Pub Date : 2025-06-01DOI: 10.1146/annurev-chembioeng-082323-120010
Katharina Maria Saur, Nina A Fridley, Marcel Gausmann, Andreas Jupke
Reactive extraction is an attractive separation technology that can replace energy-intensive water evaporation steps in the industrial production of carboxylic acids. We systematically review the current literature on the extraction of low-value bioproducts and thereby identify the reduced availability of predictive models, limited selectivity, and challenging phase separation as possible bottlenecks in the industrial implementation of reactive extraction. Furthermore, we discuss requirements and strategies for closing the material cycles for batch and continuous processes. With these challenges in mind, we analyze the most widely used extractants (trioctylamine, trioctylphosphine oxide, and tributyl phosphate) in combination with common diluents (e.g., long-chain alcohols and alkanes) in terms of their ability to meet process needs. We illustrate the subordinate role of equilibrium constants in overall process design while emphasizing the potential for flexible reactive extraction systems tailored to process requirements.
{"title":"Beyond Phase Equilibria: Selecting Suitable Solvent Systems for Reactive Extraction of Carboxylic Acids.","authors":"Katharina Maria Saur, Nina A Fridley, Marcel Gausmann, Andreas Jupke","doi":"10.1146/annurev-chembioeng-082323-120010","DOIUrl":"10.1146/annurev-chembioeng-082323-120010","url":null,"abstract":"<p><p>Reactive extraction is an attractive separation technology that can replace energy-intensive water evaporation steps in the industrial production of carboxylic acids. We systematically review the current literature on the extraction of low-value bioproducts and thereby identify the reduced availability of predictive models, limited selectivity, and challenging phase separation as possible bottlenecks in the industrial implementation of reactive extraction. Furthermore, we discuss requirements and strategies for closing the material cycles for batch and continuous processes. With these challenges in mind, we analyze the most widely used extractants (trioctylamine, trioctylphosphine oxide, and tributyl phosphate) in combination with common diluents (e.g., long-chain alcohols and alkanes) in terms of their ability to meet process needs. We illustrate the subordinate role of equilibrium constants in overall process design while emphasizing the potential for flexible reactive extraction systems tailored to process requirements.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"16 1","pages":"23-58"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-12DOI: 10.1146/annurev-chembioeng-082223-105117
Michael Trautmann-Rodriguez, Catherine A Fromen
Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense. We highlight the target pulmonary immune cells and address advances to localize NPs to the lung via both aerosol and vascular delivery. For each administration route, we discuss physiochemical design rules and recent immune-modulatory successes of synthetic, extracellular vesicle, and cell-mediated NP delivery. We aim to provide readers with an updated summary of this emerging field and offer a roadmap for future research aimed at enhancing the efficacy of pulmonary immunotherapies.
{"title":"Nanoparticle-Based Pulmonary Immune Engineering.","authors":"Michael Trautmann-Rodriguez, Catherine A Fromen","doi":"10.1146/annurev-chembioeng-082223-105117","DOIUrl":"10.1146/annurev-chembioeng-082223-105117","url":null,"abstract":"<p><p>Respiratory conditions represent a significant global healthcare burden impacting hundreds of millions worldwide and necessitating new treatment paradigms. Pulmonary immune engineering using synthetic nanoparticle (NP) platforms can reprogram immune responses for therapeutically beneficial or protective responses directly within the lung tissue. However, effectively localizing these game-changing approaches to the lung remains a significant challenge due to the lung's natural defense. We highlight the target pulmonary immune cells and address advances to localize NPs to the lung via both aerosol and vascular delivery. For each administration route, we discuss physiochemical design rules and recent immune-modulatory successes of synthetic, extracellular vesicle, and cell-mediated NP delivery. We aim to provide readers with an updated summary of this emerging field and offer a roadmap for future research aimed at enhancing the efficacy of pulmonary immunotherapies.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"249-270"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12320248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143613217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1146/annurev-chembioeng-100722-104442
Vishal S Sivasankar, Roseanna N Zia
The search for what differentiates inanimate matter from living things began in antiquity as a search for a fundamental life force embedded deep within living things-a special material unit owned only by life-later transforming to a more circumspect search for unique gains in function that transform nonliving matter to that which can reproduce, adapt, and survive. Aristotelian thinking about the matter/life distinction and Vitalistic philosophy's vital force persisted well into the Scientific Revolution, only to be debunked by Pasteur and Brown in the nineteenth century. Acceptance of the atomic reality and understanding of the uniqueness of life's heredity, evolution, and reproduction led to formation of the Central Dogma. With startling speed, technological development then gave rise to structural biology, systems biology, and synthetic biology-and a search to replicate and synthesize that gain in function that transforms matter to life. Yet one still cannot build a living cell de novo from its atomic and molecular constituents, and "what I cannot create, I do not understand," in the words of Richard Feynman. In the last two decades, new recognition of old ideas-spatial organization and compartmentalization-has renewed focus on Brownian and flow physics. In this article, we explore how experimental and computational advances in the last decade have embraced the deep coupling between physics and cellular biochemistry to shed light on the matter/life nexus. Whole-cell modeling and synthesis are offering promising new insights that may shed light on this nexus in the cell's watery, crowded milieu.
