Pub Date : 2025-06-01Epub Date: 2025-03-11DOI: 10.1146/annurev-chembioeng-082323-093537
Joey Hui Min Wong, Jun Jie Chang, Cally Owh, Yee Lin Tan, Qianyu Lin, Valerie Ow, Belynn Sim, Yihao Leow, Rubayn Goh, Xian Jun Loh
Given their hydrophilic nature, hydrogels have shown great potential as wound dressing materials. However, traditional hydrogel dressing materials are static and do not adapt to dynamic wound environments, which in turn limits their wound healing efficacy. Introducing dynamic covalent chemistries can be an effective strategy to improve hydrogel properties for effective wound healing, such as shape adaptability, stimuli responsiveness, self-healing capability, and antibacterial properties. We discuss the properties and chemistries of dynamic covalent bonds for wound healing. We critically analyze the advances of dynamic covalent hydrogels for wound healing and further propose new dynamic covalent chemistries for wound healing.
{"title":"Dynamic Covalent Hydrogels for Wound Healing.","authors":"Joey Hui Min Wong, Jun Jie Chang, Cally Owh, Yee Lin Tan, Qianyu Lin, Valerie Ow, Belynn Sim, Yihao Leow, Rubayn Goh, Xian Jun Loh","doi":"10.1146/annurev-chembioeng-082323-093537","DOIUrl":"10.1146/annurev-chembioeng-082323-093537","url":null,"abstract":"<p><p>Given their hydrophilic nature, hydrogels have shown great potential as wound dressing materials. However, traditional hydrogel dressing materials are static and do not adapt to dynamic wound environments, which in turn limits their wound healing efficacy. Introducing dynamic covalent chemistries can be an effective strategy to improve hydrogel properties for effective wound healing, such as shape adaptability, stimuli responsiveness, self-healing capability, and antibacterial properties. We discuss the properties and chemistries of dynamic covalent bonds for wound healing. We critically analyze the advances of dynamic covalent hydrogels for wound healing and further propose new dynamic covalent chemistries for wound healing.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"93-117"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-04DOI: 10.1146/annurev-chembioeng-092220-113154
Gabriel E Sanoja, Costantino Creton
In recent years, mechanochemistry has imposed itself as a novel promising chemical tool to bridge the gap between polymer physics and continuum mechanics in soft materials. The suitable incorporation of force-sensitive molecules (mechanophores) in load-bearing positions in soft (entropic) polymer networks and in linear chains has provided a tool to detect stresses and bond scission in 2D and 3D through the intensity of an optical signal. We review recent results linking the optical signal detected upon mechanophore activation with the applied mechanical load. Recent investigations have addressed critical questions, such as detecting and quantifying stress fields and measuring quantitative damage by bond scission in diverse cases, including failure in uniaxial tension, crack propagation in continuous loading, cyclic fatigue, or crack initiation in uniaxial and triaxial tension. We also discuss the requirements to go from simple imaging to quantitative detection, enabling comparisons between different materials and the calibration of continuum mechanics models. In ideal cases, the optical signal provides highly sensitive information on the size and intensity of damage zones in front of cracks-regions that would otherwise be undetectable.
