Pub Date : 2024-11-12DOI: 10.1016/j.bej.2024.109565
Divya Baskaran , Becky Miriyam I , Palani R , Hun-Soo Byun
Eradicating chromium from industrial effluent is essential for environmental security and economic reasons. This study investigates the potency of activated Musa balbisiana bract biomass as a biosorbent to remove hexavalent chromium (Cr6+) from real industrial tannery effluent (ITE). The characterization study exemplifies the existence of irregular structures and excessive cavities, and the occurrence of functional groups (hydroxyl, carboxyl, esters, and alkynes) are benefitting the deposition of Cr6+ on the biosorbent. A maximum biosorption capacity of 42.75 ± 0.21 mg/g was observed at an optimum pH of 6.5, biosorbent dosage of 0.3 g, initial Cr6+ concentration of 50 mg/L, and contact time of 120 min. The validation experiment confirmed the removal efficiency of total chromium, trivalent chromium, and Cr6+ 92.56 ± 0.80 %, 98.63 ± 0.20 %, and 96.21 ± 0.50 %, respectively. Among the models, Langmuir isotherm (R2: 0.9992) and pseudo-second order (R2: 0.9999) kinetic models greatly correlate with the equilibrium data. A 2-tier membrane module was examined for continuous study and reached 88.23 ± 0.60 % Cr6+ removal. Statistical analysis was performed to confirm the significance of adsorption results. The likelihood of the desorption and regeneration of the treated biosorbent was investigated. The estimated cost per volume of ITE treated and unit of pollutant removal from ITE employing Musa balbisiana bract biosorbent is around $3.08/m3 and $3.75/kg.
{"title":"Effectiveness of Musa balbisiana bract toward chromium removal from industrial tannery effluent: Optimization, kinetics, isotherms, regeneration, and cost estimation","authors":"Divya Baskaran , Becky Miriyam I , Palani R , Hun-Soo Byun","doi":"10.1016/j.bej.2024.109565","DOIUrl":"10.1016/j.bej.2024.109565","url":null,"abstract":"<div><div>Eradicating chromium from industrial effluent is essential for environmental security and economic reasons. This study investigates the potency of activated <em>Musa balbisiana</em> bract biomass as a biosorbent to remove hexavalent chromium (Cr<sup>6+</sup>) from real industrial tannery effluent (ITE). The characterization study exemplifies the existence of irregular structures and excessive cavities, and the occurrence of functional groups (hydroxyl, carboxyl, esters, and alkynes) are benefitting the deposition of Cr<sup>6+</sup> on the biosorbent. A maximum biosorption capacity of 42.75 ± 0.21 mg/g was observed at an optimum pH of 6.5, biosorbent dosage of 0.3 g, initial Cr<sup>6+</sup> concentration of 50 mg/L, and contact time of 120 min. The validation experiment confirmed the removal efficiency of total chromium, trivalent chromium, and Cr<sup>6+</sup> 92.56 ± 0.80 %, 98.63 ± 0.20 %, and 96.21 ± 0.50 %, respectively. Among the models, Langmuir isotherm (R<sup>2</sup>: 0.9992) and pseudo-second order (R<sup>2</sup>: 0.9999) kinetic models greatly correlate with the equilibrium data. A 2-tier membrane module was examined for continuous study and reached 88.23 ± 0.60 % Cr<sup>6+</sup> removal. Statistical analysis was performed to confirm the significance of adsorption results. The likelihood of the desorption and regeneration of the treated biosorbent was investigated. The estimated cost per volume of ITE treated and unit of pollutant removal from ITE employing <em>Musa balbisiana</em> bract biosorbent is around $3.08/m<sup>3</sup> and $3.75/kg.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109565"},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.bej.2024.109568
Dong Li , Fanxu Zeng , Songwei Yang , Yuliang Zhu , Zhu Li , Huiping Zeng , Jie Zhang
The endogenous partial denitrification process (EPD) led by glycogen-accumulating organisms (GAOs) has become an alternative to NO2− supply in mainstream anaerobic-ammonia oxidation (anammox). However, low autotrophic nitrogen removal contribution is an urgent problem that needs to be solved in simultaneous endogenous partial denitrification/anammox (EPDA) system. This study used anaerobic duration optimization to enhance the autotrophic nitrogen removal capacity of EPDA system. The results showed that the EPDA activity increased from 0.67 to 1.09 mg N/g VSS·h after anaerobic time was extended to 120 min. This significantly improved the contribution of anammox to TIN removal, increasing from 23.5 % to 61.6 %. During the phase Ⅲ, Eff.TIN of 4.5±1.8 mg/L and NRE of 92.2 %±3.0 %. The enrichment of AnAOB (Candidatus Brocadia) and GAOs (Defluviicoccus) was responsible for maintaining the stability of the EPDA process. This study provides a feasible optimization strategy for improving the contribution of autotrophic nitrogen removal in the EPDA system.