{"title":"The Matter/Life Nexus in Biological Cells.","authors":"Vishal S Sivasankar, Roseanna N Zia","doi":"10.1146/annurev-chembioeng-100722-104442","DOIUrl":"10.1146/annurev-chembioeng-100722-104442","url":null,"abstract":"<p><p>The search for what differentiates inanimate matter from living things began in antiquity as a search for a fundamental life force embedded deep within living things-a special material unit owned only by life-later transforming to a more circumspect search for unique gains in function that transform nonliving matter to that which can reproduce, adapt, and survive. Aristotelian thinking about the matter/life distinction and Vitalistic philosophy's vital force persisted well into the Scientific Revolution, only to be debunked by Pasteur and Brown in the nineteenth century. Acceptance of the atomic reality and understanding of the uniqueness of life's heredity, evolution, and reproduction led to formation of the Central Dogma. With startling speed, technological development then gave rise to structural biology, systems biology, and synthetic biology-and a search to replicate and synthesize that gain in function that transforms matter to life. Yet one still cannot build a living cell de novo from its atomic and molecular constituents, and \"what I cannot create, I do not understand,\" in the words of Richard Feynman. In the last two decades, new recognition of old ideas-spatial organization and compartmentalization-has renewed focus on Brownian and flow physics. In this article, we explore how experimental and computational advances in the last decade have embraced the deep coupling between physics and cellular biochemistry to shed light on the matter/life nexus. Whole-cell modeling and synthesis are offering promising new insights that may shed light on this nexus in the cell's watery, crowded milieu.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"16 1","pages":"409-432"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-13DOI: 10.1146/annurev-chembioeng-100722-105929
Rachel S Fisher, Jane Liao, So Yeon Ahn, Nisha Modi, Aaron K Kidane, Allie C Obermeyer
Protein-polyelectrolyte interactions are fundamental interactions in biology that occur at every length scale, from protein-DNA complexes to phase-separated organelles. They drive processes ranging from gene transcription and DNA synthesis to viral assembly. Protein engineering is a powerful way to modulate these interactions, both to probe endogenous function and to engineer novel interactions between species. In this review, we consider the various noncovalent interactions that govern the formation and behavior of these complexes, and we discuss how protein modifications such as changes to structure, charge, and charge patterning affect them. We highlight recent examples where engineering changes to protein-polyelectrolyte interactions have helped elucidate biological function, and we then focus on recent efforts toward de novo material design of synthetic biomolecular condensates and functional nanoassemblies.
{"title":"Engineering Protein-Polyelectrolyte Interactions for Cellular Applications.","authors":"Rachel S Fisher, Jane Liao, So Yeon Ahn, Nisha Modi, Aaron K Kidane, Allie C Obermeyer","doi":"10.1146/annurev-chembioeng-100722-105929","DOIUrl":"10.1146/annurev-chembioeng-100722-105929","url":null,"abstract":"<p><p>Protein-polyelectrolyte interactions are fundamental interactions in biology that occur at every length scale, from protein-DNA complexes to phase-separated organelles. They drive processes ranging from gene transcription and DNA synthesis to viral assembly. Protein engineering is a powerful way to modulate these interactions, both to probe endogenous function and to engineer novel interactions between species. In this review, we consider the various noncovalent interactions that govern the formation and behavior of these complexes, and we discuss how protein modifications such as changes to structure, charge, and charge patterning affect them. We highlight recent examples where engineering changes to protein-polyelectrolyte interactions have helped elucidate biological function, and we then focus on recent efforts toward de novo material design of synthetic biomolecular condensates and functional nanoassemblies.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"119-145"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-01-29DOI: 10.1146/annurev-chembioeng-082323-114810
Dace Gao, Tom P A van der Pol, Chiara Musumeci, Deyu Tu, Simone Fabiano
Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues to enhance OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.
