首页 > 最新文献

Biochemical Engineering Journal最新文献

英文 中文
Enhanced biocatalytic production of cortisol by protein engineering and process engineering 通过蛋白质工程和工艺工程提高生物催化生产皮质醇的能力
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109497

Cortisol, the primary glucocorticoid in humans, plays crucial physiological functions and serves as an intermediate for synthesizing other glucocorticoids. Currently, cortisol production mainly relies on a semi-synthetic route, where the key step of introducing 11β-OH into 11-deoxycortisol is catalyzed by the filamentous fungi Curvularia lunata and Absidia orchidis. This method, however, generates by-products and involves lengthy cultivation. To achieve specific and efficient production of cortisol, we constructed a recombinant biocatalyst by expressing and engineering the human mitochondrial 11β-hydroxylase CYP11B1 in Escherichia coli. Firstly, the balance between CYP11B1 and its redox partners AdR and Adx was regulated through ribosome binding site (RBS) engineering, resulting in a slight increase in cortisol productivity (from 344±19 mg·L−1·d−1 to 407±7 mg·L−1·d−1). Subsequently, the heterologous expression of CYP11B1 was improved through application of the computational design tool PROSS, generating a triple mutant S169V/H354D/L463F with 87.5 % higher cortisol yield than the wild type. Finally, the catalytic performance was improved by optimizing the recombinant protein expression conditions and enhancing the substrate solubility in the reaction system, further elevating the productivity of cortisol to 2.8±0.1 g·L−1·d−1. To our knowledge, this is the highest ever reported cortisol productivity using a human 11β-hydroxylase-based biocatalyst.

皮质醇是人体主要的糖皮质激素,具有重要的生理功能,也是合成其他糖皮质激素的中间体。目前,皮质醇的生产主要依靠半合成途径,其中将 11β-OH 引入 11-脱氧皮质醇的关键步骤由丝状真菌 Curvularia lunata 和 Absidia orchidis 催化完成。然而,这种方法会产生副产品,而且需要长时间的培养。为了特异、高效地生产皮质醇,我们在大肠杆菌中表达并设计了人类线粒体 11β- 羟化酶 CYP11B1,从而构建了重组生物催化剂。首先,通过核糖体结合位点(RBS)工程调节了 CYP11B1 及其氧化还原伙伴 AdR 和 Adx 之间的平衡,使皮质醇生产率略有提高(从 344±19 mg-L-1-d-1 提高到 407±7 mg-L-1-d-1)。随后,应用计算设计工具 PROSS 改进了 CYP11B1 的异源表达,产生了 S169V/H354D/L463F 三重突变体,其皮质醇产量比野生型高出 87.5%。最后,通过优化重组蛋白表达条件和提高底物在反应体系中的溶解度,提高了催化性能,进一步将皮质醇的产量提高到 2.8±0.1 g-L-1-d-1。据我们所知,这是迄今为止报道的使用基于人类 11β- 羟化酶的生物催化剂生产皮质醇的最高生产率。
{"title":"Enhanced biocatalytic production of cortisol by protein engineering and process engineering","authors":"","doi":"10.1016/j.bej.2024.109497","DOIUrl":"10.1016/j.bej.2024.109497","url":null,"abstract":"<div><p>Cortisol, the primary glucocorticoid in humans, plays crucial physiological functions and serves as an intermediate for synthesizing other glucocorticoids. Currently, cortisol production mainly relies on a semi-synthetic route, where the key step of introducing 11β-OH into 11-deoxycortisol is catalyzed by the filamentous fungi <em>Curvularia lunata</em> and <em>Absidia orchidis</em>. This method, however, generates by-products and involves lengthy cultivation. To achieve specific and efficient production of cortisol, we constructed a recombinant biocatalyst by expressing and engineering the human mitochondrial 11β-hydroxylase CYP11B1 in <em>Escherichia coli</em>. Firstly, the balance between CYP11B1 and its redox partners AdR and Adx was regulated through ribosome binding site (RBS) engineering, resulting in a slight increase in cortisol productivity (from 344±19 mg·L<sup>−1</sup>·d<sup>−1</sup> to 407±7 mg·L<sup>−1</sup>·d<sup>−1</sup>). Subsequently, the heterologous expression of CYP11B1 was improved through application of the computational design tool PROSS, generating a triple mutant S169V/H354D/L463F with 87.5 % higher cortisol yield than the wild type. Finally, the catalytic performance was improved by optimizing the recombinant protein expression conditions and enhancing the substrate solubility in the reaction system, further elevating the productivity of cortisol to 2.8±0.1 g·L<sup>−1</sup>·d<sup>−1</sup>. To our knowledge, this is the highest ever reported cortisol productivity using a human 11β-hydroxylase-based biocatalyst.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of flowsheet modeling for scheduling and debottlenecking analysis to support the development and scale-up of a plasma-derived therapeutic protein purification process 应用流程表建模进行调度和去瓶颈分析,以支持血浆治疗蛋白纯化工艺的开发和放大
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109501

Plasma fractionation stands as a pivotal process for the production of therapeutic and diagnostic proteins, such as albumin and immunoglobulin G. Besides these two primary proteins in human plasma, numerous other proteins can be purified for therapeutic purposes. To support process development, a flowsheet modeling-based approach is utilized to improve production efficiency and productivity while minimizing the resource investments. The flowsheet model is first built to represent the baseline drug substance production process at pilot-scale, with operating parameters extrapolated from lab-scale experiments conducted at CSL Behring. To improve operational efficiency and save costs, throughput analysis is applied to enhance the batch throughput through new process design, scheduling, and bottleneck identification. Through implementing the strategies, the batch throughput could be increased by 47.2 % by introducing one additional operator and one buffer preparation tank into the process. Furthermore, after applying a new strategy involving multiple extractions of the initial material (paste), the batch throughput was doubled, with operating cost of goods reduced by 36.1 %. To assess the performance of the modified design and validate the model results, the pilot-scale experiments with two extractions were performed by CSL Behring and compared with model predictions, resulting in good agreement. This work demonstrates the potential of flowsheet modeling in facilitating process development from lab-scale to pilot-scale, fostering cost-effective and efficient production with limited resource investment.