{"title":"Quantitative Mechanochemistry: A Chemical Tool to Bridge Polymer Physics and Mechanics of Soft Polymer Networks.","authors":"Gabriel E Sanoja, Costantino Creton","doi":"10.1146/annurev-chembioeng-092220-113154","DOIUrl":"10.1146/annurev-chembioeng-092220-113154","url":null,"abstract":"<p><p>In recent years, mechanochemistry has imposed itself as a novel promising chemical tool to bridge the gap between polymer physics and continuum mechanics in soft materials. The suitable incorporation of force-sensitive molecules (mechanophores) in load-bearing positions in soft (entropic) polymer networks and in linear chains has provided a tool to detect stresses and bond scission in 2D and 3D through the intensity of an optical signal. We review recent results linking the optical signal detected upon mechanophore activation with the applied mechanical load. Recent investigations have addressed critical questions, such as detecting and quantifying stress fields and measuring quantitative damage by bond scission in diverse cases, including failure in uniaxial tension, crack propagation in continuous loading, cyclic fatigue, or crack initiation in uniaxial and triaxial tension. We also discuss the requirements to go from simple imaging to quantitative detection, enabling comparisons between different materials and the calibration of continuum mechanics models. In ideal cases, the optical signal provides highly sensitive information on the size and intensity of damage zones in front of cracks-regions that would otherwise be undetectable.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"321-347"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1146/annurev-chembioeng-082223-102200
Aniruddha B Pandit, Manisha V Bagal, Parag R Gogate
This review focuses on how the cavitation mechanism in the snapping shrimp can be explored to intensify various chemical engineering applications. Effective bubble collapse can lead to hot spot formation, increased transport coefficients (momentum, heat, and mass), and enhanced interfacial area and also results in the formation of highly reactive radicals. Cavitation's ability to induce rapid micromixing, enhance mass transfer, and facilitate nucleophilic chemical reactions can find applications in various industries. An overview of cavitation applications, reactors used for cavitation, effects of operating parameters, and conclusions drawn from the studies so far is presented. Cavitation provides significant benefits for applications in synthesis reactions, wastewater treatment, food processing, emulsification, extraction, and crystallization. Learnings from snapping shrimp can be translated into process intensification of physicochemical and biological transformations in chemical engineering by harnessing these cavitational effects.
{"title":"What Chemical Engineers Can Learn from Shrimp.","authors":"Aniruddha B Pandit, Manisha V Bagal, Parag R Gogate","doi":"10.1146/annurev-chembioeng-082223-102200","DOIUrl":"10.1146/annurev-chembioeng-082223-102200","url":null,"abstract":"<p><p>This review focuses on how the cavitation mechanism in the snapping shrimp can be explored to intensify various chemical engineering applications. Effective bubble collapse can lead to hot spot formation, increased transport coefficients (momentum, heat, and mass), and enhanced interfacial area and also results in the formation of highly reactive radicals. Cavitation's ability to induce rapid micromixing, enhance mass transfer, and facilitate nucleophilic chemical reactions can find applications in various industries. An overview of cavitation applications, reactors used for cavitation, effects of operating parameters, and conclusions drawn from the studies so far is presented. Cavitation provides significant benefits for applications in synthesis reactions, wastewater treatment, food processing, emulsification, extraction, and crystallization. Learnings from snapping shrimp can be translated into process intensification of physicochemical and biological transformations in chemical engineering by harnessing these cavitational effects.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"16 1","pages":"433-453"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1146/annurev-chembioeng-082323-120010
Katharina Maria Saur, Nina A Fridley, Marcel Gausmann, Andreas Jupke
Reactive extraction is an attractive separation technology that can replace energy-intensive water evaporation steps in the industrial production of carboxylic acids. We systematically review the current literature on the extraction of low-value bioproducts and thereby identify the reduced availability of predictive models, limited selectivity, and challenging phase separation as possible bottlenecks in the industrial implementation of reactive extraction. Furthermore, we discuss requirements and strategies for closing the material cycles for batch and continuous processes. With these challenges in mind, we analyze the most widely used extractants (trioctylamine, trioctylphosphine oxide, and tributyl phosphate) in combination with common diluents (e.g., long-chain alcohols and alkanes) in terms of their ability to meet process needs. We illustrate the subordinate role of equilibrium constants in overall process design while emphasizing the potential for flexible reactive extraction systems tailored to process requirements.