{"title":"Simultaneous endogenous partial denitrification/anammox process for low-strength wastewater treatment: Process optimization, nitrogen removal and microbial dynamics","authors":"Dong Li , Fanxu Zeng , Songwei Yang , Yuliang Zhu , Zhu Li , Huiping Zeng , Jie Zhang","doi":"10.1016/j.bej.2024.109568","DOIUrl":"10.1016/j.bej.2024.109568","url":null,"abstract":"<div><div>The endogenous partial denitrification process (EPD) led by glycogen-accumulating organisms (GAOs) has become an alternative to NO<sub>2</sub><sup>−</sup> supply in mainstream anaerobic-ammonia oxidation (anammox). However, low autotrophic nitrogen removal contribution is an urgent problem that needs to be solved in simultaneous endogenous partial denitrification/anammox (EPDA) system. This study used anaerobic duration optimization to enhance the autotrophic nitrogen removal capacity of EPDA system. The results showed that the EPDA activity increased from 0.67 to 1.09 mg N/g VSS·h after anaerobic time was extended to 120 min. This significantly improved the contribution of anammox to TIN removal, increasing from 23.5 % to 61.6 %. During the phase Ⅲ, Eff.TIN of 4.5±1.8 mg/L and NRE of 92.2 %±3.0 %. The enrichment of AnAOB (<em>Candidatus Brocadia</em>) and GAOs (<em>Defluviicoccus</em>) was responsible for maintaining the stability of the EPDA process. This study provides a feasible optimization strategy for improving the contribution of autotrophic nitrogen removal in the EPDA system.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109568"},"PeriodicalIF":3.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.bej.2024.109569
Harika Chittella , Li Wan Yoon , Suganti Ramarad , Zee-Wei Lai
This study investigates the potential of deep eutectic solvents (DES) to enhance the biodegradation of natural rubber gloves (NRG) by Klebsiella aerogenes. Choline chloride and urea (ChCl: urea) was the DES employed to pre-treat NRG at various temperatures (80°C to 140°C) and durations (0.5 h to 5 h). Pre-treated rubber (p-NRG) underwent significant physical and chemical changes, enhancing its biodegradability. Analytical techniques such as dry weight analysis, bacteria cell concentration, FTIR TGA, and SEM were used to characterize the pre-treated and biodegraded samples. The results have demonstrated a significant weight loss and structural modifications in p-NRG, with the highest degradation of 43 % observed at 140°C for 5 hours of pretreatment before biodegradation. Meanwhile, merely 17 % of weight loss was observed when pre-treatment was not employed. DES pre-treatment notably enhanced NRG biodegradability, achieving a 50.6 % weight loss when biodegradation was conducted at pH 7 and 35°C. The highest cell concentration, 0.75 g/L, was recorded in the second week of the biodegradation process. Results have indicated that the maximum protein concentration of 697.3 µg/ml, along with the highest enzyme activities for laccase and manganese peroxidase (MnP) at 0.46 ± 0.05 IU and 0.30 ± 0.05 IU respectively, were recorded in the second week of the biodegradation process. DES pre-treatment has significantly improved the biodegradability of NRG by Klebsiella aerogenes, offering a promising and eco-friendly solution for rubber waste management.