血浆分馏是生产白蛋白和免疫球蛋白 G 等治疗和诊断蛋白质的关键工艺。为了支持工艺开发,我们采用了基于流程表建模的方法来提高生产效率和生产力,同时最大限度地减少资源投资。首先建立的流程表模型代表了中试规模的基线药物生产工艺,其操作参数是从 CSL Behring 实验室规模实验中推断出来的。为了提高运行效率和节约成本,采用了吞吐量分析法,通过新的工艺设计、调度和瓶颈识别来提高批次吞吐量。通过实施这些策略,只需在流程中增加一名操作员和一个缓冲制备罐,就能将批次吞吐量提高 47.2%。此外,在采用一种涉及多次提取初始材料(糊状物)的新策略后,批次产量翻了一番,运营成本降低了 36.1%。为了评估改进设计的性能并验证模型结果,CSL Behring 公司进行了两次萃取的中试规模实验,并与模型预测结果进行了比较,结果一致。这项工作证明了流程图建模在促进从实验室规模到中试规模的工艺开发方面的潜力,从而以有限的资源投资促进具有成本效益的高效生产。
{"title":"Application of flowsheet modeling for scheduling and debottlenecking analysis to support the development and scale-up of a plasma-derived therapeutic protein purification process","authors":"","doi":"10.1016/j.bej.2024.109501","DOIUrl":"10.1016/j.bej.2024.109501","url":null,"abstract":"<div><p>Plasma fractionation stands as a pivotal process for the production of therapeutic and diagnostic proteins, such as albumin and immunoglobulin G. Besides these two primary proteins in human plasma, numerous other proteins can be purified for therapeutic purposes. To support process development, a flowsheet modeling-based approach is utilized to improve production efficiency and productivity while minimizing the resource investments. The flowsheet model is first built to represent the baseline drug substance production process at pilot-scale, with operating parameters extrapolated from lab-scale experiments conducted at CSL Behring. To improve operational efficiency and save costs, throughput analysis is applied to enhance the batch throughput through new process design, scheduling, and bottleneck identification. Through implementing the strategies, the batch throughput could be increased by 47.2 % by introducing one additional operator and one buffer preparation tank into the process. Furthermore, after applying a new strategy involving multiple extractions of the initial material (paste), the batch throughput was doubled, with operating cost of goods reduced by 36.1 %. To assess the performance of the modified design and validate the model results, the pilot-scale experiments with two extractions were performed by CSL Behring and compared with model predictions, resulting in good agreement. This work demonstrates the potential of flowsheet modeling in facilitating process development from lab-scale to pilot-scale, fostering cost-effective and efficient production with limited resource investment.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced 4-hydroxybutyrate incorporation into the PHA terpolymer of Haloferax mediterranei by heterologous expression of 4-hydroxybutyrate-CoA transferases/synthetases 通过异源表达 4-hydroxybutyrate-CoA 转移酶/合成酶,提高 4-hydroxybutyrate 与 Haloferax mediterranei 的 PHA 三元共聚物的结合率
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109498

The polyhydroxyalkanoate terpolymer, P[(3HB)-co-(3HV)-co-(4HB)], is a promising plastic alternative for specialized applications, notably in medical and pharmaceutical sectors. Haloferax mediterranei (Hfx), an extreme halophile archaeon, is a P[(3HB)-co-(3HV)-co-(4HB)] terpolymer production host, however the native molar proportion of 4HB incorporated into the terpolymer is low. To improve incorporation, four 4-hydroxybutyrate-CoA transferases/synthetases from Clostridum kluyveri (OrfZ), Clostridium aminobutyricum (AbfT), Nitrosopumilis maritimus (NmCAT), and Cupriavidus necator N-1 (CnCAT), were heterologously expressed in H. mediterranei, and evaluated for their ability to supply 4HB-CoA for PHA terpolymer production. Growth, PHA synthesis, and polymer composition were evaluated for the four heterologous strains in shake-flask, with Hfx_NmCAT demonstrating superior growth, terpolymer titre and 4HB molar ratio. Co-feeding with γ-butyrolactone was optimised, and Hfx_NmCAT was further evaluated under fed-batch fermentation where a maximum PHA titre of 0.7 g/L, containing 52 mol% 4HB, was achieved. This is an order of magnitude improvement in 4HB terpolymer incorporation by H. mediterranei.