{"title":"Beyond Phase Equilibria: Selecting Suitable Solvent Systems for Reactive Extraction of Carboxylic Acids.","authors":"Katharina Maria Saur, Nina A Fridley, Marcel Gausmann, Andreas Jupke","doi":"10.1146/annurev-chembioeng-082323-120010","DOIUrl":"10.1146/annurev-chembioeng-082323-120010","url":null,"abstract":"<p><p>Reactive extraction is an attractive separation technology that can replace energy-intensive water evaporation steps in the industrial production of carboxylic acids. We systematically review the current literature on the extraction of low-value bioproducts and thereby identify the reduced availability of predictive models, limited selectivity, and challenging phase separation as possible bottlenecks in the industrial implementation of reactive extraction. Furthermore, we discuss requirements and strategies for closing the material cycles for batch and continuous processes. With these challenges in mind, we analyze the most widely used extractants (trioctylamine, trioctylphosphine oxide, and tributyl phosphate) in combination with common diluents (e.g., long-chain alcohols and alkanes) in terms of their ability to meet process needs. We illustrate the subordinate role of equilibrium constants in overall process design while emphasizing the potential for flexible reactive extraction systems tailored to process requirements.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"16 1","pages":"23-58"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-12DOI: 10.1146/annurev-chembioeng-082223-105117
Michael Trautmann-Rodriguez, Catherine A Fromen
Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense. We highlight the target pulmonary immune cells and address advances to localize NPs to the lung via both aerosol and vascular delivery. For each administration route, we discuss physiochemical design rules and recent immune-modulatory successes of synthetic, extracellular vesicle, and cell-mediated NP delivery. We aim to provide readers with an updated summary of this emerging field and offer a roadmap for future research aimed at enhancing the efficacy of pulmonary immunotherapies.
{"title":"Nanoparticle-Based Pulmonary Immune Engineering.","authors":"Michael Trautmann-Rodriguez, Catherine A Fromen","doi":"10.1146/annurev-chembioeng-082223-105117","DOIUrl":"10.1146/annurev-chembioeng-082223-105117","url":null,"abstract":"<p><p>Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense. We highlight the target pulmonary immune cells and address advances to localize NPs to the lung via both aerosol and vascular delivery. For each administration route, we discuss physiochemical design rules and recent immune-modulatory successes of synthetic, extracellular vesicle, and cell-mediated NP delivery. We aim to provide readers with an updated summary of this emerging field and offer a roadmap for future research aimed at enhancing the efficacy of pulmonary immunotherapies.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"249-270"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1146/annurev-chembioeng-100722-104442
Vishal S Sivasankar, Roseanna N Zia
The search for what differentiates inanimate matter from living things began in antiquity as a search for a fundamental life force embedded deep within living things-a special material unit owned only by life-later transforming to a more circumspect search for unique gains in function that transform nonliving matter to that which can reproduce, adapt, and survive. Aristotelian thinking about the matter/life distinction and Vitalistic philosophy's vital force persisted well into the Scientific Revolution, only to be debunked by Pasteur and Brown in the nineteenth century. Acceptance of the atomic reality and understanding of the uniqueness of life's heredity, evolution, and reproduction led to formation of the Central Dogma. With startling speed, technological development then gave rise to structural biology, systems biology, and synthetic biology-and a search to replicate and synthesize that gain in function that transforms matter to life. Yet one still cannot build a living cell de novo from its atomic and molecular constituents, and "what I cannot create, I do not understand," in the words of Richard Feynman. In the last two decades, new recognition of old ideas-spatial organization and compartmentalization-has renewed focus on Brownian and flow physics. In this article, we explore how experimental and computational advances in the last decade have embraced the deep coupling between physics and cellular biochemistry to shed light on the matter/life nexus. Whole-cell modeling and synthesis are offering promising new insights that may shed light on this nexus in the cell's watery, crowded milieu.
