首页 > 最新文献

Biology and Fertility of Soils最新文献

英文 中文
A new incubation system to simultaneously measure n2 as well as n2o and co2 fluxes from plant-soil mesocosms 同时测量植物-土壤介观模型中的 n2 以及 n2o 和 co2 通量的新型培养系统
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-12 DOI: 10.1007/s00374-024-01809-w
Irina Yankelzon, Georg Willibald, Michael Dannenmann, Francois Malique, Ulrike Ostler, Clemens Scheer, Klaus Butterbach-Bahl

This study presents a novel plant-soil mesocosm system designed for cultivating plants over periods ranging from days to weeks while continuously measuring fluxes of N2, N2O and CO2. For proof of concept, we conducted a 33-day incubation experiment using six soil mesocosms, with three containing germinated wheat plants and three left plant-free. To validate the magnitude of N2 and N2O fluxes, we used 15N-enriched fertilizer and a 15N mass balance approach. The system inherent leakage rate was about 55 µg N m− 2 h− 1 for N2, while N2O leakage rates were below the detection limit (< 1 µg N m− 2 h− 1). In our experiment, we found higher cumulative gaseous N2 + N2O losses in sown soil (0.34 ± 0.02 g N m− 2) as compared to bare soil (0.23 ± 0.01 g N m− 2). N2 fluxes accounted for approximately 94–96% of total gaseous N losses in both planted and unplanted mesocosms. N losses, as determined by the 15N mass balance approach, were found to be 1.7 ± 0.5 g N m− 2 for the sown soil and 1.7 ± 0.6 g N m− 2 for the bare soil, indicating an inconsistency between the two assessment methods. Soil respiration rates were also higher in sown mesocosms, with cumulative soil and aboveground biomass CO2 respiration reaching 4.8 ± 0.1 and 4.0 ± 0.1 g C m− 2 over the 33-day incubation period, in sown and bare soil, respectively. Overall, this study measured the effect of wheat growth on soil denitrification, highlighting the sensitivity and utility of this advanced incubation system for such studies.