聚羟基烷酸三元共聚物 P[(3HB)-co-(3HV)-co-(4HB)]是一种很有前途的塑料替代品,可用于专门用途,特别是医疗和制药领域。中间卤虫(Hfx)是一种极端嗜卤的古生菌,是 P[(3HB)-co-(3HV)-co-(4HB)] 三元共聚物的生产宿主,但 4HB 在三元共聚物中的原生摩尔比例较低。为了提高4-羟基丁酸-CoA的掺入率,在H. mediterranei中异源表达了四种4-羟基丁酸-CoA转移酶/合成酶,它们分别来自Clostridum kluyveri(OrfZ)、Clostridium aminobutyricum(AbfT)、Nitrosopumilis maritimus(NmCAT)和Cupriavidus necator N-1(CnCAT),并评估了它们为生产PHA三元共聚物提供4HB-CoA的能力。在摇瓶中对四种异源菌株的生长、PHA 合成和聚合物组成进行了评估,其中 Hfx_NmCAT 的生长、三聚体滴度和 4HB 摩尔比均表现优异。通过优化与 γ-丁内酯的共喂料,并在喂料批次发酵条件下对 Hfx_NmCAT 进行了进一步评估,结果显示 PHA 滴度最高达 0.7 克/升,4HB 含量为 52 摩尔%。这比 H. mediterranei 的 4HB 三元共聚物掺入量提高了一个数量级。
{"title":"Enhanced 4-hydroxybutyrate incorporation into the PHA terpolymer of Haloferax mediterranei by heterologous expression of 4-hydroxybutyrate-CoA transferases/synthetases","authors":"","doi":"10.1016/j.bej.2024.109498","DOIUrl":"10.1016/j.bej.2024.109498","url":null,"abstract":"<div><p>The polyhydroxyalkanoate terpolymer, P[(3HB)-<em>co</em>-(3HV)-<em>co</em>-(4HB)], is a promising plastic alternative for specialized applications, notably in medical and pharmaceutical sectors. <em>Haloferax mediterranei</em> (Hfx), an extreme halophile archaeon, is a P[(3HB)-<em>co</em>-(3HV)-<em>co</em>-(4HB)] terpolymer production host, however the native molar proportion of 4HB incorporated into the terpolymer is low. To improve incorporation, four 4-hydroxybutyrate-CoA transferases/synthetases from <em>Clostridum kluyveri</em> (OrfZ), <em>Clostridium aminobutyricum</em> (AbfT), <em>Nitrosopumilis maritimus</em> (<em>Nm</em>CAT), and <em>Cupriavidus necator</em> N-1 (<em>Cn</em>CAT), were heterologously expressed in <em>H. mediterranei</em>, and evaluated for their ability to supply 4HB-CoA for PHA terpolymer production. Growth, PHA synthesis, and polymer composition were evaluated for the four heterologous strains in shake-flask, with Hfx_<em>Nm</em>CAT demonstrating superior growth, terpolymer titre and 4HB molar ratio. Co-feeding with γ-butyrolactone was optimised, and Hfx_<em>Nm</em>CAT was further evaluated under fed-batch fermentation where a maximum PHA titre of 0.7 g/L, containing 52 mol% 4HB, was achieved. This is an order of magnitude improvement in 4HB terpolymer incorporation by <em>H. mediterranei</em>.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369703X24002857/pdfft?md5=60a4fb113b5f3b07c8167e7aee0152f1&pid=1-s2.0-S1369703X24002857-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced stability and catalytic performance of immobilized phospholipase D on chitosan-encapsulated magnetic nanoparticles using oxidized dextran and glutaraldehyde as cross-linkers 以氧化葡聚糖和戊二醛为交联剂,提高壳聚糖封装磁性纳米粒子上固定化磷脂酶 D 的稳定性和催化性能
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109499

Phospholipase D (PLD) is essential for the bioconversion of phosphatidylcholine (PC) to phosphatidylserine (PS), a process valuable in functional food and medicine. This study explores the stability and catalytic properties of PLD immobilized on chitosan-encapsulated magnetic nanoparticles (CMNPs), utilizing oxidized dextran (DX) and glutaraldehyde (Glu) as cross-linkers. The cross-linker concentration and immobilization time were optimized to assess their effects on PLD catalytic performance. PLD immobilized on CMNPs with DX (DX-CMNPs-PLD) exhibited optimal activity at pH 8.0 and 30 °C, retaining over 40 % activity after 14 cycles, while Glu-cross-linked PLD (Glu-CMNPs-PLD) retained approximately 65 %. DX-CMNPs-PLD demonstrated superior pH, temperature, and operational stability compared to free PLD. Additionally, the immobilized PLD was characterized using transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Kinetics parameters (Vmax and Km) of the immobilized PLD were also studied with free PLD serving as a control. Conformational analyses indicated a significant change in PLD's secondary structure, particularly in β-sheet content, which likely contributed to the enhanced stability and activity. These findings suggest a promising approach for PLD immobilization on CMNPs, with notable implications for biotechnological applications.

