Clouds are one of the key factors influencing the evolution of the planetary boundary layer (PBL). Understanding the complex interactions between clouds and PBL height (PBLH) is essential for accurately simulating and predicting PBL processes. This study investigates the impact of clouds on PBLH evolution based on the lidar, radiosonde, ceilometer, and meteorological parameters observations at the Southern Great Plains site during the period January 2013 to December 2020. The findings indicates that the presence of clouds has an impact on the evolution of the PBLH. During the daytime, PBLH is lower under cloudy conditions than clear conditions, whereas during nighttime, PBLH is higher under cloudy conditions. This phenomenon arises because the intense solar radiation on clear days and strong turbulent mixing on cloudy nights contribute to the formation and maintenance of PBLH. Furthermore, during the daytime, clouds scatter and absorb solar radiation, leading to lower net radiation (NetR), sensible heat flux (SHF), surface temperature (TEM), and soil temperature (SoilT). These conditions, coupled with weaker turbulence intensity and high relative humidity (RH), leading to lower PBLH under cloudy conditions. Although TEM and SoilT are relatively high during clear nights, rapid surface radiative cooling and strong atmospheric stability inhibit the development of the PBLH. Consequently, during cloudy nights, clouds absorb and reflect longwave radiation from the surface, reducing surface radiative cooling rates, enhancing atmospheric instability and turbulence intensity. Furthermore, higher NetR and SHF, along with decreased RH, result in slightly deeper PBLH compared to clear conditions. Overall, this study systematically elucidates the influence of clouds on PBLH evolution and contributes to the understanding of the modulation of cloud on PBL structure.