本研究介绍了一种新型植物-土壤介观模型系统,该系统设计用于在数天到数周的时间内培育植物,同时连续测量 N2、N2O 和 CO2 的通量。为了验证这一概念,我们使用六个土壤介观模型进行了为期 33 天的培养实验,其中三个介观模型中含有发芽的小麦植株,另外三个介观模型中没有植株。为了验证 N2 和 N2O 通量的大小,我们使用了富含 15N 的肥料和 15N 质量平衡法。系统固有的 N2 泄漏率约为 55 µg N m- 2 h- 1,而 N2O 泄漏率低于检测限(< 1 µg N m- 2 h- 1)。在我们的实验中,我们发现播种土壤(0.34 ± 0.02 g N m- 2)与裸露土壤(0.23 ± 0.01 g N m- 2)相比,气态 N2 + N2O 的累积损失更高。在已种植和未种植的中置池中,N2 通量约占气态氮损失总量的 94-96%。根据 15N 质量平衡法确定的氮损失量,播种土壤为 1.7 ± 0.5 g N m- 2,裸露土壤为 1.7 ± 0.6 g N m- 2,这表明两种评估方法不一致。播种介箱的土壤呼吸速率也更高,在 33 天的培养期内,播种土壤和裸土的土壤和地上生物量二氧化碳呼吸累积量分别达到 4.8 ± 0.1 和 4.0 ± 0.1 g C m- 2。总之,这项研究测量了小麦生长对土壤反硝化作用的影响,突出了这种先进培养系统对此类研究的敏感性和实用性。
{"title":"A new incubation system to simultaneously measure n2 as well as n2o and co2 fluxes from plant-soil mesocosms","authors":"Irina Yankelzon, Georg Willibald, Michael Dannenmann, Francois Malique, Ulrike Ostler, Clemens Scheer, Klaus Butterbach-Bahl","doi":"10.1007/s00374-024-01809-w","DOIUrl":"https://doi.org/10.1007/s00374-024-01809-w","url":null,"abstract":"<p>This study presents a novel plant-soil mesocosm system designed for cultivating plants over periods ranging from days to weeks while continuously measuring fluxes of N<sub>2</sub>, N<sub>2</sub>O and CO<sub>2</sub>. For proof of concept, we conducted a 33-day incubation experiment using six soil mesocosms, with three containing germinated wheat plants and three left plant-free. To validate the magnitude of N<sub>2</sub> and N<sub>2</sub>O fluxes, we used <sup>15</sup>N-enriched fertilizer and a <sup>15</sup>N mass balance approach. The system inherent leakage rate was about 55 µg N m<sup>− 2</sup> h<sup>− 1</sup> for N<sub>2</sub>, while N<sub>2</sub>O leakage rates were below the detection limit (&lt; 1 µg N m<sup>− 2</sup> h<sup>− 1</sup>). In our experiment, we found higher cumulative gaseous N<sub>2</sub> + N<sub>2</sub>O losses in sown soil (0.34 ± 0.02 g N m<sup>− 2</sup>) as compared to bare soil (0.23 ± 0.01 g N m<sup>− 2</sup>). N<sub>2</sub> fluxes accounted for approximately 94–96% of total gaseous N losses in both planted and unplanted mesocosms. N losses, as determined by the <sup>15</sup>N mass balance approach, were found to be 1.7 ± 0.5 g N m<sup>− 2</sup> for the sown soil and 1.7 ± 0.6 g N m<sup>− 2</sup> for the bare soil, indicating an inconsistency between the two assessment methods. Soil respiration rates were also higher in sown mesocosms, with cumulative soil and aboveground biomass CO<sub>2</sub> respiration reaching 4.8 ± 0.1 and 4.0 ± 0.1 g C m<sup>− 2</sup> over the 33-day incubation period, in sown and bare soil, respectively. Overall, this study measured the effect of wheat growth on soil denitrification, highlighting the sensitivity and utility of this advanced incubation system for such studies.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to adequately represent biological processes in modeling multifunctionality of arable soils 如何在耕地土壤多功能性建模中充分体现生物过程
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-11 DOI: 10.1007/s00374-024-01802-3
H.-J. Vogel, W. Amelung, C. Baum, M. Bonkowski, S. Blagodatsky, R. Grosch, M. Herbst, R. Kiese, S. Koch, M. Kuhwald, S. König, P. Leinweber, B. Lennartz, C. W. Müller, H. Pagel, M. C. Rillig, J. Rüschhoff, D. Russell, A. Schnepf, S. Schulz, N. Siebers, D. Vetterlein, C. Wachendorf, U. Weller, U. Wollschläger

Essential soil functions such as plant productivity, C storage, nutrient cycling and the storage and purification of water all depend on soil biological processes. Given this insight, it is remarkable that in modeling of these soil functions, the various biological actors usually do not play an explicit role. In this review and perspective paper we analyze the state of the art in modeling these soil functions and how biological processes could more adequately be accounted for. We do this for six different biologically driven processes clusters that are key for understanding soil functions, namely i) turnover of soil organic matter, ii) N cycling, iii) P dynamics, iv) biodegradation of contaminants v) plant disease control and vi) soil structure formation. A major conclusion is that the development of models to predict changes in soil functions at the scale of soil profiles (i.e. pedons) should be better rooted in the underlying biological processes that are known to a large extent. This is prerequisite to arrive at the predictive models that we urgently need under current conditions of Global Change.