磷脂酶 D(PLD)是将磷脂酰胆碱(PC)生物转化为磷脂酰丝氨酸(PS)的关键,这一过程在功能性食品和医药中具有重要价值。本研究利用氧化右旋糖酐(DX)和戊二醛(Glu)作为交联剂,探讨了固定在壳聚糖包封磁性纳米粒子(CMNPs)上的 PLD 的稳定性和催化特性。对交联剂浓度和固定时间进行了优化,以评估它们对 PLD 催化性能的影响。固定在含有 DX 的 CMNPs 上的 PLD(DX-CMNPs-PLD)在 pH 值为 8.0、温度为 30 ℃ 时表现出最佳活性,14 个循环后活性保持率超过 40%,而 Glu 交联的 PLD(Glu-CMNPs-PLD)活性保持率约为 65%。与游离的 PLD 相比,DX-CMNPs-PLD 在 pH 值、温度和操作稳定性方面都更胜一筹。此外,还使用透射电子显微镜、X 射线衍射和傅立叶变换红外光谱对固定 PLD 进行了表征。还研究了固定 PLD 的动力学参数(Vmax 和 Km),并以游离 PLD 作为对照。构象分析表明,PLD 的二级结构发生了显著变化,尤其是 β-片状结构的含量,这可能是稳定性和活性增强的原因之一。这些发现为将 PLD 固定在 CMNPs 上提供了一种前景广阔的方法,对生物技术应用具有重要意义。
{"title":"Enhanced stability and catalytic performance of immobilized phospholipase D on chitosan-encapsulated magnetic nanoparticles using oxidized dextran and glutaraldehyde as cross-linkers","authors":"","doi":"10.1016/j.bej.2024.109499","DOIUrl":"10.1016/j.bej.2024.109499","url":null,"abstract":"<div><p>Phospholipase D (PLD) is essential for the bioconversion of phosphatidylcholine (PC) to phosphatidylserine (PS), a process valuable in functional food and medicine. This study explores the stability and catalytic properties of PLD immobilized on chitosan-encapsulated magnetic nanoparticles (CMNPs), utilizing oxidized dextran (DX) and glutaraldehyde (Glu) as cross-linkers. The cross-linker concentration and immobilization time were optimized to assess their effects on PLD catalytic performance. PLD immobilized on CMNPs with DX (DX-CMNPs-PLD) exhibited optimal activity at pH 8.0 and 30 °C, retaining over 40 % activity after 14 cycles, while Glu-cross-linked PLD (Glu-CMNPs-PLD) retained approximately 65 %. DX-CMNPs-PLD demonstrated superior pH, temperature, and operational stability compared to free PLD. Additionally, the immobilized PLD was characterized using transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Kinetics parameters (V<sub>max</sub> and K<sub>m</sub>) of the immobilized PLD were also studied with free PLD serving as a control. Conformational analyses indicated a significant change in PLD's secondary structure, particularly in β-sheet content, which likely contributed to the enhanced stability and activity. These findings suggest a promising approach for PLD immobilization on CMNPs, with notable implications for biotechnological applications.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous nitrogen and phosphorus removal by immobilized bacterial particles of denitrifying phosphorus accumulating microorganisms and its application 利用固定化反硝化聚磷微生物菌粒同时脱氮除磷及其应用
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.bej.2024.109495

Enterobacter cloacae G, a novel denitrifying phosphorus-accumulating bacterial strain, was isolated from anaerobic sludge tank of a wastewater treatment plant used for pig farms. It was discovered that a pH of 7, a temperature of 30°C, an initial phosphorus concentration of 8 mg/L, and a C/N ratio of 10 were the strain's ideal growth conditions. To ensure the stability of strain G in wastewater treatment, strain G was immobilized by 5 % polyvinyl alcohol, 2 % sodium alginate, and 0.6 g of biochar and crosslinked for 9 h in 4 % calcium chloride saturated boric acid solution via an orthogonal test. After the immobilized microspheres were introduced into the sequencing batch reactor (SBR), the nitrate and phosphate removal rates achieved were 89.36 % and 65.53 %, respectively, with a hydraulic retention time (HRT) of 8 hours, a pH of 7.5, and a C/N ratio of 4.5. The immobilized microspheres containing strain G demonstrated potential for the treatment of nitrogen-rich and phosphorus-rich wastewater.

从养猪场废水处理厂的厌氧污泥池中分离出了一种新型反硝化磷积累细菌--丁香肠杆菌 G。研究发现,pH 值为 7、温度为 30°C、初始磷浓度为 8 mg/L、C/N 比为 10 是该菌株的理想生长条件。为确保菌株 G 在废水处理中的稳定性,通过正交试验,将菌株 G 用 5 % 的聚乙烯醇、2 % 的海藻酸钠和 0.6 克生物炭固定,并在 4 % 的氯化钙饱和硼酸溶液中交联 9 小时。将固定化微球引入序批式反应器(SBR)后,在水力停留时间(HRT)为 8 小时、pH 值为 7.5、C/N 比为 4.5 的条件下,硝酸盐和磷酸盐的去除率分别为 89.36% 和 65.53%。含有菌株 G 的固定化微球显示出处理富氮和富磷废水的潜力。
{"title":"Simultaneous nitrogen and phosphorus removal by immobilized bacterial particles of denitrifying phosphorus accumulating microorganisms and its application","authors":"","doi":"10.1016/j.bej.2024.109495","DOIUrl":"10.1016/j.bej.2024.109495","url":null,"abstract":"<div><p><em>Enterobacter cloacae</em> G, a novel denitrifying phosphorus-accumulating bacterial strain, was isolated from anaerobic sludge tank of a wastewater treatment plant used for pig farms. It was discovered that a pH of 7, a temperature of 30°C, an initial phosphorus concentration of 8 mg/L, and a C/N ratio of 10 were the strain's ideal growth conditions. To ensure the stability of strain G in wastewater treatment, strain G was immobilized by 5 % polyvinyl alcohol, 2 % sodium alginate, and 0.6 g of biochar and crosslinked for 9 h in 4 % calcium chloride saturated boric acid solution via an orthogonal test. After the immobilized microspheres were introduced into the sequencing batch reactor (SBR), the nitrate and phosphate removal rates achieved were 89.36 % and 65.53 %, respectively, with a hydraulic retention time (HRT) of 8 hours, a pH of 7.5, and a C/N ratio of 4.5. The immobilized microspheres containing strain G demonstrated potential for the treatment of nitrogen-rich and phosphorus-rich wastewater.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon monoxide conversion by anaerobic microbiome in a thermophilic trickle bed reactor 嗜热涓流床反应器中厌氧微生物群对一氧化碳的转化
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-15 DOI: 10.1016/j.bej.2024.109492