{"title":"Biodegradation of deep eutectic solvent pre-treated natural rubber gloves by Klebsiella aerogenes: A sustainable approach to rubber waste management","authors":"Harika Chittella , Li Wan Yoon , Suganti Ramarad , Zee-Wei Lai","doi":"10.1016/j.bej.2024.109569","DOIUrl":"10.1016/j.bej.2024.109569","url":null,"abstract":"<div><div>This study investigates the potential of deep eutectic solvents (DES) to enhance the biodegradation of natural rubber gloves (NRG) by <em>Klebsiella aerogenes</em>. Choline chloride and urea (ChCl: urea) was the DES employed to pre-treat NRG at various temperatures (80°C to 140°C) and durations (0.5 h to 5 h). Pre-treated rubber (p-NRG) underwent significant physical and chemical changes, enhancing its biodegradability. Analytical techniques such as dry weight analysis, bacteria cell concentration, FTIR TGA, and SEM were used to characterize the pre-treated and biodegraded samples. The results have demonstrated a significant weight loss and structural modifications in p-NRG, with the highest degradation of 43 % observed at 140°C for 5 hours of pretreatment before biodegradation. Meanwhile, merely 17 % of weight loss was observed when pre-treatment was not employed. DES pre-treatment notably enhanced NRG biodegradability, achieving a 50.6 % weight loss when biodegradation was conducted at pH 7 and 35°C. The highest cell concentration, 0.75 g/L, was recorded in the second week of the biodegradation process. Results have indicated that the maximum protein concentration of 697.3 µg/ml, along with the highest enzyme activities for laccase and manganese peroxidase (MnP) at 0.46 ± 0.05 IU and 0.30 ± 0.05 IU respectively, were recorded in the second week of the biodegradation process. DES pre-treatment has significantly improved the biodegradability of NRG by <em>Klebsiella aerogenes</em>, offering a promising and eco-friendly solution for rubber waste management.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109569"},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.bej.2024.109567
Lingke Feng , Rong Pan , Ke Ning , Wen Sun , Yirong Chen , Yuanyuan Xie , Mingzhu Wang , Yan Li , Ling Yu
Cell motility is crucial in cancer metastasis, and understanding its regulation in tumor cells is vital for developing anti-metastatic therapies. Traditional 2D cell culture assays provide insights into cell migration but fail to replicate the complex 3D architecture of tissues in vivo. 3D cell culture models like tumor spheroids have been applied for cell migration tests. This study investigates the role of spheroid maturity in tumor cell motility, hypothesizing that spheroid maturity mirrors physiological conditions in solid tumors. Human prostate (DU 145), breast (MCF-7), and murine breast (EMT-6) cancer cells were cultured into spheroids of varying time (3, 7, and 11 days). The migration and invasion of these spheroids were analyzed, revealing that 11-day-old DU 145 spheroids demonstrated the greatest horizontal migration, correlating with RNA-seq data showing increased cell adhesion, cytoskeleton dynamics, and motility pathways. Confocal microscopy and single-cell multimode analyzer indicated higher reactive oxygen species (ROS) levels in mature spheroids, potentially activating motility pathways. Additionally, DU 145 spheroids were treated with chemotherapy reagent Doxorubicin (DOX), and the results showed that spheroids culture for 7 and 11 days exhibited greater resistance to DOX compared to spheroids cultured for 3 days. These findings highlighted the importance of considering spheroid maturity in cancer research and drug development, emphasizing the need for systematic analysis of spheroid growth conditions to ensure reproducible and reliable experimental settings.
{"title":"The impact of 3D tumor spheroid maturity on cell migration and invasion dynamics","authors":"Lingke Feng , Rong Pan , Ke Ning , Wen Sun , Yirong Chen , Yuanyuan Xie , Mingzhu Wang , Yan Li , Ling Yu","doi":"10.1016/j.bej.2024.109567","DOIUrl":"10.1016/j.bej.2024.109567","url":null,"abstract":"<div><div>Cell motility is crucial in cancer metastasis, and understanding its regulation in tumor cells is vital for developing anti-metastatic therapies. Traditional 2D cell culture assays provide insights into cell migration but fail to replicate the complex 3D architecture of tissues <em>in vivo</em>. 3D cell culture models like tumor spheroids have been applied for cell migration tests. This study investigates the role of spheroid maturity in tumor cell motility, hypothesizing that spheroid maturity mirrors physiological conditions in solid tumors. Human prostate (DU 145), breast (MCF-7), and murine breast (EMT-6) cancer cells were cultured into spheroids of varying time (3, 7, and 11 days). The migration and invasion of these spheroids were analyzed, revealing that 11-day-old DU 145 spheroids demonstrated the greatest horizontal migration, correlating with RNA-seq data showing increased cell adhesion, cytoskeleton dynamics, and motility pathways. Confocal microscopy and single-cell multimode analyzer indicated higher reactive oxygen species (ROS) levels in mature spheroids, potentially activating motility pathways. Additionally, DU 145 spheroids were treated with chemotherapy reagent Doxorubicin (DOX), and the results showed that spheroids culture for 7 and 11 days exhibited greater resistance to DOX compared to spheroids cultured for 3 days. These findings highlighted the importance of considering spheroid maturity in cancer research and drug development, emphasizing the need for systematic analysis of spheroid growth conditions to ensure reproducible and reliable experimental settings.