土壤的基本功能,如植物生产力、碳储存、养分循环以及水的储存和净化都依赖于土壤生物过程。有鉴于此,在这些土壤功能的建模过程中,各种生物参与者通常并不扮演明确的角色,这一点非常值得注意。在这篇综述和展望论文中,我们分析了这些土壤功能建模的技术现状,以及如何更充分地考虑生物过程。我们针对六个不同的生物驱动过程集群进行了分析,这些过程集群对于理解土壤功能至关重要,它们分别是:i) 土壤有机质周转;ii) 氮循环;iii) 磷动态;iv) 污染物生物降解;v) 植物病害控制;以及 vi) 土壤结构形成。一个主要结论是,在开发用于预测土壤剖面(即基质)尺度上土壤功能变化的模型时,应更好地扎根于在很大程度上已知的基本生物过程。这是在当前全球变化条件下建立我们迫切需要的预测模型的先决条件。
{"title":"How to adequately represent biological processes in modeling multifunctionality of arable soils","authors":"H.-J. Vogel, W. Amelung, C. Baum, M. Bonkowski, S. Blagodatsky, R. Grosch, M. Herbst, R. Kiese, S. Koch, M. Kuhwald, S. König, P. Leinweber, B. Lennartz, C. W. Müller, H. Pagel, M. C. Rillig, J. Rüschhoff, D. Russell, A. Schnepf, S. Schulz, N. Siebers, D. Vetterlein, C. Wachendorf, U. Weller, U. Wollschläger","doi":"10.1007/s00374-024-01802-3","DOIUrl":"https://doi.org/10.1007/s00374-024-01802-3","url":null,"abstract":"<p>Essential soil functions such as plant productivity, C storage, nutrient cycling and the storage and purification of water all depend on soil biological processes. Given this insight, it is remarkable that in modeling of these soil functions, the various biological actors usually do not play an explicit role. In this review and perspective paper we analyze the state of the art in modeling these soil functions and how biological processes could more adequately be accounted for. We do this for six different biologically driven processes clusters that are key for understanding soil functions, namely i) turnover of soil organic matter, ii) N cycling, iii) P dynamics, iv) biodegradation of contaminants v) plant disease control and vi) soil structure formation. A major conclusion is that the development of models to predict changes in soil functions at the scale of soil profiles (i.e. pedons) should be better rooted in the underlying biological processes that are known to a large extent. This is prerequisite to arrive at the predictive models that we urgently need under current conditions of Global Change.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate 通过对光合产物进行 13C 标记追踪发现,放牧排斥通过微生物坏死根源 C 增加了土壤有机 C
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-05 DOI: 10.1007/s00374-024-01807-y
Qing Qu, Lei Deng, Anna Gunina, Xuying Hai, Jun Deng, Zhouping Shangguan, Yakov Kuzyakov

Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ 13C-CO2 labelling experiments in the field and traced 13C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. 13C allocation in these pools also increased, whereas 13C was lost via respiration as CO2 from soils decreased. 13C incorporation into the soil and microbial biomass increased with 13C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols.

草地储存了大量的碳,但人们对禁牧后土壤固碳的内在机制还不甚了解。本研究旨在阐明温带草原长期(约 40 年)禁牧后植物和微生物残留物对土壤有机碳(SOC)固存的驱动因素。我们在野外进行了原位 13C-CO2 标记实验,并追踪了植物-土壤系统中的 13C 与生物标记物,以评估植物对土壤的碳输入。长期禁牧增加了所有植物和土壤库,包括芽、根、微生物生物量和坏死物质。这些池中的 13C 分配也有所增加,而随着土壤中二氧化碳的减少,13C 通过呼吸作用流失。土壤和微生物生物量中的 13C 含量增加了,根部的 13C 含量也增加了。超过 40 年的禁牧使总 SOC 含量增加了 190%,这主要是由于真菌坏死物质 C 的增加,而木质素酚对 SOC 的增加只有很小的贡献(0.8%)。因此,禁牧不仅提高了地上生物量,还扩大了根系和根茎沉积,导致微生物生物量和坏质的形成。在禁牧条件下,微生物坏死物质和木质素酚都有助于增加有机碳,而且微生物坏死物质,尤其是真菌坏死物质,比木质素酚的贡献更大。
{"title":"Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate","authors":"Qing Qu, Lei Deng, Anna Gunina, Xuying Hai, Jun Deng, Zhouping Shangguan, Yakov Kuzyakov","doi":"10.1007/s00374-024-01807-y","DOIUrl":"https://doi.org/10.1007/s00374-024-01807-y","url":null,"abstract":"<p>Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ <sup>13</sup>C-CO<sub>2</sub> labelling experiments in the field and traced <sup>13</sup>C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. <sup>13</sup>C allocation in these pools also increased, whereas <sup>13</sup>C was lost via respiration as CO<sub>2</sub> from soils decreased. <sup>13</sup>C incorporation into the soil and microbial biomass increased with <sup>13</sup>C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial necromass determines the response of mineral-associated organic matter to elevated CO2 细菌坏死物决定矿物相关有机物对高浓度 CO2 的反应
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-03-02 DOI: 10.1007/s00374-024-01803-2
Yuhong Li, Mouliang Xiao, Liang Wei, Qiong Liu, Zhenke Zhu, Hongzhao Yuan, Jinshui Wu, Jun Yuan, Xiaohong Wu, Yakov Kuzyakov, Tida Ge