{"title":"The Matter/Life Nexus in Biological Cells.","authors":"Vishal S Sivasankar, Roseanna N Zia","doi":"10.1146/annurev-chembioeng-100722-104442","DOIUrl":"10.1146/annurev-chembioeng-100722-104442","url":null,"abstract":"<p><p>The search for what differentiates inanimate matter from living things began in antiquity as a search for a fundamental life force embedded deep within living things-a special material unit owned only by life-later transforming to a more circumspect search for unique gains in function that transform nonliving matter to that which can reproduce, adapt, and survive. Aristotelian thinking about the matter/life distinction and Vitalistic philosophy's vital force persisted well into the Scientific Revolution, only to be debunked by Pasteur and Brown in the nineteenth century. Acceptance of the atomic reality and understanding of the uniqueness of life's heredity, evolution, and reproduction led to formation of the Central Dogma. With startling speed, technological development then gave rise to structural biology, systems biology, and synthetic biology-and a search to replicate and synthesize that gain in function that transforms matter to life. Yet one still cannot build a living cell de novo from its atomic and molecular constituents, and \"what I cannot create, I do not understand,\" in the words of Richard Feynman. In the last two decades, new recognition of old ideas-spatial organization and compartmentalization-has renewed focus on Brownian and flow physics. In this article, we explore how experimental and computational advances in the last decade have embraced the deep coupling between physics and cellular biochemistry to shed light on the matter/life nexus. Whole-cell modeling and synthesis are offering promising new insights that may shed light on this nexus in the cell's watery, crowded milieu.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"16 1","pages":"409-432"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-13DOI: 10.1146/annurev-chembioeng-100722-105929
Rachel S Fisher, Jane Liao, So Yeon Ahn, Nisha Modi, Aaron K Kidane, Allie C Obermeyer
Protein-polyelectrolyte interactions are fundamental interactions in biology that occur at every length scale, from protein-DNA complexes to phase-separated organelles. They drive processes ranging from gene transcription and DNA synthesis to viral assembly. Protein engineering is a powerful way to modulate these interactions, both to probe endogenous function and to engineer novel interactions between species. In this review, we consider the various noncovalent interactions that govern the formation and behavior of these complexes, and we discuss how protein modifications such as changes to structure, charge, and charge patterning affect them. We highlight recent examples where engineering changes to protein-polyelectrolyte interactions have helped elucidate biological function, and we then focus on recent efforts toward de novo material design of synthetic biomolecular condensates and functional nanoassemblies.
{"title":"Engineering Protein-Polyelectrolyte Interactions for Cellular Applications.","authors":"Rachel S Fisher, Jane Liao, So Yeon Ahn, Nisha Modi, Aaron K Kidane, Allie C Obermeyer","doi":"10.1146/annurev-chembioeng-100722-105929","DOIUrl":"10.1146/annurev-chembioeng-100722-105929","url":null,"abstract":"<p><p>Protein-polyelectrolyte interactions are fundamental interactions in biology that occur at every length scale, from protein-DNA complexes to phase-separated organelles. They drive processes ranging from gene transcription and DNA synthesis to viral assembly. Protein engineering is a powerful way to modulate these interactions, both to probe endogenous function and to engineer novel interactions between species. In this review, we consider the various noncovalent interactions that govern the formation and behavior of these complexes, and we discuss how protein modifications such as changes to structure, charge, and charge patterning affect them. We highlight recent examples where engineering changes to protein-polyelectrolyte interactions have helped elucidate biological function, and we then focus on recent efforts toward de novo material design of synthetic biomolecular condensates and functional nanoassemblies.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"119-145"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-01-29DOI: 10.1146/annurev-chembioeng-082323-114810
Dace Gao, Tom P A van der Pol, Chiara Musumeci, Deyu Tu, Simone Fabiano
Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues to enhance OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.