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109567"},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent research has increasingly focused on the enhancement of anaerobic digestion (AD) through direct interspecies electron transfer (DIET) facilitated by conductive particles (CP). Although this approach can significantly accelerate the AD process, the contact efficiency between CPs and AD microbes is relatively low due to the flow of water in a dispersed condition, leading to possible DIET inefficiency. In this study, a unique approach involving the “co-immobilization” of anaerobic microbes and multi-walled carbon nanotubes (MWCNTs) as CP into a hydrogel matrix was developed to improve the AD process. The advantages of this method include improved contact efficiency between microbes and CPs for enhanced DIET, and increased CP retention within the reactor, thereby omitting the need to compensate for CP washout. The methane production rate for the co-immobilized hydrogel was 2.5-fold and 1.9-fold faster than that of the control (dispersed sludge) and conventional DIET (dispersed sludge with MWCNT addition), respectively. Microbial analysis indicated the enrichment of functional microbes such as Anaerolineacea, Sedimentibacteraceae, Rhodocyclaceae, and Methanothrichaceae, which could be involved in the DIET under co-immobilized conditions. These results demonstrate the potential of the proposed method for realizing an advanced continuous AD process through improved DIET.
{"title":"Advanced anaerobic digestion by co-immobilization of anaerobic microbes and conductive particles in hydrogel for enhanced methane production performance","authors":"Stella Chan , Kento Nishi , Mitsuhiko Koyama , Tatsushi Matsuyama , Junichi Ida","doi":"10.1016/j.bej.2024.109563","DOIUrl":"10.1016/j.bej.2024.109563","url":null,"abstract":"<div><div>Recent research has increasingly focused on the enhancement of anaerobic digestion (AD) through direct interspecies electron transfer (DIET) facilitated by conductive particles (CP). Although this approach can significantly accelerate the AD process, the contact efficiency between CPs and AD microbes is relatively low due to the flow of water in a dispersed condition, leading to possible DIET inefficiency. In this study, a unique approach involving the “co-immobilization” of anaerobic microbes and multi-walled carbon nanotubes (MWCNTs) as CP into a hydrogel matrix was developed to improve the AD process. The advantages of this method include improved contact efficiency between microbes and CPs for enhanced DIET, and increased CP retention within the reactor, thereby omitting the need to compensate for CP washout. The methane production rate for the co-immobilized hydrogel was 2.5-fold and 1.9-fold faster than that of the control (dispersed sludge) and conventional DIET (dispersed sludge with MWCNT addition), respectively. Microbial analysis indicated the enrichment of functional microbes such as <em>Anaerolineacea</em>, <em>Sedimentibacteraceae, Rhodocyclaceae,</em> and <em>Methanothrichaceae,</em> which could be involved in the DIET under co-immobilized conditions. These results demonstrate the potential of the proposed method for realizing an advanced continuous AD process through improved DIET.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109563"},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.bej.2024.109558
Yulun Wu , Zhao Li , Xin Wang , Zaiyin Yu , Weiguang Mao , Cai Cheng , Guanmou Che , Jun Cheng
In order to address the risk of explosion due to CH4 from exhaust gas produced during biogas upgrading in closed carbon fixation systems employing photosynthetic microalgae, an off-site bicarbonation absorber system was developed to promote microalgal CO2 fixation under atmospheric pressure. The abundant CO2 in the biogas upgrading exhaust gas (≥90 vol% CO2, ≤10 vol% CH4) reacted with a Na2CO3 solution in the off-site bicarbonation absorber to produce NaHCO3, which was used as carbon source for microalgal growth in enclosed column photobioreactors. After the reaction, CH4 was discharged outside the bicarbonation absorber because it did not react with the Na2CO3 solution and was extremely difficult to dissolve in water, thereby avoiding the explosion risk due to accumulated CH4 in the enclosed column photobioreactors. The experimental results showed that the Spirulina growth rate first increased 1.7 times, peaking at 0.6 g/L/d, and then decreased when the bicarbonation reaction time (optimal 50 min), absorber diameter (optimal 10 cm), initial Na2CO3 concentration (optimal 173 mM), and exhaust gas aeration rate (optimal 100 sccm) increased. The optimal molar ratio of NaHCO3 to total inorganic carbon in the bicarbonation absorber solution reached 79 %. The sufficient HCO3- supply and suitable pH of the microalgal solution improved the synthesis of photosynthetic pigments in the microalgal cells and enhanced their photochemical efficiency and carbon sequestration rates.