{"title":"Organic Mixed Conductors for Neural Biomimicry and Biointerfacing.","authors":"Dace Gao, Tom P A van der Pol, Chiara Musumeci, Deyu Tu, Simone Fabiano","doi":"10.1146/annurev-chembioeng-082323-114810","DOIUrl":"10.1146/annurev-chembioeng-082323-114810","url":null,"abstract":"<p><p>Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications. However, challenges such as mechanical mismatch and electrical impedance remain. We discuss innovative solutions to these issues to enhance OMIEC functionality. In neuromorphic bioelectronics, OMIECs show promise for bridging artificial and biological neural systems, though further improvements in conductivity and resolution are needed. Continued innovation in materials and design is crucial to unlocking their full potential, driving advancements in both technology and medicine.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"293-320"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1146/annurev-chembioeng-082323-122317
Jacklyn N Hall, Jacob H Miller, Rajeev S Assary, Frederick G Baddour, Robert Dagle, Vanessa Dagle, Michael B Griffin, Susan E Habas, Kristiina Iisa, Theodore R Krause, Adarsh Kumar, Jeffrey G Linger, Ashutosh Mittal, Calvin Mukarakate, James E Parks, Daniel A Ruddy, Andrew Schmidt, Andrew D Sutton, Michael R Thorson, Kinga A Unocic, Huamin Wang, Austin Winkelman, Xiaokun Yang, Joshua A Schaidle
Biomass-derived energy sources represent a promising domestic route for fuel and chemical production, taking advantage of largely underutilized biological and waste resources. Heterogeneous catalysis plays a key role in these biomass conversion processes, as reflected by all American Society for Testing and Materials-approved pathways for producing sustainable aviation fuel proceeding through a catalytic step. This concise review seeks to establish the state of the art in thermal catalytic process development for various biomass-derived feedstocks and the current enabling capabilities that aid this development. Research needs are identified and described throughout the article, as further advancements in heterogeneous catalysis are required to improve the affordability and realize the full potential of biomass-derived products.
{"title":"State of the Art in Thermal Catalytic Upgrading of Biomass and Biomass-Derived Intermediates.","authors":"Jacklyn N Hall, Jacob H Miller, Rajeev S Assary, Frederick G Baddour, Robert Dagle, Vanessa Dagle, Michael B Griffin, Susan E Habas, Kristiina Iisa, Theodore R Krause, Adarsh Kumar, Jeffrey G Linger, Ashutosh Mittal, Calvin Mukarakate, James E Parks, Daniel A Ruddy, Andrew Schmidt, Andrew D Sutton, Michael R Thorson, Kinga A Unocic, Huamin Wang, Austin Winkelman, Xiaokun Yang, Joshua A Schaidle","doi":"10.1146/annurev-chembioeng-082323-122317","DOIUrl":"10.1146/annurev-chembioeng-082323-122317","url":null,"abstract":"<p><p>Biomass-derived energy sources represent a promising domestic route for fuel and chemical production, taking advantage of largely underutilized biological and waste resources. Heterogeneous catalysis plays a key role in these biomass conversion processes, as reflected by all American Society for Testing and Materials-approved pathways for producing sustainable aviation fuel proceeding through a catalytic step. This concise review seeks to establish the state of the art in thermal catalytic process development for various biomass-derived feedstocks and the current enabling capabilities that aid this development. Research needs are identified and described throughout the article, as further advancements in heterogeneous catalysis are required to improve the affordability and realize the full potential of biomass-derived products.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"16 1","pages":"371-408"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-01-15DOI: 10.1146/annurev-chembioeng-082223-101241
Micah S Ziegler, Blair Brettmann
Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong. Despite the promising technological base for on-demand production, challenges still exist for commercial viability. We thus also review business strategy and private and public policy considerations for transitioning polymer materials markets to on-demand production. Combined analysis of the chemistry, manufacturing, and business/policy advances provides a more comprehensive picture of the status and remaining challenges.
{"title":"On-Demand Polymer Materials for Sustainability and Space.","authors":"Micah S Ziegler, Blair Brettmann","doi":"10.1146/annurev-chembioeng-082223-101241","DOIUrl":"10.1146/annurev-chembioeng-082223-101241","url":null,"abstract":"<p><p>Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong. Despite the promising technological base for on-demand production, challenges still exist for commercial viability. We thus also review business strategy and private and public policy considerations for transitioning polymer materials markets to on-demand production. Combined analysis of the chemistry, manufacturing, and business/policy advances provides a more comprehensive picture of the status and remaining challenges.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"271-292"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-02-27DOI: 10.1146/annurev-chembioeng-082323-092941
Thi Vo
Advances in experimental synthesis and computer simulations have led to the proliferation of anisotropy and particle geometry as popular handles for directed self-assembly. This paradigm employs entropy to direct building block organization into desired spatial and orientational orderings. Yet, how does a metric associated primarily with disorder give rise to ordered assemblies? We first explain the governing principles behind entropic crystallization and entropy maximization processes. We then show how entropic forces can produce emergent, attractive, and bond-like interactions between otherwise sterically repulsive particles. Building on these ideas, we establish entropy as a mediator of interparticle attraction in hard particle systems that relies on extrinsic, systems-level behaviors as opposed to intrinsic, particle-level properties. Finally, we present a theory of entropic bonding that formalizes the phenomena discussed into a rigorous mathematical framework and discuss relevant next steps for its development and applications of entropic crystallization in materials design.
