Zhiwei Guo, Tengzhou Zhang, Juan Song, Haitao Jiang, Hong Chen
Photonic topological edge states in one-dimensional dimer chains have long been thought to be robust to structural perturbations by mapping the topological Su-Schrieffer-Heeger model of a solid-state system. However, the edge states at the two ends of a finite topological dimer chain will interact as a result of near-field coupling. This leads to deviation from topological protection by the chiral symmetry from the exact zero energy, weakening the robustness of the topological edge state. With the aid of non-Hermitian physics, the splitting frequencies of edge states can be degenerated again and topological protection recovered by altering the gain or loss strength of the structure. This point of coalescence is known as the exceptional point (EP). The intriguing physical properties of EPs in topological structures give rise to many fascinating and counterintuitive phenomena. In this work, based on a finite non-Hermitian dimer chain composed of ultra-subwavelength resonators, we propose theoretically and verify experimentally that the sensitivity of topological edge states is greatly affected when the system passes through the EP. Using the EP of a non-Hermitian dimer chain, we realize a new sensor that is sensitive to perturbation at the end of the structure and yet topologically protected from internal perturbation. Our demonstration of a non-Hermitian topological structure with an EP paves the way for the development of novel sensors that are not sensitive to internal manufacturing errors but are highly sensitive to changes in the external environment.
{"title":"Sensitivity of topological edge states in a non-Hermitian dimer chain","authors":"Zhiwei Guo, Tengzhou Zhang, Juan Song, Haitao Jiang, Hong Chen","doi":"10.1364/PRJ.413873","DOIUrl":"https://doi.org/10.1364/PRJ.413873","url":null,"abstract":"Photonic topological edge states in one-dimensional dimer chains have long been thought to be robust to structural perturbations by mapping the topological Su-Schrieffer-Heeger model of a solid-state system. However, the edge states at the two ends of a finite topological dimer chain will interact as a result of near-field coupling. This leads to deviation from topological protection by the chiral symmetry from the exact zero energy, weakening the robustness of the topological edge state. With the aid of non-Hermitian physics, the splitting frequencies of edge states can be degenerated again and topological protection recovered by altering the gain or loss strength of the structure. This point of coalescence is known as the exceptional point (EP). The intriguing physical properties of EPs in topological structures give rise to many fascinating and counterintuitive phenomena. In this work, based on a finite non-Hermitian dimer chain composed of ultra-subwavelength resonators, we propose theoretically and verify experimentally that the sensitivity of topological edge states is greatly affected when the system passes through the EP. Using the EP of a non-Hermitian dimer chain, we realize a new sensor that is sensitive to perturbation at the end of the structure and yet topologically protected from internal perturbation. Our demonstration of a non-Hermitian topological structure with an EP paves the way for the development of novel sensors that are not sensitive to internal manufacturing errors but are highly sensitive to changes in the external environment.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82966994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Saraf, C. Saguy, V. Maheshwari, Hemaprabha Elangovan, Y. Ivry
Hybrid-halide perovskite (HHP) films exhibit exceptional photo-electric properties. These materials are utilized for highly efficient solar cells and photoconductive technologies. Both ion migration and polarization have been proposed as the source of enhanced photoelectric activity, but the exact origin of these advantageous device properties has remained elusive. Here, we combined microscale and device-scale characterization to demonstrate that polarization-assisted conductivity governs photoconductivity in thin HHP films. Conductive atomic force microscopy under light and variable temperature conditions showed that the photocurrent is directional and is suppressed at the tetragonal-to-cubic transformation. It was revealed that polarization-based conductivity is enhanced by light, whereas dark conductivity is dominated by non-directional ion migration, as was confirmed by large-scale device measurements. Following the non-volatile memory nature of polarization domains, photoconductive memristive behavior was demonstrated. Understanding the origin of photoelectric activity in HHP allows designing devices with enhanced functionality and lays the grounds for photoelectric memristive devices.
{"title":"Intrinsic-polarization origin of photoconductivity in MAPbI3thin films","authors":"R. Saraf, C. Saguy, V. Maheshwari, Hemaprabha Elangovan, Y. Ivry","doi":"10.1063/5.0046997","DOIUrl":"https://doi.org/10.1063/5.0046997","url":null,"abstract":"Hybrid-halide perovskite (HHP) films exhibit exceptional photo-electric properties. These materials are utilized for highly efficient solar cells and photoconductive technologies. Both ion migration and polarization have been proposed as the source of enhanced photoelectric activity, but the exact origin of these advantageous device properties has remained elusive. Here, we combined microscale and device-scale characterization to demonstrate that polarization-assisted conductivity governs photoconductivity in thin HHP films. Conductive atomic force microscopy under light and variable temperature conditions showed that the photocurrent is directional and is suppressed at the tetragonal-to-cubic transformation. It was revealed that polarization-based conductivity is enhanced by light, whereas dark conductivity is dominated by non-directional ion migration, as was confirmed by large-scale device measurements. Following the non-volatile memory nature of polarization domains, photoconductive memristive behavior was demonstrated. Understanding the origin of photoelectric activity in HHP allows designing devices with enhanced functionality and lays the grounds for photoelectric memristive devices.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"231 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76526220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-04DOI: 10.1103/PHYSREVAPPLIED.15.014017
K. Grochot, Łukasz Karwacki, S. Łazarski, Witold Skowro'nski, J. Kanak, Wieslaw Powro'znik, P. Kuświk, M. Kowacz, F. Stobiecki, T. Stobiecki
In this work, we study magnetization switching induced by spin-orbit torque in heterostructures with variable thickness of heavy-metal layers W and Pt, perpendicularly magnetized Co layer and an antiferromagnetic NiO layer. Using current-driven switching, magnetoresistance and anomalous Hall effect measurements, perpendicular and in-plane exchange bias field were determined. Several Hall-bar devices possessing in-plane exchange bias from both systems were selected and analyzed in relation to our analytical switching model of critical current density as a function of Pt and W thickness, resulting in estimation of effective spin Hall angle and effective perpendicular magnetic anisotropy. Approximately one order of magnitude smaller critical switching current densities in W- than Pt-based Hall-bar devices were found due to a higher effective spin Hall angle in W structures. The current switching stability and training process are discussed in detail.
{"title":"Current-Induced Magnetization Switching of Exchange-Biased \u0000NiO\u0000 Heterostructures Characterized by Spin-Orbit Torque","authors":"K. Grochot, Łukasz Karwacki, S. Łazarski, Witold Skowro'nski, J. Kanak, Wieslaw Powro'znik, P. Kuświk, M. Kowacz, F. Stobiecki, T. Stobiecki","doi":"10.1103/PHYSREVAPPLIED.15.014017","DOIUrl":"https://doi.org/10.1103/PHYSREVAPPLIED.15.014017","url":null,"abstract":"In this work, we study magnetization switching induced by spin-orbit torque in heterostructures with variable thickness of heavy-metal layers W and Pt, perpendicularly magnetized Co layer and an antiferromagnetic NiO layer. Using current-driven switching, magnetoresistance and anomalous Hall effect measurements, perpendicular and in-plane exchange bias field were determined. Several Hall-bar devices possessing in-plane exchange bias from both systems were selected and analyzed in relation to our analytical switching model of critical current density as a function of Pt and W thickness, resulting in estimation of effective spin Hall angle and effective perpendicular magnetic anisotropy. Approximately one order of magnitude smaller critical switching current densities in W- than Pt-based Hall-bar devices were found due to a higher effective spin Hall angle in W structures. The current switching stability and training process are discussed in detail.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87142902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}