Microorganisms regulate soil organic matter (SOM) formation through accumulation and decomposition of microbial necromass, which is directly and indirectly affected by elevated CO2 and N fertilization. We investigated the role of microorganisms in SOM formation by analyzing 13C recovery in microorganisms and carbon pools in paddy soil under two CO2 levels, with and without N fertilization, after continuous 13CO2 labelling was stopped. Microbial turnover transferred 13C from living microbial biomass (determined by the decrease in phospholipid fatty acids) to necromass (determined by the increase in amino sugars). 13C incorporation in fungal living biomass and necromass was higher than that in bacteria. Bacterial turnover was faster than necromass decomposition, resulting in net necromass accumulation over time; fungal necromass remained stable. Elevated CO2 and N fertilization increased the net accumulation of bacterial, but not fungal, necromass. CO2 levels, but not N fertilization, significantly affected 13C incorporation in SOM pools. Elevated CO2 increased 13C in particulate organic matter via the roots, and in the mineral-associated organic matter (MAOM) via bacterial, but not fungal, necromass. Overall, bacterial necromass plays a dominant role in the MAOM formation response to elevated CO2 because bacteria are sensitive to elevated CO2.

微生物通过积累和分解微生物尸体来调节土壤有机质(SOM)的形成,而高浓度 CO2 和氮肥会直接或间接地影响土壤有机质的形成。我们研究了微生物在 SOM 形成过程中的作用,方法是在有氮肥和无氮肥两种 CO2 水平下,停止连续 13CO2 标记后,分析稻田土壤中微生物和碳库的 13C 恢复情况。微生物更替将 13C 从活微生物生物量(由磷脂脂肪酸的减少决定)转移到死亡生物量(由氨基糖的增加决定)。真菌活体生物质和死亡物质中的 13C 含量高于细菌。细菌的新陈代谢快于坏死物质的分解,导致坏死物质随着时间的推移而净积累;真菌的坏死物质则保持稳定。二氧化碳浓度升高和氮肥施用增加了细菌坏死物质的净积累,但没有增加真菌坏死物质的净积累。二氧化碳水平(而非氮肥)会显著影响 SOM 池中的 13C 含量。二氧化碳浓度升高会通过根部增加颗粒有机物中的 13C,通过细菌(而非真菌)坏死物质增加矿质相关有机物(MAOM)中的 13C。总的来说,细菌的坏死物质在高浓度 CO2 对 MAOM 形成的反应中起着主导作用,因为细菌对高浓度 CO2 很敏感。
{"title":"Bacterial necromass determines the response of mineral-associated organic matter to elevated CO2","authors":"Yuhong Li, Mouliang Xiao, Liang Wei, Qiong Liu, Zhenke Zhu, Hongzhao Yuan, Jinshui Wu, Jun Yuan, Xiaohong Wu, Yakov Kuzyakov, Tida Ge","doi":"10.1007/s00374-024-01803-2","DOIUrl":"https://doi.org/10.1007/s00374-024-01803-2","url":null,"abstract":"<p>Microorganisms regulate soil organic matter (SOM) formation through accumulation and decomposition of microbial necromass, which is directly and indirectly affected by elevated CO<sub>2</sub> and N fertilization. We investigated the role of microorganisms in SOM formation by analyzing <sup>13</sup>C recovery in microorganisms and carbon pools in paddy soil under two CO<sub>2</sub> levels, with and without N fertilization, after continuous <sup>13</sup>CO<sub>2</sub> labelling was stopped. Microbial turnover transferred <sup>13</sup>C from living microbial biomass (determined by the decrease in phospholipid fatty acids) to necromass (determined by the increase in amino sugars). <sup>13</sup>C incorporation in fungal living biomass and necromass was higher than that in bacteria. Bacterial turnover