens with Antibody Engineering. 用抗体工程战胜病原体。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 Epub Date: 2023-03-14 DOI: 10.1146/annurev-chembioeng-101121-084508
Ahlam N Qerqez, Rui P Silva, Jennifer A Maynard

There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.

目前,人们越来越关注找出能预防传染病的抗体,尤其是针对高危人群和尚无疫苗的病原体的抗体。然而,表现为机会性或潜伏性感染的病原体会表达复杂的毒力相关蛋白阵列,并善于躲避免疫反应。一些病原体已经开发出选择性破坏抗体的策略,而另一些病原体则制造诱饵表位,诱使宿主免疫系统产生抗体,这些抗体在最好的情况下没有保护作用,在最坏的情况下会增强致病机理。抗体工程策略可以通过获取保守的中和表位、生成可抵抗捕获或降解的 Fc 结构域,甚至获取隐藏在细胞内的病原体来挫败这些努力。设计抗病原体抗体可以增强保护能力,并指导针对这些复杂病原体的疫苗免疫原的开发。在此,我们将讨论设计抗特定病原体防御机制抗体的一般策略。
{"title":"Outsmarting Pathogens with Antibody Engineering.","authors":"Ahlam N Qerqez, Rui P Silva, Jennifer A Maynard","doi":"10.1146/annurev-chembioeng-101121-084508","DOIUrl":"10.1146/annurev-chembioeng-101121-084508","url":null,"abstract":"<p><p>There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"217-241"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9756288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ/Operando Characterization Techniques of Electrochemical CO2 Reduction. 电化学二氧化碳还原的现场/操作表征技术。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 Epub Date: 2023-03-08 DOI: 10.1146/annurev-chembioeng-101121-071735
Bjorn Hasa, Yaran Zhao, Feng Jiao

Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure-activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO2/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques.

在可再生能源的驱动下,通过电催化将二氧化碳转化为有价值的化学品和燃料对实现碳净零排放起着至关重要的作用。了解结构-活性关系和反应机理对于调整电催化剂的选择性意义重大。因此,表征反应条件下催化剂的动态演化和反应中间产物是必要的,但仍具有挑战性。我们首先总结了利用原位/操作性技术(包括表面增强振动光谱、基于 X 射线和电子的技术以及质谱)从机理上理解异相 CO2/CO 还原反应的最新进展,并讨论了仍然存在的局限性。然后,我们提出了加快原位/操作性技术未来发展的见解和观点。
{"title":"In Situ/Operando Characterization Techniques of Electrochemical CO<sub>2</sub> Reduction.","authors":"Bjorn Hasa, Yaran Zhao, Feng Jiao","doi":"10.1146/annurev-chembioeng-101121-071735","DOIUrl":"10.1146/annurev-chembioeng-101121-071735","url":null,"abstract":"<p><p>Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure-activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO<sub>2</sub>/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"165-185"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9603993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Machine Learning with Physical Knowledge in Thermodynamic Modeling of Fluid Mixtures. 在流体混合物热力学建模中结合机器学习与物理知识。
IF 8.4 2区 工程技术 Q1 CHEMISTRY, APPLIED Pub Date : 2023-06-08 Epub Date: 2023-03-21 DOI: 10.1146/annurev-chembioeng-092220-025342
Fabian Jirasek, Hans Hasse

Thermophysical properties of fluid mixtures are important in many fields of science and engineering. However, experimental data are scarce in this field, so prediction methods are vital. Different types of physical prediction methods are available, ranging from molecular models over equations of state to models of excess properties. These well-established methods are currently being complemented by new methods from the field of machine learning (ML). This review focuses on the rapidly developing interface between these two approaches and gives a structured overview of how physical modeling and ML can be combined to yield hybrid models. We illustrate the different options with examples from recent research and give an outlook on future developments.

流体混合物的热物理特性在许多科学和工程领域都非常重要。然而,该领域的实验数据很少,因此预测方法至关重要。目前已有不同类型的物理预测方法,包括分子模型、状态方程和过剩特性模型。目前,机器学习(ML)领域的新方法正在对这些成熟的方法进行补充。本综述侧重于这两种方法之间迅速发展的接口,并对物理建模和 ML 如何结合以产生混合模型进行了结构化概述。我们以近期研究的实例说明了不同的选择,并对未来发展进行了展望。
{"title":"Combining Machine Learning with Physical Knowledge in Thermodynamic Modeling of Fluid Mixtures.","authors":"Fabian Jirasek, Hans Hasse","doi":"10.1146/annurev-chembioeng-092220-025342","DOIUrl":"10.1146/annurev-chembioeng-092220-025342","url":null,"abstract":"<p><p>Thermophysical properties of fluid mixtures are important in many fields of science and engineering. However, experimental data are scarce in this field, so prediction methods are vital. Different types of physical prediction methods are available, ranging from molecular models over equations of state to models of excess properties. These well-established methods are currently being complemented by new methods from the field of machine learning (ML). This review focuses on the rapidly developing interface between these two approaches and gives a structured overview of how physical modeling and ML can be combined to yield hybrid models. We illustrate the different options with examples from recent research and give an outlook on future developments.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"14 ","pages":"31-51"},"PeriodicalIF":8.4,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9604031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual review of chemical and biomolecular engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1