Pub Date : 2023-08-01Epub Date: 2023-11-20DOI: 10.1080/08927014.2023.2276926
Oswaldo Pablo Martínez-Rodríguez, Rodolfo García-Contreras, Rodrigo Aguayo-Ortiz, Mario Figueroa
Methicillin-resistant Staphylococcus aureus (MRSA) increases its antibiotic resistance by forming biofilms. Natural products (NP) or specialized metabolites have demonstrated their ability to decrease the virulence and pathogenesis of MRSA infections by inhibiting biofilm formation. The present study evaluated the antimicrobial and antibiofilm potential against MRSA of a small library of fungal NP isolated from Mexican biodiversity. The most potent antibacterial activity was observed for myrotecisin B, epiequisetin, equisetin, stachybotrolide acetate, monorden A, zearalenone, fuscin, and fusarubin. On the other hand, epifiscalin C, fiscalin C, dimethylglyotoxin, aspernolide B, and butyrolactones I and IV inhibited the biofilm formation without decreasing bacterial growth. To determine the putative mechanism of action of these compounds, docking analyses were performed against SarA and AgrA proteins, targets known to regulate biofilm production in MRSA. Overall, the results demonstrate that fungal NP may act as potential antibiofilm agents for treating MRSA infections.
{"title":"Antimicrobial and antibiofilm activity of fungal metabolites on methicillin-resistant <i>Staphylococcus aureus</i> (ATCC 43300) mediated by SarA and AgrA.","authors":"Oswaldo Pablo Martínez-Rodríguez, Rodolfo García-Contreras, Rodrigo Aguayo-Ortiz, Mario Figueroa","doi":"10.1080/08927014.2023.2276926","DOIUrl":"10.1080/08927014.2023.2276926","url":null,"abstract":"<p><p>Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) increases its antibiotic resistance by forming biofilms. Natural products (NP) or specialized metabolites have demonstrated their ability to decrease the virulence and pathogenesis of MRSA infections by inhibiting biofilm formation. The present study evaluated the antimicrobial and antibiofilm potential against MRSA of a small library of fungal NP isolated from Mexican biodiversity. The most potent antibacterial activity was observed for myrotecisin B, epiequisetin, equisetin, stachybotrolide acetate, monorden A, zearalenone, fuscin, and fusarubin. On the other hand, epifiscalin C, fiscalin C, dimethylglyotoxin, aspernolide B, and butyrolactones I and IV inhibited the biofilm formation without decreasing bacterial growth. To determine the putative mechanism of action of these compounds, docking analyses were performed against SarA and AgrA proteins, targets known to regulate biofilm production in MRSA. Overall, the results demonstrate that fungal NP may act as potential antibiofilm agents for treating MRSA infections.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"830-837"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-10-09DOI: 10.1080/08927014.2023.2254704
I M Oliveira, I B Gomes, A Plácido, L C Simões, P Eaton, M Simões
The activity of two chlorinated isocyanurates (NaDCC and TCCA) and peroxymonosulphate (OXONE) was evaluated against biofilms of Stenotrophomonas maltophilia, an emerging pathogen isolated from drinking water (DW), and for the prevention of biofilm regrowth. After disinfection of pre-formed 48 h-old biofilms, the culturability was reduced up to 7 log, with OXONE, TCCA, and NaDCC showing more efficiency than free chlorine against biofilms formed on stainless steel. The regrowth of biofilms previously exposed to OXONE was reduced by 5 and 4 log CFU cm-2 in comparison to the unexposed biofilms and biofilms exposed to free chlorine, respectively. Rheometry analysis showed that biofilms presented properties of viscoelastic solid materials, regardless of the treatment. OXONE reduced the cohesiveness of the biofilm, given the significant decrease in the complex shear modulus (G*). AFM analysis revealed that biofilms had a fractured appearance and smaller bacterial aggregates dispersed throughout the surface after OXONE exposure than the control sample. In general, OXONE has been demonstrated to be a promising disinfectant to control DW biofilms, with a higher activity than chlorine. The results also show the impact of the biofilm mechanical properties on the efficacy of the disinfectants in biofilm control.