Biomethanation offers a promising route for the valorization of synthesis gas, yet significant challenges arise from the limited conversion of carbon monoxide (CO). This study investigated the adaptation of an anaerobic microbiome in a continuous trickle bed reactor (TBR) with CO as the sole carbon and energy source. We evaluated reactor performance and microbial community changes under different CO loading rates and gas retention times (GRT). Optimal performance was achieved at a CO loading rate of 5.16 Nm³ m⁻³ d⁻¹ and a GRT of 60.6 min, resulting in average production rates of 0.99 Nm³ m⁻³ d⁻¹ for CH₄ and 2.55 Nm⁻³ m⁻³ d⁻¹ for CO₂, with an 88 % CO conversion rate. Microbial analysis indicated that the community was dominated by the genus Methanothermobacter, known for its ability to utilize CO as a sole substrate, followed by a co-dominance of syntrophic acetate-oxidizing bacteria Syntrophaceticus. This syntrophic relationship between Methanothermobacter and Syntrophaceticus is expected to be crucial for the efficient CO conversion process. Additionally, the study proposes a two-reactor system for converting synthesis gas to grid-quality methane.

生物甲烷化为合成气的价值化提供了一条前景广阔的途径,但由于一氧化碳(CO)的转化率有限,因此面临着巨大的挑战。本研究调查了以一氧化碳为唯一碳源和能源的连续滴流床反应器(TBR)中厌氧微生物群落的适应性。我们评估了不同 CO 负载率和气体停留时间 (GRT) 下反应器的性能和微生物群落的变化。当 CO 加载率为 5.16 Nm³ m-³ d-¹ 和 GRT 为 60.6 分钟时,反应器达到最佳性能,CH₄ 的平均生产率为 0.99 Nm³ m-³ d-¹,CO₂ 的平均生产率为 2.55 Nm-³ m-³ d-¹,CO 转化率为 88%。微生物分析表明,群落中以甲烷热菌属为主,该菌以能够利用 CO 作为唯一底物而著称,其次是合成营养醋酸氧化菌 Syntrophaceticus。预计甲烷热菌和合成乙酸氧化菌之间的这种合成营养关系对于高效的 CO 转化过程至关重要。此外,该研究还提出了一种将合成气转化为电网质量甲烷的双反应器系统。
{"title":"Carbon monoxide conversion by anaerobic microbiome in a thermophilic trickle bed reactor","authors":"","doi":"10.1016/j.bej.2024.109492","DOIUrl":"10.1016/j.bej.2024.109492","url":null,"abstract":"<div><p>Biomethanation offers a promising route for the valorization of synthesis gas, yet significant challenges arise from the limited conversion of carbon monoxide (CO). This study investigated the adaptation of an anaerobic microbiome in a continuous trickle bed reactor (TBR) with CO as the sole carbon and energy source. We evaluated reactor performance and microbial community changes under different CO loading rates and gas retention times (GRT). Optimal performance was achieved at a CO loading rate of 5.16 Nm³ m⁻³ d⁻¹ and a GRT of 60.6 min, resulting in average production rates of 0.99 Nm³ m⁻³ d⁻¹ for CH₄ and 2.55 Nm⁻³ m⁻³ d⁻¹ for CO₂, with an 88 % CO conversion rate. Microbial analysis indicated that the community was dominated by the genus <em>Methanothermobacter,</em> known for its ability to utilize CO as a sole substrate, followed by a co-dominance of syntrophic acetate-oxidizing bacteria <em>Syntrophaceticus</em>. This syntrophic relationship between <em>Methanothermobacter</em> and <em>Syntrophaceticus</em> is expected to be crucial for the efficient CO conversion process. Additionally, the study proposes a two-reactor system for converting synthesis gas to grid-quality methane.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369703X24002791/pdfft?md5=fe1de2fb3487b7b8e94ffe489fb35626&pid=1-s2.0-S1369703X24002791-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant laccase biosynthesis for efficient polydopamine coating 用于高效多巴胺涂层的重组漆酶生物合成
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-10 DOI: 10.1016/j.bej.2024.109483

Laccases are versatile biocatalysts with interest for various industrial applications. This study reports the expression of Trametes versicolor laccase in Komagataella phaffii X33. The cultivation parameters (methanol and CuSO4 concentration, and temperature) for recombinant laccase production were studied in an orbital shaker. Enhanced laccase production was achieved by adding 1 % (v/v) methanol daily, supplementing 0.1 mM CuSO4 and incubating at 25 °C. Under these conditions, laccase production was scaled-up in a 4 L stirred tank bioreactor. Subsequently, laccase was concentrated and purified using a combined protocol of ultrafiltration and acetone precipitation, achieving a purification factor of 3.02. The laccase produced exhibited robust stability within a pH range from 4.0 to 8.0 and thermal stability up to 30 °C. Michaelis Menten kinetic revealed Michaelis constant (KM) and maximum rate of reaction (Vmax) values of 44.5 µM and 110.9 µM/min, respectively. Finally, laccase was employed as a biocatalyst to assist the polymerization of dopamine to polydopamine, allowing the one-step coating of cellulose filter paper, as confirmed by diffuse reflectance spectroscopy (UV-Vis DRS) and scanning electron microscopy (SEM). This work represents an advance in the field of laccase production in both orbital shaker and bioreactor, while demonstrating, for the first time, the laccase-assisted polymerization of dopamine for the coating of filter paper with polydopamine.