{"title":"Developing an off-site bicarbonation absorber system to promote microalgal fixation of CO2 in exhaust gas from biogas upgrading","authors":"Yulun Wu , Zhao Li , Xin Wang , Zaiyin Yu , Weiguang Mao , Cai Cheng , Guanmou Che , Jun Cheng","doi":"10.1016/j.bej.2024.109558","DOIUrl":"10.1016/j.bej.2024.109558","url":null,"abstract":"<div><div>In order to address the risk of explosion due to CH<sub>4</sub> from exhaust gas produced during biogas upgrading in closed carbon fixation systems employing photosynthetic microalgae, an off-site bicarbonation absorber system was developed to promote microalgal CO<sub>2</sub> fixation under atmospheric pressure. The abundant CO<sub>2</sub> in the biogas upgrading exhaust gas (≥90 vol% CO<sub>2</sub>, ≤10 vol% CH<sub>4</sub>) reacted with a Na<sub>2</sub>CO<sub>3</sub> solution in the off-site bicarbonation absorber to produce NaHCO<sub>3</sub>, which was used as carbon source for microalgal growth in enclosed column photobioreactors. After the reaction, CH<sub>4</sub> was discharged outside the bicarbonation absorber because it did not react with the Na<sub>2</sub>CO<sub>3</sub> solution and was extremely difficult to dissolve in water, thereby avoiding the explosion risk due to accumulated CH<sub>4</sub> in the enclosed column photobioreactors. The experimental results showed that the <em>Spirulina</em> growth rate first increased 1.7 times, peaking at 0.6 g/L/d, and then decreased when the bicarbonation reaction time (optimal 50 min), absorber diameter (optimal 10 cm), initial Na<sub>2</sub>CO<sub>3</sub> concentration (optimal 173 mM), and exhaust gas aeration rate (optimal 100 sccm) increased. The optimal molar ratio of NaHCO<sub>3</sub> to total inorganic carbon in the bicarbonation absorber solution reached 79 %. The sufficient HCO<sub>3</sub><sup>-</sup> supply and suitable pH of the microalgal solution improved the synthesis of photosynthetic pigments in the microalgal cells and enhanced their photochemical efficiency and carbon sequestration rates.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109558"},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.bej.2024.109561
Gaoyuang Shang , Jinpeng Yu , Kai Cui , Hong Zhang , Yuhan Guo , Menglong Zhao , Chengjun Wang , Kun Guo
The integration of microbial electrolysis cells (MEC) with anaerobic digestion (AD) shows great promise for enhancing methane production from high-COD wastewater. However, an efficient MEC-AD reactor design remains elusive. Here, a novel tubular single-chamber MEC-AD reactor was constructed to treat potato starch wastewater (COD over 20,000 mg/L). The concentric and compact design of the stainless-steel cathode and anode reduced internal resistance, resulting in enhanced methane production. Applying −0.2 V vs. Ag/AgCl to the anode increased methane production by 1.73 times compared to the open circuit and halved hydraulic retention time. Moreover, the reactor achieved an average methane content of 82.57 %, which was 23.89 % higher than the open circuit. The reactor showed a total COD removal of 92.2 %, which was 24 % higher than the open circuit. Additionally, base consumption to maintain pH was reduced to one-sixth of that in conventional AD, preventing volatile fatty acid accumulation. Microbial analysis showed Geobacter (63.4 %) and Methanobacterium (96.8 %) were highly enriched in the anode and cathode biofilms, respectively. The proportion of fermentative bacteria also increased in the MEC-AD system. These results demonstrate the effectiveness of the tubular single-chamber MEC-AD reactor in enhancing methane production from potato starch wastewater, with strong potential for scale-up applications.