{"title":"The impact of potassium peroxymonosulphate and chlorinated cyanurates on biofilms of <i>Stenotrophomonas maltophilia</i>: effects on biofilm control, regrowth, and mechanical properties.","authors":"I M Oliveira, I B Gomes, A Plácido, L C Simões, P Eaton, M Simões","doi":"10.1080/08927014.2023.2254704","DOIUrl":"10.1080/08927014.2023.2254704","url":null,"abstract":"<p><p>The activity of two chlorinated isocyanurates (NaDCC and TCCA) and peroxymonosulphate (OXONE) was evaluated against biofilms of <i>Stenotrophomonas maltophilia</i>, an emerging pathogen isolated from drinking water (DW), and for the prevention of biofilm regrowth. After disinfection of pre-formed 48 h-old biofilms, the culturability was reduced up to 7 log, with OXONE, TCCA, and NaDCC showing more efficiency than free chlorine against biofilms formed on stainless steel. The regrowth of biofilms previously exposed to OXONE was reduced by 5 and 4 log CFU cm<sup>-2</sup> in comparison to the unexposed biofilms and biofilms exposed to free chlorine, respectively. Rheometry analysis showed that biofilms presented properties of viscoelastic solid materials, regardless of the treatment. OXONE reduced the cohesiveness of the biofilm, given the significant decrease in the complex shear modulus (G*). AFM analysis revealed that biofilms had a fractured appearance and smaller bacterial aggregates dispersed throughout the surface after OXONE exposure than the control sample. In general, OXONE has been demonstrated to be a promising disinfectant to control DW biofilms, with a higher activity than chlorine. The results also show the impact of the biofilm mechanical properties on the efficacy of the disinfectants in biofilm control.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 7","pages":"691-705"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41114925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-11-20DOI: 10.1080/08927014.2023.2279997
Lidita Khandeparker, Dattesh V Desai, Ravi Teja Mittireddi, Emila Panda, Niyati Hede, Kaushal Mapari
In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.
{"title":"Efficacy of amorphous TiO<sub>x-</sub>coated surfaces against micro- and macrofouling through laboratory microcosms and field studies.","authors":"Lidita Khandeparker, Dattesh V Desai, Ravi Teja Mittireddi, Emila Panda, Niyati Hede, Kaushal Mapari","doi":"10.1080/08927014.2023.2279997","DOIUrl":"10.1080/08927014.2023.2279997","url":null,"abstract":"<p><p>In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (<i>Navicula</i> sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the <i>Navicula</i> sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"853-866"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107590128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-11-20DOI: 10.1080/08927014.2023.2279992
Nilton A S Neto, Tawanny K B Aguiar, Rayara J P Costa, Felipe P Mesquita, Lais L B de Oliveira, Maria E A de Moraes, Raquel C Montenegro, Rômulo F Carneiro, Celso S Nagano, Cleverson D T Freitas, Pedro F N Souza
Staphylococcus aureus forms biofilms, a structure that protects bacterial cells, conferring more resistance to difficult treatment. Synthetic peptides surge as an alternative to overcome the biofilm of multidrug-resistant pathogens. Mo-CBP3-PepI, when combined with Ciprofloxacin, reduced preformed S. aureus biofilm by 50% at low concentrations (0.2 and 6.2 μg. mL-1, respectively). The goal of this study was to evaluate the proteomic profile of biofilms after treatment with the Mo-CBP3-PepI combined with ciprofloxacin. Here, proteomic analysis confirmed with more depth previously described mechanisms and revealed changes in the accumulation of proteins related to DNA and protein metabolism, cell wall biosynthesis, redox metabolism, quorum sensing, and biofilm formation. Some proteins related to DNA and protein metabolism were reduced, while other proteins, like redox system proteins, disappeared in Ciprofloxacin+Mo-CBP3-PepI treatment. Our results indicated a synergistic effect of these two molecules with several mechanisms against S. aureus biofilm and opened new doors for combined treatments with other drugs.