漆酶是一种用途广泛的生物催化剂,可用于多种工业领域。本研究报告了在 Komagataella phaffii X33 中表达 Trametes versicolor 漆酶的情况。在轨道振动器中研究了重组漆酶生产的培养参数(甲醇和 CuSO4 浓度以及温度)。通过每天添加 1 % (v/v) 甲醇、补充 0.1 mM CuSO4 和在 25 °C 下培养,提高了漆酶的产量。在这些条件下,在 4 L 搅拌罐生物反应器中扩大了漆酶的产量。随后,采用超滤和丙酮沉淀相结合的方法浓缩和纯化漆酶,纯化系数达到 3.02。生产出的漆酶在 pH 值为 4.0 至 8.0 的范围内具有很强的稳定性,热稳定性可达 30 °C。迈克尔斯-门顿动力学显示,迈克尔斯常数(KM)和最大反应速率(Vmax)值分别为 44.5 µM 和 110.9 µM/min。最后,经漫反射光谱(UV-Vis DRS)和扫描电子显微镜(SEM)证实,漆酶被用作一种生物催化剂,可帮助多巴胺聚合成聚多巴胺,从而实现纤维素滤纸的一步涂布。这项工作代表了在轨道摇床和生物反应器中生产漆酶领域的进步,同时也首次证明了漆酶辅助多巴胺聚合可在滤纸上涂布聚多巴胺。
{"title":"Recombinant laccase biosynthesis for efficient polydopamine coating","authors":"","doi":"10.1016/j.bej.2024.109483","DOIUrl":"10.1016/j.bej.2024.109483","url":null,"abstract":"<div><p>Laccases are versatile biocatalysts with interest for various industrial applications. This study reports the expression of <em>Trametes versicolor</em> laccase in <em>Komagataella phaffii</em> X33. The cultivation parameters (methanol and CuSO<sub>4</sub> concentration, and temperature) for recombinant laccase production were studied in an orbital shaker. Enhanced laccase production was achieved by adding 1 % (v/v) methanol daily, supplementing 0.1 mM CuSO<sub>4</sub> and incubating at 25 °C. Under these conditions, laccase production was scaled-up in a 4 L stirred tank bioreactor. Subsequently, laccase was concentrated and purified using a combined protocol of ultrafiltration and acetone precipitation, achieving a purification factor of 3.02. The laccase produced exhibited robust stability within a pH range from 4.0 to 8.0 and thermal stability up to 30 °C. Michaelis Menten kinetic revealed Michaelis constant (K<sub>M</sub>) and maximum rate of reaction (V<sub>max</sub>) values of 44.5 µM and 110.9 µM/min, respectively. Finally, laccase was employed as a biocatalyst to assist the polymerization of dopamine to polydopamine, allowing the one-step coating of cellulose filter paper, as confirmed by diffuse reflectance spectroscopy (UV-Vis DRS) and scanning electron microscopy (SEM). This work represents an advance in the field of laccase production in both orbital shaker and bioreactor, while demonstrating, for the first time, the laccase-assisted polymerization of dopamine for the coating of filter paper with polydopamine.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369703X24002705/pdfft?md5=a30d00d716812dfb2d817cfbe5f0c0f3&pid=1-s2.0-S1369703X24002705-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving mannanase production in Bacillus subtilis for fibre hydrolysis during solid-state fermentation of palm kernel meal 提高枯草芽孢杆菌的甘露聚糖酶产量,以便在棕榈仁粕固态发酵过程中水解纤维
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-07 DOI: 10.1016/j.bej.2024.109479

The primary challenge in utilizing palm kernel meal (PKM, an agricultural by-product) as non-ruminant livestock feed is its high fibre content, predominantly in the form of mannan. Microbial fermentation offers an economically favourable alternative to enzyme supplementation for breaking down fibre in lignocellulosic biomass. In a recent study, our group isolated a B. subtilis strain F6 with a fast response time for mannanase production upon exposure to PKM. This work focuses on improving the mannanase production of the B. subtilis strain to achieve greater fibre hydrolysis of PKM without extending fermentation time. Mannanase GmuG, sourced from B. subtilis F6 and verified for its hydrolytic activity on PKM fibre, was homologously expressed using a replicative plasmid (pBE-S). Enzyme production was systematically improved by optimizing various regulatory elements, including the promoter, ribosome binding site, and signal peptide. Consequently, the neutral detergent fibre content of PKM was substantially reduced by 36.4 % in 22 h of solid-state fermentation using the engineered strain. Lastly, the highest mannanase-producing strain was examined for scaled-up fermentation. The impacts of fermentation on fibre and protein contents, as well as the surface morphology of PKM, were analysed. The outcomes of this study offer an efficient method for robust mannanase expression in B. subtilis and its potential application in the biotransformation of PKM and other mannan-rich bioresources for improved feed utilization.