was faster than necromass decomposition, resulting in net necromass accumulation over time; fungal necromass remained stable. Elevated CO<sub>2</sub> and N fertilization increased the net accumulation of bacterial, but not fungal, necromass. CO<sub>2</sub> levels, but not N fertilization, significantly affected <sup>13</sup>C incorporation in SOM pools. Elevated CO<sub>2</sub> increased <sup>13</sup>C in particulate organic matter via the roots, and in the mineral-associated organic matter (MAOM) via bacterial, but not fungal, necromass. Overall, bacterial necromass plays a dominant role in the MAOM formation response to elevated CO<sub>2</sub> because bacteria are sensitive to elevated CO<sub>2</sub>.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrolysis temperature affects biochar suitability as an alternative rhizobial carrier 热解温度影响生物炭作为替代根瘤菌载体的适用性
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-02-29 DOI: 10.1007/s00374-024-01805-0

Abstract

Biochars produced from different feedstocks and at different pyrolysis temperatures may have various chemical and physical properties, affecting their potential use as alternative microbial carrier materials. In this study, biochars were produced from pine wood and oak feedstocks at various temperatures (400°C, 500°C, 600°C, 700°C and 800°C), characterized, and assessed for their potential as carriers for Bradyrhizobium japonicum (CB1809) strain. The biochars were then stored at two different storage temperatures (28°C and 38°C) for up to 90 days. Furthermore, the study also explored the role of potentially ideal carriers as inoculants in the growth of Glycine max L. (soybean) under different moisture levels i.e., 55% water holding capacity (WHC) (D0), 30% WHC (D1) and, 15% WHC (D2) using a mixture of 50% garden soil and 50% sand. The results were compared to a control group (without inoculants) and a peat inoculant. Among all the materials derived from pine wood and oak, pine wood biochar pyrolyzed at 400℃ (P-BC400) exhibited the highest CFU count, with values of 10.34 and 9.74 Log 10 CFU g− 1 after 90 days of storage at 28℃ and 38℃, respectively. This was notably higher compared to other biochars and peat carriers. Significant (p < 0.05) increases in plant properties: shoot and root dry biomass (174% and 367%), shoot and root length (89% and 85%), number of leaves (71%), membrane stability index (27%), relative water content (26%), and total chlorophyll (140%) were observed in plants treated with P-BC400 carrier inoculant compared to the control at D2; however, lower enrichment of δ13C (37%) and δ15N (108%) with highest number of root nodules (8.3 ± 1.26) and nitrogenase activity (0.869 ± 0.04) were observed under D2, as evident through PCA analysis, showing more nitrogen (N) fixation and photosynthetic activity. Overall, this experiment concluded that biochar pyrolyzed at lower temperatures, especially P-BC400, was the most suitable candidate for rhizobial inoculum and promoted soybean growth.