{"title":"United we stand, divided we fall: in-depth proteomic evaluation of the synergistic effect of <i>Mo</i>-CBP<sub>3</sub>-PepI and Ciprofloxacin against <i>Staphylococcus aureus</i> biofilms.","authors":"Nilton A S Neto, Tawanny K B Aguiar, Rayara J P Costa, Felipe P Mesquita, Lais L B de Oliveira, Maria E A de Moraes, Raquel C Montenegro, Rômulo F Carneiro, Celso S Nagano, Cleverson D T Freitas, Pedro F N Souza","doi":"10.1080/08927014.2023.2279992","DOIUrl":"10.1080/08927014.2023.2279992","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> forms biofilms, a structure that protects bacterial cells, conferring more resistance to difficult treatment. Synthetic peptides surge as an alternative to overcome the biofilm of multidrug-resistant pathogens. <i>Mo</i>-CBP<sub>3</sub>-PepI, when combined with Ciprofloxacin, reduced preformed <i>S. aureus</i> biofilm by 50% at low concentrations (0.2 and 6.2 μg. mL<sup>-1</sup>, respectively). The goal of this study was to evaluate the proteomic profile of biofilms after treatment with the <i>Mo</i>-CBP<sub>3</sub>-PepI combined with ciprofloxacin. Here, proteomic analysis confirmed with more depth previously described mechanisms and revealed changes in the accumulation of proteins related to DNA and protein metabolism, cell wall biosynthesis, redox metabolism, <i>quorum</i> sensing, and biofilm formation. Some proteins related to DNA and protein metabolism were reduced, while other proteins, like redox system proteins, disappeared in Ciprofloxacin+<i>Mo</i>-CBP<sub>3</sub>-PepI treatment. Our results indicated a synergistic effect of these two molecules with several mechanisms against <i>S. aureus</i> biofilm and opened new doors for combined treatments with other drugs.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"838-852"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89716834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-09-12DOI: 10.1080/08927014.2023.2256674
Ana Raquel Colares de Andrade, Mônica Dantas Sampaio Rezende, Fernando Victor Monteiro Portela, Livia Maria Galdino Pereira, Bruno Nascimento da Silva, Reginaldo Gonçalves de Lima-Neto, Marcos Fábio Gadelha Rocha, José Júlio Costa Sidrim, Débora Souza Collares Maia Castelo-Branco, Rossana de Aguiar Cordeiro
The present study aimed to: (1) evaluate the influence of the steroid hormones (SH) on biofilm development; (2) investigate the formation of persister cells (PC) in biofilms; and (3) investigate the influence of SH on PC formation. Biofilms were derived from vulvovaginal candidiasis (VVC) samples and evaluated by three models: microcosm biofilms grown in Vaginal Fluid Simulator Medium (MiB-VFSM); monospecies biofilms grown in VFSM (MoB-VFSM) and RPMI media (MoB-RPMI). SH altered cell counting and biomass of biofilms grown in VSFM; MoB-RPMI were negatively affected by SH. SH stimulated the formation of PC in MiB-VFSM but not MoB-VFSM; MoB-RPMI showed a lower number of PC in the presence of SH. The results showed that SH altered the dynamics of biofilm formation and development, depending on the study model. The data suggest the influence of hormones on the physiology of Candida biofilms and reinforce the importance of PC in the pathogenesis of VVC.