利用棕榈仁粕(PKM,一种农副产品)作为非反刍家畜饲料的主要挑战在于其纤维含量高,主要以甘露聚糖的形式存在。微生物发酵为分解木质纤维素生物质中的纤维提供了一种经济上有利的替代酶补充剂。在最近的一项研究中,我们的研究小组分离出了一株枯草芽孢杆菌 F6 菌株,该菌株在接触 PKM 后能快速产生甘露聚糖酶。这项工作的重点是提高枯草芽孢杆菌菌株的甘露聚糖酶产量,以便在不延长发酵时间的情况下,实现更大程度的 PKM 纤维水解。甘露聚糖酶 GmuG 来自枯草芽孢杆菌 F6,其对 PKM 纤维的水解活性已得到验证。通过优化各种调控元件,包括启动子、核糖体结合位点和信号肽,系统地提高了酶的产量。因此,在使用工程菌株进行 22 小时固态发酵后,PKM 的中性洗涤纤维含量大幅降低了 36.4%。最后,对甘露糖产量最高的菌株进行了放大发酵试验。分析了发酵对纤维和蛋白质含量以及 PKM 表面形态的影响。这项研究的成果提供了一种在枯草芽孢杆菌中强力表达甘露聚糖酶的有效方法,并有可能应用于 PKM 和其他富含甘露聚糖的生物资源的生物转化,以提高饲料利用率。
{"title":"Improving mannanase production in Bacillus subtilis for fibre hydrolysis during solid-state fermentation of palm kernel meal","authors":"","doi":"10.1016/j.bej.2024.109479","DOIUrl":"10.1016/j.bej.2024.109479","url":null,"abstract":"<div><p>The primary challenge in utilizing palm kernel meal (PKM, an agricultural by-product) as non-ruminant livestock feed is its high fibre content, predominantly in the form of mannan. Microbial fermentation offers an economically favourable alternative to enzyme supplementation for breaking down fibre in lignocellulosic biomass. In a recent study, our group isolated a <em>B. subtilis</em> strain F6 with a fast response time for mannanase production upon exposure to PKM. This work focuses on improving the mannanase production of the <em>B. subtilis</em> strain to achieve greater fibre hydrolysis of PKM without extending fermentation time. Mannanase GmuG, sourced from <em>B. subtilis</em> F6 and verified for its hydrolytic activity on PKM fibre, was homologously expressed using a replicative plasmid (pBE-S). Enzyme production was systematically improved by optimizing various regulatory elements, including the promoter, ribosome binding site, and signal peptide. Consequently, the neutral detergent fibre content of PKM was substantially reduced by 36.4 % in 22 h of solid-state fermentation using the engineered strain. Lastly, the highest mannanase-producing strain was examined for scaled-up fermentation. The impacts of fermentation on fibre and protein contents, as well as the surface morphology of PKM, were analysed. The outcomes of this study offer an efficient method for robust mannanase expression in <em>B. subtilis</em> and its potential application in the biotransformation of PKM and other mannan-rich bioresources for improved feed utilization.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142232651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model development and process evaluation for algal growth and lipid production 藻类生长和脂质生产的模型开发和工艺评估
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-06 DOI: 10.1016/j.bej.2024.109485

Microalgae grabbed the attention worldwide because of their application in renewable energy with a number of environmental benefits such as carbon dioxide assimilation to produce biofuel. In this study, a kinetic model aiming to analyze algae growth and lipid production was developed. Biomass was divided into two parts, algae residual cell and lipid, to analyze their kinetics distinctively and to find out the inside process mechanism. The model was calibrated and validated with different experimental datasets, varying carbon sources, and phosphate concentrations. The capability of the model to predict the dynamics of algal culture over a broad range of growth conditions was investigated. The presence of acetate reduced the bicarbonate uptake for algal growth and growth on organic carbon was higher compared to that of carbon dioxide. The presence of ammonium showed a very strong inhibition effect on algae and lipid production rate but enhanced lipid content. Phosphate caused both limitation and inhibition effects on algae growth and lipid production rate. The maximum growth was found at 12 mg/L PO43- concentration and 3.10 mg/L NO3--N concentration. Lipid content was enhanced by limiting phosphate. Overall, the developed model allows optimizing of nutrient concentrations and operating conditions specifically to enhance lipid productivity.

微藻类因其在可再生能源领域的应用而受到全世界的关注,因为它们具有许多环境效益,如吸收二氧化碳生产生物燃料。本研究建立了一个动力学模型,旨在分析藻类的生长和脂质生产。生物质被分为藻类残留细胞和脂质两部分,以对其动力学进行不同的分析,并找出其内部过程机制。利用不同的实验数据集、不同的碳源和磷酸盐浓度对模型进行了校准和验证。研究了该模型在各种生长条件下预测藻类培养动态的能力。醋酸盐的存在减少了藻类生长对碳酸氢盐的吸收,与二氧化碳相比,有机碳的生长率更高。铵的存在对藻类和脂质生产率有很强的抑制作用,但能提高脂质含量。磷酸盐对藻类的生长和产脂率既有限制作用,也有抑制作用。当 PO43- 浓度为 12 mg/L 和 NO3-N 浓度为 3.10 mg/L 时,藻类的生长量最大。磷酸盐的限制提高了脂质含量。总之,所开发的模型可以优化养分浓度和操作条件,从而提高脂质生产率。
{"title":"Model development and process evaluation for algal growth and lipid production","authors":"","doi":"10.1016/j.bej.2024.109485","DOIUrl":"10.1016/j.bej.2024.109485","url":null,"abstract":"<div><p>Microalgae grabbed the attention worldwide because of their application in renewable energy with a number of environmental benefits such as carbon dioxide assimilation to produce biofuel. In this study, a kinetic model aiming to analyze algae growth and lipid production was developed. Biomass was divided into two parts, algae residual cell and lipid, to analyze their kinetics distinctively and to find out the inside process mechanism. The model was calibrated and validated with different experimental datasets, varying carbon sources, and phosphate concentrations. The capability of the model to predict the dynamics of algal culture over a broad range of growth conditions was investigated. The presence of acetate reduced the bicarbonate uptake for algal growth and growth on organic carbon was higher compared to that of carbon dioxide. The presence of ammonium showed a very strong inhibition effect on algae and lipid production rate but enhanced lipid content. Phosphate caused both limitation and inhibition effects on algae growth and lipid production rate. The maximum growth was found at 12 mg/L PO<sub>4</sub><sup>3-</sup> concentration and 3.10 mg/L NO<sub>3</sub><sup>-</sup>-N concentration. Lipid content was enhanced by limiting phosphate. Overall, the developed model allows optimizing of nutrient concentrations and operating conditions specifically to enhance lipid productivity.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular electron transfer-enhanced sulfamethoxazole biodegradation: Mechanisms and process strengthening 细胞外电子传递增强磺胺甲噁唑的生物降解:机理和过程强化
IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1016/j.bej.2024.109484