摘要 由不同原料和不同热解温度生产的生物炭可能具有不同的化学和物理特性,从而影响其作为替代微生物载体材料的潜在用途。本研究以松木和橡木为原料,在不同温度(400°C、500°C、600°C、700°C 和 800°C)下生产出生物炭,对其进行了表征,并评估了其作为日本农杆菌(CB1809)菌株载体的潜力。然后将这些生物脆饼在两种不同的储存温度(28°C 和 38°C)下储存长达 90 天。此外,该研究还探讨了潜在理想载体作为接种剂在不同湿度条件下(即持水率为 55% (WHC) (D0)、30% (WHC) (D1) 和 15% (WHC) (D2),使用 50% 园土和 50% 沙的混合物)对大豆(Glycine max L.)生长的作用。结果与对照组(无接种剂)和泥炭接种剂进行了比较。在所有取自松木和橡木的材料中,400℃热解的松木生物炭(P-BC400)的 CFU 数最高,在 28℃ 和 38℃ 下存放 90 天后,CFU 数分别为 10.34 和 9.74 Log 10 CFU g- 1。这明显高于其他生物炭和泥炭载体。植物特性:嫩枝、叶片和叶柄显著增加(p < 0.05),与 D2 期的对照相比,使用 P-BC400 载体接种剂处理的植株在以下方面都有显著提高:芽和根的干生物量(174% 和 367%)、芽和根的长度(89% 和 85%)、叶片数(71%)、膜稳定性指数(27%)、相对含水量(26%)和总叶绿素(140%);但是,δ13C(37%)和δ15N(108%)的富集度较低,根瘤数最多(8.通过 PCA 分析可明显看出,D2 下的根瘤数(8.3 ± 1.26)和氮酶活性(0.869 ± 0.04)最高,表明固氮作用和光合作用更强。总之,本实验得出结论,在较低温度下热解的生物炭,尤其是 P-BC400 最适合作为根瘤菌接种体,并能促进大豆生长。
{"title":"Pyrolysis temperature affects biochar suitability as an alternative rhizobial carrier","authors":"","doi":"10.1007/s00374-024-01805-0","DOIUrl":"https://doi.org/10.1007/s00374-024-01805-0","url":null,"abstract":"<h3>Abstract</h3> <p>Biochars produced from different feedstocks and at different pyrolysis temperatures may have various chemical and physical properties, affecting their potential use as alternative microbial carrier materials. In this study, biochars were produced from pine wood and oak feedstocks at various temperatures (400°C, 500°C, 600°C, 700°C and 800°C), characterized, and assessed for their potential as carriers for <em>Bradyrhizobium japonicum</em> (CB1809) strain. The biochars were then stored at two different storage temperatures (28°C and 38°C) for up to 90 days. Furthermore, the study also explored the role of potentially ideal carriers as inoculants in the growth of <em>Glycine max L.</em> (soybean) under different moisture levels i.e., 55% water holding capacity (WHC) (D0), 30% WHC (D1) and, 15% WHC (D2) using a mixture of 50% garden soil and 50% sand. The results were compared to a control group (without inoculants) and a peat inoculant. Among all the materials derived from pine wood and oak, pine wood biochar pyrolyzed at 400℃ (P-BC400) exhibited the highest CFU count, with values of 10.34 and 9.74 Log 10 CFU g<sup>− 1</sup> after 90 days of storage at 28℃ and 38℃, respectively. This was notably higher compared to other biochars and peat carriers. Significant (<em>p</em> &lt; 0.05) increases in plant properties: shoot and root dry biomass (174% and 367%), shoot and root length (89% and 85%), number of leaves (71%), membrane stability index (27%), relative water content (26%), and total chlorophyll (140%) were observed in plants treated with P-BC400 carrier inoculant compared to the control at D2; however, lower enrichment of δ<sup>13</sup>C (37%) and δ<sup>15</sup>N (108%) with highest number of root nodules (8.3 ± 1.26) and nitrogenase activity (0.869 ± 0.04) were observed under D2, as evident through PCA analysis, showing more nitrogen (N) fixation and photosynthetic activity. Overall, this experiment concluded that biochar pyrolyzed at lower temperatures, especially P-BC400, was the most suitable candidate for rhizobial inoculum and promoted soybean growth.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139994314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysimeter-based full fertilizer 15N balances corroborate direct dinitrogen emission measurements using the 15N gas flow method 基于溶度计的全肥料 15N 平衡证实了使用 15N 气体流量法进行的直接二氮排放测量结果
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-02-24 DOI: 10.1007/s00374-024-01801-4
Irina Yankelzon, Lexie Schilling, Klaus Butterbach-Bahl, Rainer Gasche, Jincheng Han, Lorenz Hartl, Julia Kepp, Amanda Matson, Ulrike Ostler, Clemens Scheer, Katrin Schneider, Arne Tenspolde, Reinhard Well, Benjamin Wolf, Nicole Wrage-Moennig, Michael Dannenmann