{"title":"β-Estradiol and progesterone enhance biofilm development and persister cell formation in monospecies and microcosms biofilms derived from vulvovaginal candidiasis.","authors":"Ana Raquel Colares de Andrade, Mônica Dantas Sampaio Rezende, Fernando Victor Monteiro Portela, Livia Maria Galdino Pereira, Bruno Nascimento da Silva, Reginaldo Gonçalves de Lima-Neto, Marcos Fábio Gadelha Rocha, José Júlio Costa Sidrim, Débora Souza Collares Maia Castelo-Branco, Rossana de Aguiar Cordeiro","doi":"10.1080/08927014.2023.2256674","DOIUrl":"10.1080/08927014.2023.2256674","url":null,"abstract":"<p><p>The present study aimed to: (1) evaluate the influence of the steroid hormones (SH) on biofilm development; (2) investigate the formation of persister cells (PC) in biofilms; and (3) investigate the influence of SH on PC formation. Biofilms were derived from vulvovaginal candidiasis (VVC) samples and evaluated by three models: microcosm biofilms grown in Vaginal Fluid Simulator Medium (MiB-VFSM); monospecies biofilms grown in VFSM (MoB-VFSM) and RPMI media (MoB-RPMI). SH altered cell counting and biomass of biofilms grown in VSFM; MoB-RPMI were negatively affected by SH. SH stimulated the formation of PC in MiB-VFSM but not MoB-VFSM; MoB-RPMI showed a lower number of PC in the presence of SH. The results showed that SH altered the dynamics of biofilm formation and development, depending on the study model. The data suggest the influence of hormones on the physiology of <i>Candida</i> biofilms and reinforce the importance of PC in the pathogenesis of VVC.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"719-729"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10214413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aeromonas hydrophila is an opportunistic pathogen that can cause a number of infectious diseases in fish and is widely distributed in aquatic environments. Antibiotics are the main approach against A. hydrophila infections, while the emergence of resistant bacteria limits the application of antibiotics. Here, quorum-sensing (QS) was defined as the target and the inhibitory effects of neem oil against QS of A. hydrophila was studied. The results showed that neem oil could dose-dependently reduce aerolysin, protease, lipase, acyl-homoserine lactones (AHLs), biofilm and swarming motility at sub-inhibitory concentrations. Results of real-time PCR demonstrated that neem oil could down-regulate the transcription of aerA, ahyI and ahyR. Moreover, neem oil showed significant protections to A549 cells and a fish infection model. Taken together, these results indicated that neem oil could be chosen as a promising candidate for the treatment of A. hydrophila infections.
{"title":"Neem oil against <i>Aeromonas hydrophila</i> infection by disrupting quorum sensing and biofilm formation.","authors":"Shengping Li, Qiuhong Yang, Bo Cheng, Yongtao Liu, Shun Zhou, Xiaohui Ai, Jing Dong","doi":"10.1080/08927014.2023.2279998","DOIUrl":"10.1080/08927014.2023.2279998","url":null,"abstract":"<p><p><i>Aeromonas hydrophila</i> is an opportunistic pathogen that can cause a number of infectious diseases in fish and is widely distributed in aquatic environments. Antibiotics are the main approach against <i>A. hydrophila</i> infections, while the emergence of resistant bacteria limits the application of antibiotics. Here, quorum-sensing (QS) was defined as the target and the inhibitory effects of neem oil against QS of <i>A. hydrophila</i> was studied. The results showed that neem oil could dose-dependently reduce aerolysin, protease, lipase, acyl-homoserine lactones (AHLs), biofilm and swarming motility at sub-inhibitory concentrations. Results of real-time PCR demonstrated that neem oil could down-regulate the transcription of <i>aerA</i>, <i>ahyI</i> and <i>ahyR</i>. Moreover, neem oil showed significant protections to A549 cells and a fish infection model. Taken together, these results indicated that neem oil could be chosen as a promising candidate for the treatment of <i>A. hydrophila</i> infections.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"867-878"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134648412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01Epub Date: 2023-11-20DOI: 10.1080/08927014.2023.2269551
Widad Bouguenoun, Fethi Benbelaid, Salsabil Mebarki, Imane Bouguenoun, Sara Boulmaiz, Abdelmonaim Khadir, Mohammed Yassine Benziane, Mourad Bendahou, Alain Muselli