{"title":"A novel tubular single-chamber microbial electrolysis cell for efficient methane production from industrial potato starch wastewater","authors":"Gaoyuang Shang , Jinpeng Yu , Kai Cui , Hong Zhang , Yuhan Guo , Menglong Zhao , Chengjun Wang , Kun Guo","doi":"10.1016/j.bej.2024.109561","DOIUrl":"10.1016/j.bej.2024.109561","url":null,"abstract":"<div><div>The integration of microbial electrolysis cells (MEC) with anaerobic digestion (AD) shows great promise for enhancing methane production from high-COD wastewater. However, an efficient MEC-AD reactor design remains elusive. Here, a novel tubular single-chamber MEC-AD reactor was constructed to treat potato starch wastewater (COD over 20,000 mg/L). The concentric and compact design of the stainless-steel cathode and anode reduced internal resistance, resulting in enhanced methane production. Applying −0.2 V vs. Ag/AgCl to the anode increased methane production by 1.73 times compared to the open circuit and halved hydraulic retention time. Moreover, the reactor achieved an average methane content of 82.57 %, which was 23.89 % higher than the open circuit. The reactor showed a total COD removal of 92.2 %, which was 24 % higher than the open circuit. Additionally, base consumption to maintain pH was reduced to one-sixth of that in conventional AD, preventing volatile fatty acid accumulation. Microbial analysis showed <em>Geobacter</em> (63.4 %) and <em>Methanobacterium</em> (96.8 %) were highly enriched in the anode and cathode biofilms, respectively. The proportion of fermentative bacteria also increased in the MEC-AD system. These results demonstrate the effectiveness of the tubular single-chamber MEC-AD reactor in enhancing methane production from potato starch wastewater, with strong potential for scale-up applications.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109561"},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.bej.2024.109560
Jingyu Lv, Lei Song, Yang Guo
The high-water content of sludge in wastewater plant will influence the transportation and utilization. In this study, a new method for improving sludge dewatering by pyrite (FeS2) activated persulfate (PMS) combined with layered double hydroxide (LDH) was proposed. After conditioning, the water content (Wc) and specific resistance (SRF) of sludge decreased from 97.12 % and 1.83 × 1013 m/kg to 71.39 % and 1.84 × 1012 m/kg, severally. SEM and particle size analysis showed the system could destroy sludge cells effectively.The mechanism analysis of protein and polysaccharide content, 3D-EEM, FTIR, XPS results showed that FeS2/PMS-LDH combined system was beneficial to break down the sludge extracellular polymer (EPS), transform and accumulate the organic matter into the EPS outer layer, release the bound water. Both free radical and non-free radical play a role in oxidation, and they cooperate to break EPS. The effective phosphate adsorption performance of the biochar adsorbent prepared from dehydrated sludge cake was also investigated. The adsorption behavior of phosphate on biochar from dewatered sludge cake belongs to uniform chemical monolayer adsorption. When T = 298k, PH = 5, the maximum adsorption capacity is 20.255 mg/g. The introduction of LDH is helpful to enhance the sludge dewatering and the adsorption of phosphate. To sum up, the combined conditioning method considers the effectiveness of sludge dewatering and the feasibility of sludge cake disposal and utilization.
{"title":"Improvement of sludge dewatering performance by persulfate advanced oxidation combined with LDH: Synergistic effect of free radical and non-free radical and reuse of deep-dewatered sludge cake","authors":"Jingyu Lv, Lei Song, Yang Guo","doi":"10.1016/j.bej.2024.109560","DOIUrl":"10.1016/j.bej.2024.109560","url":null,"abstract":"<div><div>The high-water content of sludge in wastewater plant will influence the transportation and utilization. In this study, a new method for improving sludge dewatering by pyrite (FeS<sub>2</sub>) activated persulfate (PMS) combined with layered double hydroxide (LDH) was proposed. After conditioning, the water content (Wc) and specific resistance (SRF) of sludge decreased from 97.12 % and 1.83 × 10<sup>13</sup> m/kg to 71.39 % and 1.84 × 10<sup>12</sup> m/kg, severally. SEM and particle size analysis showed the system could destroy sludge cells effectively.The mechanism analysis of protein and polysaccharide content, 