The 15N gas flux (15NGF) method allows for direct in situ quantification of dinitrogen (N2) emissions from soils, but a successful cross-comparison with another method is missing. The objectives of this study were to quantify N2 emissions of a wheat rotation using the 15NGF method, to compare these N2 emissions with those obtained from a lysimeter-based 15N fertilizer mass balance approach, and to contextualize N2 emissions with 15N enrichment of N2 in soil air. For four sampling periods, fertilizer-derived N2 losses (15NGF method) were similar to unaccounted fertilizer N fates as obtained from the 15N mass balance approach. Total N2 emissions (15NGF method) amounted to 21 ± 3 kg N ha− 1, with 13 ± 2 kg N ha− 1 (7.5% of applied fertilizer N) originating from fertilizer. In comparison, the 15N mass balance approach overall indicated fertilizer-derived N2 emissions of 11%, equivalent to 18 ± 13 kg N ha− 1. Nitrous oxide (N2O) emissions were small (0.15 ± 0.01 kg N ha− 1 or 0.1% of fertilizer N), resulting in a large mean N2:(N2O + N2) ratio of 0.94 ± 0.06. Due to the applied drip fertigation, ammonia emissions accounted for < 1% of fertilizer-N, while N leaching was negligible. The temporal variability of N2 emissions was well explained by the δ15N2 in soil air down to 50 cm depth. We conclude the 15NGF method provides realistic estimates of field N2 emissions and should be more widely used to better understand soil N2 losses. Moreover, combining soil air δ15N2 measurements with diffusion modeling might be an alternative approach for constraining soil N2 emissions.