Biofilms are the primary source of contamination linked to nosocomial infections by promoting bacterial resistance to antimicrobial agents, including disinfectants. Using essential oils, this study aims to inhibit and eradicate the biofilm of enterobacteria and staphylococci responsible for nosocomial infections at Guelma Hospital, northeastern Algeria. Thymbra capitata, Thymus pallescens and Artemesia herba-alba essential oils were evaluated against clinical strains of Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. The antimicrobial activity of the essential oils under consideration was assessed using an agar disc diffusion assay and the determination of minimum inhibitory concentrations (MICs). In addition, the crystal violet method and scanning electron microscopy (SEM) evaluated biofilm inhibition and eradication by those antimicrobial agents. The results indicate that T. pallescens essential oil was the most effective antimicrobial agent against pathogenic bacteria, with large zones of inhibition (up to 50 mm against S. aureus), low MICs (0.16 to 0.63 mg/mL), and powerful biofilm eradication up to 0.16 mg/mL in both 24 h and 60-min exposure times. Thus, Algerian thyme and oregano could be used in various ways to combat the biofilm that causes nosocomial infection in local hospitals.
{"title":"Selected antimicrobial essential oils to eradicate multi-drug resistant bacterial biofilms involved in human nosocomial infections.","authors":"Widad Bouguenoun, Fethi Benbelaid, Salsabil Mebarki, Imane Bouguenoun, Sara Boulmaiz, Abdelmonaim Khadir, Mohammed Yassine Benziane, Mourad Bendahou, Alain Muselli","doi":"10.1080/08927014.2023.2269551","DOIUrl":"10.1080/08927014.2023.2269551","url":null,"abstract":"<p><p>Biofilms are the primary source of contamination linked to nosocomial infections by promoting bacterial resistance to antimicrobial agents, including disinfectants. Using essential oils, this study aims to inhibit and eradicate the biofilm of enterobacteria and staphylococci responsible for nosocomial infections at Guelma Hospital, northeastern Algeria. <i>Thymbra capitata</i>, <i>Thymus pallescens</i> and <i>Artemesia herba-alba</i> essential oils were evaluated against clinical strains of <i>Klebsiella pneumoniae</i>, <i>Escherichia coli</i>, and <i>Staphylococcus aureus</i>. The antimicrobial activity of the essential oils under consideration was assessed using an agar disc diffusion assay and the determination of minimum inhibitory concentrations (MICs). In addition, the crystal violet method and scanning electron microscopy (SEM) evaluated biofilm inhibition and eradication by those antimicrobial agents. The results indicate that <i>T. pallescens</i> essential oil was the most effective antimicrobial agent against pathogenic bacteria, with large zones of inhibition (up to 50 mm against <i>S. aureus</i>), low MICs (0.16 to 0.63 mg/mL), and powerful biofilm eradication up to 0.16 mg/mL in both 24 h and 60-min exposure times. Thus, Algerian thyme and oregano could be used in various ways to combat the biofilm that causes nosocomial infection in local hospitals.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"816-829"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01Epub Date: 2023-08-03DOI: 10.1080/08927014.2023.2241385
Iago Silva E Carvalho, Sebastião Pratavieira, Vanderlei Salvador Bagnato, Fernanda Alves
The inactivation of Pseudomonas aeruginosa biofilm is a major challenge, as biofilms are less responsive to conventional treatments and responsible for persistent infections. This has led to the investigation of alternative approaches for biofilm control such as photodynamic (PDI) and sonodynamic (SDI) inactivation. The combination of them, known as Sonophotodynamic Inactivation (SPDI), has improved the effectiveness of the process. Curcumin, a well-established photosensitizer, has been identified as a potential sonosensitizer. This study evaluated the most effective combination for SPDI against P. aeruginosa biofilms in vitro, varying curcumin concentrations and ultrasound intensities. The results indicated that the inactivation was directly proportional to the curcumin concentration. Using curcumin 120 µM and 3.0 W.cm-2 of ultrasound intensity, SPDI demonstrated the highest and the best synergistic results, equivalent to 6.9 ± 2.1 logs of reduction. PDI reduced 0.7 ± 0.9 log and SDI had no effect. In conclusion, SPDI with curcumin is a promising approach for biofilm inactivation.