3D-EEM, FTIR, XPS results showed that FeS<sub>2</sub>/PMS-LDH combined system was beneficial to break down the sludge extracellular polymer (EPS), transform and accumulate the organic matter into the EPS outer layer, release the bound water. Both free radical and non-free radical play a role in oxidation, and they cooperate to break EPS. The effective phosphate adsorption performance of the biochar adsorbent prepared from dehydrated sludge cake was also investigated. The adsorption behavior of phosphate on biochar from dewatered sludge cake belongs to uniform chemical monolayer adsorption. When T = 298k, PH = 5, the maximum adsorption capacity is 20.255 mg/g. The introduction of LDH is helpful to enhance the sludge dewatering and the adsorption of phosphate. To sum up, the combined conditioning method considers the effectiveness of sludge dewatering and the feasibility of sludge cake disposal and utilization.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109560"},"PeriodicalIF":3.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.bej.2024.109555
Do Thi Cam Van , Dang Thi Mai , Bui Thi Thu Uyen , Nguyen Thi Phuong Dung , Lu Thi Thu Ha , Nguyen Thi Lieu , Dang Nhat Minh , Tran Dang Thuan , Le Truong Giang
Piggery wastewater (PW) contains high density of organic carbon (COD), nitrogen (NH4+-N and TN) and phosphorous (TP), which are essential nutrients for microalgae growth. This work was attempted to use a newly isolate Chlorella sorokiniana Cbeo for recovery these compounds into its biomass via mixotrophic cultivation. Critical factors including level of ammonia, C/N ratio, pH, light intensity, sterilized/unsterilized media, and indoor/outdoor cultivations affecting biomass production and nutrients removal efficiencies were investigated. Data revealed that C. sorokiniana Cbeo achieved the optimal growth in the unsterilized medium at NH4+-N concentration, C/N ratio, initial pH, and light intensity of 250 mg/L, 10/1, 7, and 150 μmol/m2/s, respectively. Under the optimal conditions, dry cell weight (DCW) reached the maximal level of 4.30 g/L, which was slightly higher than 4.14 g/L determined for the sterilized medium. In 30 L-scale photobioreactor, C. sorokiniana Cbeo grown under indoor and outdoor achieved DCW of 3.61 and 3.19 g/L, respectively. COD, NH4+-N, TN, TP removal efficiencies for both conditions were determined as 91.9–96.7, 96.6–99.7, 96.2–96.4, and 98.2–100 %, respectively. The C. sorokiniana Cbeo biomass contained 14–27 % lipid, 25–32 % carbohydrate, 44–48 % protein, and 0.25–0.97 % lutein. Interestingly, α-Linolenic acid (C18:3n3) was 19.84 –27.0 % of the total fatty acids. C. sorokiniana Cbeo is the promising algal strain for development of a sustainable biorefinery of PW.
{"title":"Sustainable remediation of piggery wastewater using a novel mixotrophic Chlorella sorokiniana Cbeo for high value biomass production","authors":"Do Thi Cam Van , Dang Thi Mai , Bui Thi Thu Uyen , Nguyen Thi Phuong Dung , Lu Thi Thu Ha , Nguyen Thi Lieu , Dang Nhat Minh , Tran Dang Thuan , Le Truong Giang","doi":"10.1016/j.bej.2024.109555","DOIUrl":"10.1016/j.bej.2024.109555","url":null,"abstract":"<div><div>Piggery wastewater (PW) contains high density of organic carbon (COD), nitrogen (NH<sub>4</sub><sup>+</sup>-N and TN) and phosphorous (TP), which are essential nutrients for microalgae growth. This work was attempted to use a newly isolate <em>Chlorella sorokiniana C</em><sub><em>beo</em></sub> for recovery these compounds into its biomass via mixotrophic cultivation. Critical factors including level of ammonia, C/N ratio, pH, light intensity, sterilized/unsterilized media, and indoor/outdoor cultivations affecting biomass production and nutrients removal efficiencies were investigated. Data revealed that <em>C</em>. <em>sorokiniana C</em><sub><em>beo</em></sub> achieved the optimal growth in the unsterilized medium at NH<sub>4</sub><sup>+</sup>-N concentration, C/N ratio, initial pH, and light intensity of 250 mg/L, 10/1, 7, and 150 μmol/m<sup>2</sup>/s, respectively. Under the optimal conditions, dry cell weight (DCW) reached the maximal level of 4.30 g/L, which was slightly higher than 4.14 g/L determined for the sterilized medium. In 30 L-scale photobioreactor, <em>C. sorokiniana C</em><sub><em>beo</em></sub> grown under indoor and outdoor achieved DCW of 3.61 and 3.19 g/L, respectively. COD, NH<sub>4</sub><sup>+</sup>-N, TN, TP removal efficiencies for both conditions were determined as 91.9–96.7, 96.6–99.7, 96.2–96.4, and 98.2–100 %, respectively. The <em>C. sorokiniana C</em><sub><em>beo</em></sub> biomass contained 14–27 % lipid, 25–32 % carbohydrate, 44–48 % protein, and 0.25–0.97 % lutein. Interestingly, α-Linolenic acid (C18:3n3) was 19.84 –27.0 % of the total fatty acids. <em>C. sorokiniana C</em><sub><em>beo</em></sub> is the promising algal strain for development of a sustainable biorefinery of PW.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109555"},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.bej.2024.109556
