Recent advances in the water-energy landscape hinge upon our improved understanding of the complex morphology of materials involved in water treatment and energy production. Due to their versatility and tunability for applications ranging from drug delivery to fuel cells, polymeric systems will play a crucial role in shaping the future of water-energy nexus applications. Electron tomography (ET) stands as a transformative approach for elucidating the intricate structures inherent to polymers, offering unparalleled insights into their nanoscale architectures and functional properties in three dimensions. In particular, the various morphological and chemical characteristics of polymer membranes provide opportunities for perturbations to standard ET for the study of these systems. We discuss the applications of transmission electron microscopy in establishing structure-function relationships in polymeric membranes with an emphasis on traditional ET and cryogenic ET (cryo-ET). The synergy between ET and cryo-ET to unravel structural complexities and dynamic behaviors of polymer membranes holds immense potential in driving progress and innovation across frontiers related to water-energy nexus applications. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Antibody-based therapeutics constitute a rapidly growing class of pharmaceutical compounds. However, monoclonal antibodies, which specifically engage only one target, often lack the mechanistic intricacy to treat complex diseases. To expand the utility of antibody therapies, significant efforts have been invested in designing multispecific antibodies, which engage multiple targets using a single molecule. These efforts have culminated in remarkable translational progress, including nine US Food and Drug Administration-approved multispecific antibodies, with countless others in various stages of preclinical or clinical development. In this review, we discuss several categories of multispecific antibodies that have achieved clinical approval or shown promise in earlier stages of development. We focus on the molecular mechanisms used by multispecific antibodies and how these mechanisms inform their customized design and formulation. In particular, we discuss multispecific antibodies that target multiple disease markers, multiparatopic antibodies, and immune-interfacing antibodies. Overall, these innovative multispecific antibody designs are fueling exciting advances across the immunotherapeutic landscape. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Alternative polymer feedstocks are highly desirable to address environmental, social, and security concerns associated with petrochemical-based materials. Lignocellulosic biomass (LCB) has emerged as one critical feedstock in this regard because it is an abundant and ubiquitous renewable resource. LCB can be deconstructed to generate valuable fuels, chemicals, and small molecules/oligomers that are amenable to modification and polymerization. However, the diversity of LCB complicates the evaluation of biorefinery concepts in areas including process scale-up, production outputs, plant economics, and life-cycle management. We discuss aspects of current LCB biorefinery research with a focus on the major process stages, including feedstock selection, fractionation/deconstruction, and characterization, along with product purification, functionalization, and polymerization to manufacture valuable macromolecular materials. We highlight opportunities to valorize underutilized and complex feedstocks, leverage advanced characterization techniques to predict and manage biorefinery outputs, and increase the fraction of biomass converted into valuable products.
Are deep eutectic solvents (DESs) a promising alternative to conventional solvents? Perhaps, but their development is hindered by a plethora of misconceptions. These are carefully analyzed here, beginning with the very meaning of DESs, which has strayed far beyond its original scope of eutectic mixtures of Lewis or Brønsted acids and bases. Instead, a definition that is grounded on thermodynamic principles and distinguishes between eutectic and deep eutectic is encouraged, and the types of precursors that can be used to prepare DESs are reviewed. Landmark works surrounding the sustainability, stability, toxicity, and biodegradability of these solvents are also discussed, revealing piling evidence that numerous DESs reported thus far, particularly those that are choline based, lack sufficient sustainability-related traits to be considered green solvents. Finally, emerging DES applications are reviewed, emphasizing their most remarkable feature: the ability to liquefy a solid compound with a target property, allowing its use as a liquid solvent.