{"title":"Sonophotodynamic inactivation of <i>Pseudomonas aeruginosa</i> biofilm mediated by curcumin.","authors":"Iago Silva E Carvalho, Sebastião Pratavieira, Vanderlei Salvador Bagnato, Fernanda Alves","doi":"10.1080/08927014.2023.2241385","DOIUrl":"10.1080/08927014.2023.2241385","url":null,"abstract":"<p><p>The inactivation of <i>Pseudomonas aeruginosa</i> biofilm is a major challenge, as biofilms are less responsive to conventional treatments and responsible for persistent infections. This has led to the investigation of alternative approaches for biofilm control such as photodynamic (PDI) and sonodynamic (SDI) inactivation. The combination of them, known as Sonophotodynamic Inactivation (SPDI), has improved the effectiveness of the process. Curcumin, a well-established photosensitizer, has been identified as a potential sonosensitizer. This study evaluated the most effective combination for SPDI against <i>P. aeruginosa</i> biofilms <i>in vitro</i>, varying curcumin concentrations and ultrasound intensities. The results indicated that the inactivation was directly proportional to the curcumin concentration. Using curcumin 120 µM and 3.0 W.cm<sup>-2</sup> of ultrasound intensity, SPDI demonstrated the highest and the best synergistic results, equivalent to 6.9 ± 2.1 logs of reduction. PDI reduced 0.7 ± 0.9 log and SDI had no effect. In conclusion, SPDI with curcumin is a promising approach for biofilm inactivation.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 6","pages":"606-616"},"PeriodicalIF":2.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10177145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01Epub Date: 2023-07-03DOI: 10.1080/08927014.2023.2228208
Yolanda Soriano-Jerez, Lucía García-Abad, María Del Carmen Cerón-García, Juan José Gallardo-Rodríguez, Christine Bressy, Francisco García-Camacho, Emilio Molina-Grima
In order to build an efficient closed-photobioreactor (PBR) in which biofouling formation is avoided, a non-toxic coating with high transparency is required, which can be applied to the interior surface of the PBR walls. Nowadays, amphiphilic copolymers are being used to inhibit microorganism adhesion, so poly(dimethylsiloxane)-based coatings mixed with poly(ethylene glycol)-based copolymers could be a good option. The 7 poly(dimethylsiloxane)-based coatings tested in this work contained 4% w/w of poly(ethylene glycol)-based copolymers. All were a good alternative to glass because they presented lower cell adhesion. However, the DBE-311 copolymer proved the best option due to its very low cell adhesion and high transmittance. Furthermore, XDLVO theory indicates that these coatings should have no cell adhesion at time 0 since they create a very high-energy barrier that microalgae cells cannot overcome. Nevertheless, this theory also shows that their surface properties change over time, making cell adhesion possible on all coatings after 8 months of immersion. The theory is useful in explaining the interaction forces between the surface and microalgae cells at any moment in time, but it should be complemented with models to predict the conditioning film formation and the contribution of the PBR's fluid dynamics over time.