Patrick Romann , Dan Trunov , Ondřej Šrom , Harry L.T. Lee , Kevin S. Lee , Ryan Trocki , David Ephraim , Jean-Marc Bielser , Jonathan Souquet , Miroslav Šoóš , Thomas K. Villiger
Perfusion processes have experienced increased popularity in recent years due to their ability to sustain high cell densities and productivities in biopharmaceutical production, offering advantages over traditional batch and fed-batch cultivation methods. The Mobius® Breez microbioreactor significantly reduces experimental effort by downsizing the classical volume of perfusion bioreactors to the mL range and thus represents a valuable tool for process development. However, miniaturization has raised questions regarding comparability with traditional bioreactors in terms of the physical environment, such as hydrodynamic shear stress. Therefore, the maximum hydrodynamic shear stress, cultivation performance, and membrane-wall contact were evaluated to elucidate the system's behavior. Findings reveal two distinct operational conditions, distinguished by the presence or absence of membrane-wall contact, resulting in varying levels of hydrodynamic stress. Conditions lacking membrane contact demonstrate stress levels within safe operating thresholds for CHO cells, while those involving membrane contact exceed these thresholds, potentially leading to cell damage. Through the identification of critical frequencies of membrane motion, this study offers insights for optimizing microbioreactor operation and enhancing overall bioprocess efficiency.
灌流工艺近年来越来越受欢迎,因为它能够在生物制药生产中维持较高的细胞密度和生产率,与传统的间歇式和喂料式培养方法相比更具优势。Mobius® Breez 微型生物反应器将传统灌流生物反应器的体积缩小到毫升范围,大大减少了实验工作量,因此是工艺开发的重要工具。然而,微型化在物理环境(如流体动力剪切应力)方面引起了与传统生物反应器可比性的问题。因此,我们对最大流体动力剪切应力、培养性能和膜壁接触进行了评估,以阐明该系统的行为。研究结果显示了两种不同的操作条件,以膜壁接触的有无来区分,从而产生不同程度的流体动力应力。没有膜接触的情况下,应力水平在 CHO 细胞的安全操作阈值范围内,而有膜接触的情况下,应力水平超过了这些阈值,有可能导致细胞损伤。通过确定膜运动的临界频率,这项研究为优化微生物反应器的运行和提高整体生物处理效率提供了启示。
{"title":"Experimental determination of maximum shear stress in Mobius® Breez perfusion microbioreactors and comparative analysis with stirred tank bioreactors","authors":"Patrick Romann , Dan Trunov , Ondřej Šrom , Harry L.T. Lee , Kevin S. Lee , Ryan Trocki , David Ephraim , Jean-Marc Bielser , Jonathan Souquet , Miroslav Šoóš , Thomas K. Villiger","doi":"10.1016/j.bej.2024.109556","DOIUrl":"10.1016/j.bej.2024.109556","url":null,"abstract":"<div><div>Perfusion processes have experienced increased popularity in recent years due to their ability to sustain high cell densities and productivities in biopharmaceutical production, offering advantages over traditional batch and fed-batch cultivation methods. The Mobius® Breez microbioreactor significantly reduces experimental effort by downsizing the classical volume of perfusion bioreactors to the mL range and thus represents a valuable tool for process development. However, miniaturization has raised questions regarding comparability with traditional bioreactors in terms of the physical environment, such as hydrodynamic shear stress. Therefore, the maximum hydrodynamic shear stress, cultivation performance, and membrane-wall contact were evaluated to elucidate the system's behavior. Findings reveal two distinct operational conditions, distinguished by the presence or absence of membrane-wall contact, resulting in varying levels of hydrodynamic stress. Conditions lacking membrane contact demonstrate stress levels within safe operating thresholds for CHO cells, while those involving membrane contact exceed these thresholds, potentially leading to cell damage. Through the identification of critical frequencies of membrane motion, this study offers insights for optimizing microbioreactor operation and enhancing overall bioprocess efficiency.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109556"},"PeriodicalIF":3.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}