{"title":"Entropic Bonding-Not Quite So Simple Behaviors from Simple Hard Particles.","authors":"Thi Vo","doi":"10.1146/annurev-chembioeng-082323-092941","DOIUrl":"10.1146/annurev-chembioeng-082323-092941","url":null,"abstract":"<p><p>Advances in experimental synthesis and computer simulations have led to the proliferation of anisotropy and particle geometry as popular handles for directed self-assembly. This paradigm employs entropy to direct building block organization into desired spatial and orientational orderings. Yet, how does a metric associated primarily with disorder give rise to ordered assemblies? We first explain the governing principles behind entropic crystallization and entropy maximization processes. We then show how entropic forces can produce emergent, attractive, and bond-like interactions between otherwise sterically repulsive particles. Building on these ideas, we establish entropy as a mediator of interparticle attraction in hard particle systems that relies on extrinsic, systems-level behaviors as opposed to intrinsic, particle-level properties. Finally, we present a theory of entropic bonding that formalizes the phenomena discussed into a rigorous mathematical framework and discuss relevant next steps for its development and applications of entropic crystallization in materials design.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"147-168"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-01-15DOI: 10.1146/annurev-chembioeng-082223-054547
Kin Gomez, Victoria R Yarmey, Hrishikesh Mane, Adriana San-Miguel
Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation. Because this technology can increase experimental throughput and the number of metrics that can be studied in concert, it demands more sophisticated computational tools to process and analyze results. Advanced analytical algorithms and machine learning platforms can address this challenge in data generated from microfluidic systems, but they can also be used outside of devices to discern patterns in genomic, proteomic, anatomical, and cognitive data sets. We discuss these approaches and their potential to expedite research discoveries and improve clinical outcomes through ND characterization, diagnosis, and treatment platforms.
{"title":"Microfluidic and Computational Tools for Neurodegeneration Studies.","authors":"Kin Gomez, Victoria R Yarmey, Hrishikesh Mane, Adriana San-Miguel","doi":"10.1146/annurev-chembioeng-082223-054547","DOIUrl":"10.1146/annurev-chembioeng-082223-054547","url":null,"abstract":"<p><p>Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation. Because this technology can increase experimental throughput and the number of metrics that can be studied in concert, it demands more sophisticated computational tools to process and analyze results. Advanced analytical algorithms and machine learning platforms can address this challenge in data generated from microfluidic systems, but they can also be used outside of devices to discern patterns in genomic, proteomic, anatomical, and cognitive data sets. We discuss these approaches and their potential to expedite research discoveries and improve clinical outcomes through ND characterization, diagnosis, and treatment platforms.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"195-216"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-24DOI: 10.1146/annurev-chembioeng-082223-110559
Jeffrey J Derby
Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.
{"title":"Modeling the Growth of Bulk, Single Crystals: Seeing What Is Hidden.","authors":"Jeffrey J Derby","doi":"10.1146/annurev-chembioeng-082223-110559","DOIUrl":"10.1146/annurev-chembioeng-082223-110559","url":null,"abstract":"<p><p>Modeling is an indispensable tool for understanding and improving the growth of bulk, single crystals. Such crystals are required for the fabrication of the electronic and photonic devices that enable information technology, communications, sensing, solid-state lighting, solar energy production, and many other applications. These materials are much more than simply very pure, specialty chemicals. They must meet strict requirements for solid-state structural perfection and must be produced with high yields and low costs. Successful manufacturing techniques have been developed that utilize thermodynamic phase change to solidify a high-temperature melt into a crystal of high quality. However, harsh conditions and batch operation limit both diagnostic measurements and data available to connect growth conditions to outcomes, making modeling even more important for process improvement. Challenges and opportunities are discussed for melt crystal growth processes, with research examples that demonstrate how modeling has provided important insight into crystal-melt interface shape, dopant segregation, morphological instability, and defect formation.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":"217-248"},"PeriodicalIF":12.8,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}