{"title":"Long-lasting biofouling formation on transparent fouling-release coatings for the construction of efficient closed photobioreactors.","authors":"Yolanda Soriano-Jerez, Lucía García-Abad, María Del Carmen Cerón-García, Juan José Gallardo-Rodríguez, Christine Bressy, Francisco García-Camacho, Emilio Molina-Grima","doi":"10.1080/08927014.2023.2228208","DOIUrl":"10.1080/08927014.2023.2228208","url":null,"abstract":"<p><p>In order to build an efficient closed-photobioreactor (PBR) in which biofouling formation is avoided, a non-toxic coating with high transparency is required, which can be applied to the interior surface of the PBR walls. Nowadays, amphiphilic copolymers are being used to inhibit microorganism adhesion, so poly(dimethylsiloxane)-based coatings mixed with poly(ethylene glycol)-based copolymers could be a good option. The 7 poly(dimethylsiloxane)-based coatings tested in this work contained 4% w/w of poly(ethylene glycol)-based copolymers. All were a good alternative to glass because they presented lower cell adhesion. However, the DBE-311 copolymer proved the best option due to its very low cell adhesion and high transmittance. Furthermore, XDLVO theory indicates that these coatings should have no cell adhesion at time 0 since they create a very high-energy barrier that microalgae cells cannot overcome. Nevertheless, this theory also shows that their surface properties change over time, making cell adhesion possible on all coatings after 8 months of immersion. The theory is useful in explaining the interaction forces between the surface and microalgae cells at any moment in time, but it should be complemented with models to predict the conditioning film formation and the contribution of the PBR's fluid dynamics over time.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 5","pages":"483-501"},"PeriodicalIF":2.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9882911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01Epub Date: 2023-06-30DOI: 10.1080/08927014.2023.2228206
Marie Barshutina, Dmitry Yakubovsky, Roman Kirtaev, Valentyn Volkov, Aleksey Arsenin, Anastasiya Vladimirova, Andrei Baymiev, Sergey Barshutin
Silicone implants are widely used for plastic or reconstruction medical applications. However, they can cause severe infections of inner tissues due to bacterial adhesion and biofilm growth on implant surfaces. The development of new antibacterial nanostructured surfaces can be considered as the most promising strategy to deal with this problem. In this article, we studied the influence of nanostructuring parameters on the antibacterial properties of silicone surfaces. Nanostructured silicone substrates with nanopillars of various dimensions were fabricated using a simple soft lithography technique. Upon testing of the obtained substrates, we identified the optimal parameters of silicone nanostructures to achieve the most pronounced antibacterial effect against the bacterial culture of Escherichia coli. It was demonstrated that up to 90% reduction in bacterial population compared to flat silicone substrates can be achieved. We also discussed possible underlying mechanisms behind the observed antibacterial effect, the understanding of which is essential for further progress in this field.
{"title":"Design of silicone interfaces with antibacterial properties.","authors":"Marie Barshutina, Dmitry Yakubovsky, Roman Kirtaev, Valentyn Volkov, Aleksey Arsenin, Anastasiya Vladimirova, Andrei Baymiev, Sergey Barshutin","doi":"10.1080/08927014.2023.2228206","DOIUrl":"10.1080/08927014.2023.2228206","url":null,"abstract":"<p><p>Silicone implants are widely used for plastic or reconstruction medical applications. However, they can cause severe infections of inner tissues due to bacterial adhesion and biofilm growth on implant surfaces. The development of new antibacterial nanostructured surfaces can be considered as the most promising strategy to deal with this problem. In this article, we studied the influence of nanostructuring parameters on the antibacterial properties of silicone surfaces. Nanostructured silicone substrates with nanopillars of various dimensions were fabricated using a simple soft lithography technique. Upon testing of the obtained substrates, we identified the optimal parameters of silicone nanostructures to achieve the most pronounced antibacterial effect against the bacterial culture of <i>Escherichia coli</i>. It was demonstrated that up to 90% reduction in bacterial population compared to flat silicone substrates can be achieved. We also discussed possible underlying mechanisms behind the observed antibacterial effect, the understanding of which is essential for further progress in this field.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 5","pages":"473-482"},"PeriodicalIF":2.7,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9892325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}