{"title":"Organic Mixed Conductors for Neural Biomimicry and Biointerfacing.","authors":"Dace Gao, Tom P A van der Pol, Chiara Musumeci, Deyu Tu, Simone Fabiano","doi":"10.1146/annurev-chembioeng-082323-114810","DOIUrl":"10.1146/annurev-chembioeng-082323-114810","url":null,"abstract":"<p><p>Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues to enhance OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"293-320"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1146/annurev-chembioeng-082323-122317
Jacklyn N Hall, Jacob H Miller, Rajeev S Assary, Frederick G Baddour, Robert Dagle, Vanessa Dagle, Michael B Griffin, Susan E Habas, Kristiina Iisa, Theodore R Krause, Adarsh Kumar, Jeffrey G Linger, Ashutosh Mittal, Calvin Mukarakate, James E Parks, Daniel A Ruddy, Andrew Schmidt, Andrew D Sutton, Michael R Thorson, Kinga A Unocic, Huamin Wang, Austin Winkelman, Xiaokun Yang, Joshua A Schaidle
Biomass-derived energy sources represent a promising domestic route for fuel and chemical production, taking advantage of largely underutilized biological and waste resources. Heterogeneous catalysis plays a key role in these biomass conversion processes, as reflected by all American Society for Testing and Materials-approved pathways for producing sustainable aviation fuel proceeding through a catalytic step. This concise review seeks to establish the state of the art in thermal catalytic process development for various biomass-derived feedstocks and the current enabling capabilities that aid this development. Research needs are identified and described throughout the article, as further advancements in heterogeneous catalysis are required to improve the affordability and realize the full potential of biomass-derived products.
{"title":"State of the Art in Thermal Catalytic Upgrading of Biomass and Biomass-Derived Intermediates.","authors":"Jacklyn N Hall, Jacob H Miller, Rajeev S Assary, Frederick G Baddour, Robert Dagle, Vanessa Dagle, Michael B Griffin, Susan E Habas, Kristiina Iisa, Theodore R Krause, Adarsh Kumar, Jeffrey G Linger, Ashutosh Mittal, Calvin Mukarakate, James E Parks, Daniel A Ruddy, Andrew Schmidt, Andrew D Sutton, Michael R Thorson, Kinga A Unocic, Huamin Wang, Austin Winkelman, Xiaokun Yang, Joshua A Schaidle","doi":"10.1146/annurev-chembioeng-082323-122317","DOIUrl":"10.1146/annurev-chembioeng-082323-122317","url":null,"abstract":"<p><p>Biomass-derived energy sources represent a promising domestic route for fuel and chemical production, taking advantage of largely underutilized biological and waste resources. Heterogeneous catalysis plays a key role in these biomass conversion processes, as reflected by all American Society for Testing and Materials-approved pathways for producing sustainable aviation fuel proceeding through a catalytic step. This concise review seeks to establish the state of the art in thermal catalytic process development for various biomass-derived feedstocks and the current enabling capabilities that aid this development. Research needs are identified and described throughout the article, as further advancements in heterogeneous catalysis are required to improve the affordability and realize the full potential of biomass-derived products.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"16 1","pages":"371-408"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-01-15DOI: 10.1146/annurev-chembioeng-082223-101241
Micah S Ziegler, Blair Brettmann
Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong. Despite the promising technological base for on-demand production, challenges still exist for commercial viability. We thus also review business strategy and private and public policy considerations for transitioning polymer materials markets to on-demand production. Combined analysis of the chemistry, manufacturing, and business/policy advances provides a more comprehensive picture of the status and remaining challenges.
{"title":"On-Demand Polymer Materials for Sustainability and Space.","authors":"Micah S Ziegler, Blair Brettmann","doi":"10.1146/annurev-chembioeng-082223-101241","DOIUrl":"10.1146/annurev-chembioeng-082223-101241","url":null,"abstract":"<p><p>Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong. Despite the promising technological base for on-demand production, challenges still exist for commercial viability. We thus also review business strategy and private and public policy considerations for transitioning polymer materials markets to on-demand production. Combined analysis of the chemistry, manufacturing, and business/policy advances provides a more comprehensive picture of the status and remaining challenges.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"271-292"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}