Antibiotics like Sulfamethoxazole (SMX) pose a significant threat to public health and environmental well-being. To address this issue, effective strategies are being developed to remove antibiotics from the environment. This study investigates the degradation of SMX with a focus on elucidating the mechanism by which extracellular electron transfer (EET) enhances the efficient degradation of the antibiotic. The results show that SMX was significantly degraded (97 %) by Shewanella oneidensis MR-1 after 120 hours in the presence of a bioelectrochemical system (BES) at a concentration of 1 mg L−1, compared to the absence of BES (69 %) at the same concentration and time. BES was observed to simultaneously remove pollutants like SMX while generating electricity at this concentration. Proteomic analysis was further employed to clarify the mechanism behind this process. Three key SMX-degrading proteins; S-ribosylhomocysteine lyase (luxS), Deoxyribose-phosphate aldolase (deoC), and Amidohydrolase which mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage were identified. The study demonstrates that S. oneidensis MR-1 can promote the generation of Nicotinamide Adenine Dinucleotide and Adenosine Triphosphate and facilitate electron transfer to enhance the efficient degradation of SMX. The findings of this study provide new insights into the correlation mechanism between SMX degradation and EET, ultimately contributing to innovative solutions for environmental remediation.

磺胺甲噁唑(SMX)等抗生素对公众健康和环境福祉构成重大威胁。为了解决这一问题,人们正在开发有效的策略来清除环境中的抗生素。本研究调查了 SMX 的降解情况,重点是阐明细胞外电子传递(EET)提高抗生素降解效率的机制。结果表明,在浓度为 1 mg L-1 的生物电化学系统(BES)存在下,120 小时后 SMX 被 Shewanella oneidensis MR-1 显著降解(97%),而在相同浓度和时间下没有 BES 的情况下降解率为 69%。据观察,在此浓度下,生物电化学系统在发电的同时还能去除 SMX 等污染物。蛋白质组分析被进一步用于阐明这一过程背后的机制。研究发现了三种关键的 SMX 降解蛋白:S-核糖基高胱氨酸裂解酶(luxS)、脱氧核糖磷酸醛缩酶(deoC)和酰胺水解酶,它们主要参与 C-S 裂解、S-N 水解和异噁唑环裂解。研究表明,S. oneidensis MR-1 能促进烟酰胺腺嘌呤二核苷酸和三磷酸腺苷的生成,并促进电子传递,从而提高 SMX 的降解效率。这项研究的结果为了解 SMX 降解与 EET 之间的相关机制提供了新的视角,最终有助于找到创新的环境修复解决方案。
{"title":"Extracellular electron transfer-enhanced sulfamethoxazole biodegradation: Mechanisms and process strengthening","authors":"","doi":"10.1016/j.bej.2024.109484","DOIUrl":"10.1016/j.bej.2024.109484","url":null,"abstract":"<div><p>Antibiotics like Sulfamethoxazole (SMX) pose a significant threat to public health and environmental well-being. To address this issue, effective strategies are being developed to remove antibiotics from the environment. This study investigates the degradation of SMX with a focus on elucidating the mechanism by which extracellular electron transfer (EET) enhances the efficient degradation of the antibiotic. The results show that SMX was significantly degraded (97 %) by <em>Shewanella oneidensis</em> MR-1 after 120 hours in the presence of a bioelectrochemical system (BES) at a concentration of 1 mg L<sup>−1</sup>, compared to the absence of BES (69 %) at the same concentration and time. BES was observed to simultaneously remove pollutants like SMX while generating electricity at this concentration. Proteomic analysis was further employed to clarify the mechanism behind this process. Three key SMX-degrading proteins; S-ribosylhomocysteine lyase (luxS), Deoxyribose-phosphate aldolase (deoC), and Amidohydrolase which mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage were identified. The study demonstrates that <em>S. oneidensis</em> MR-1 can promote the generation of Nicotinamide Adenine Dinucleotide and Adenosine Triphosphate and facilitate electron transfer to enhance the efficient degradation of SMX. The findings of this study provide new insights into the correlation mechanism between SMX degradation and EET, ultimately contributing to innovative solutions for environmental remediation.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochemical Engineering Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1