15N 气体通量(15NGF)方法可直接就地量化土壤中的二氮(N2)排放量,但目前还没有与其他方法进行成功的交叉比较。本研究的目的是利用 15NGF 方法量化小麦轮作的 N2 排放量,将这些 N2 排放量与基于溶样计的 15N 化肥质量平衡方法获得的排放量进行比较,并将土壤空气中的 N2 排放量与 15N 富集情况联系起来。在四个采样期中,化肥产生的 N2 损失(15NGF 法)与 15N 质量平衡法得出的未计化肥 N 分布情况相似。N2 排放总量(15NGF 法)为 21 ± 3 kg N ha-1,其中 13 ± 2 kg N ha-1(占施肥 N 的 7.5%)来自肥料。相比之下,15N 质量平衡法总体显示肥料产生的 N2 排放量为 11%,相当于 18 ± 13 千克 N ha-1。氧化亚氮(N2O)排放量较小(0.15 ± 0.01 kg N ha- 1 或肥料 N 的 0.1%),导致平均 N2:(N2O + N2)比值较大,为 0.94 ± 0.06。由于采用滴灌施肥,氨的排放量占肥料氮的 1%,而氮的沥滤可以忽略不计。土壤空气中的 δ15N2 可以很好地解释 50 厘米深的 N2 排放的时间变化。我们的结论是,15NGF 方法提供了对田间 N2 排放量的真实估计,应更广泛地用于更好地了解土壤 N2 损失。此外,将土壤空气δ15N2 测量与扩散建模相结合可能是限制土壤 N2 排放的另一种方法。
{"title":"Lysimeter-based full fertilizer 15N balances corroborate direct dinitrogen emission measurements using the 15N gas flow method","authors":"Irina Yankelzon, Lexie Schilling, Klaus Butterbach-Bahl, Rainer Gasche, Jincheng Han, Lorenz Hartl, Julia Kepp, Amanda Matson, Ulrike Ostler, Clemens Scheer, Katrin Schneider, Arne Tenspolde, Reinhard Well, Benjamin Wolf, Nicole Wrage-Moennig, Michael Dannenmann","doi":"10.1007/s00374-024-01801-4","DOIUrl":"https://doi.org/10.1007/s00374-024-01801-4","url":null,"abstract":"<p>The <sup>15</sup>N gas flux (<sup>15</sup>NGF) method allows for direct in situ quantification of dinitrogen (N<sub>2</sub>) emissions from soils, but a successful cross-comparison with another method is missing. The objectives of this study were to quantify N<sub>2</sub> emissions of a wheat rotation using the <sup>15</sup>NGF method, to compare these N<sub>2</sub> emissions with those obtained from a lysimeter-based <sup>15</sup>N fertilizer mass balance approach, and to contextualize N<sub>2</sub> emissions with <sup>15</sup>N enrichment of N<sub>2</sub> in soil air. For four sampling periods, fertilizer-derived N<sub>2</sub> losses (<sup>15</sup>NGF method) were similar to unaccounted fertilizer N fates as obtained from the <sup>15</sup>N mass balance approach. Total N<sub>2</sub> emissions (<sup>15</sup>NGF method) amounted to 21 ± 3 kg N ha<sup>− 1</sup>, with 13 ± 2 kg N ha<sup>− 1</sup> (7.5% of applied fertilizer N) originating from fertilizer. In comparison, the <sup>15</sup>N mass balance approach overall indicated fertilizer-derived N<sub>2</sub> emissions of 11%, equivalent to 18 ± 13 kg N ha<sup>− 1</sup>. Nitrous oxide (N<sub>2</sub>O) emissions were small (0.15 ± 0.01 kg N ha<sup>− 1</sup> or 0.1% of fertilizer N), resulting in a large mean N<sub>2</sub>:(N<sub>2</sub>O + N<sub>2</sub>) ratio of 0.94 ± 0.06. Due to the applied drip fertigation, ammonia emissions accounted for &lt; 1% of fertilizer-N, while N leaching was negligible. The temporal variability of N<sub>2</sub> emissions was well explained by the δ<sup>15</sup>N<sub>2</sub> in soil air down to 50 cm depth. We conclude the <sup>15</sup>NGF method provides realistic estimates of field N<sub>2</sub> emissions and should be more widely used to better understand soil N<sub>2</sub> losses. Moreover, combining soil air δ<sup>15</sup>N<sub>2</sub> measurements with diffusion modeling might be an alternative approach for constraining soil N<sub>2</sub> emissions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139943193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorus (P) mobilisation from inorganic and organic P sources depends on P-acquisition strategies in dioecious Populus euphratica 雌雄异株杨树从无机和有机磷源调动磷取决于磷获取策略
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-02-17 DOI: 10.1007/s00374-024-01799-9
Kaimin Lan, Yijin Li, Yiwei Shuai, Juntuan Zhai, Qingxu Ma, Yakov Kuzyakov, Miao Liu

Dioecious species have secondary trait dimorphism in resource acquisition, allocation, and a skewed sex ratio. Yet, it is unclear how their sex-specific nutrient acquisition strategy affects the contributions of inorganic and organic phosphorus (P) soil pools to plant-available P. Here, the contribution of inorganic and organic P sources to available P in soil and sex-specific P acquisition during the whole growing season (from June to October) was assessed in a 20-year-old Populus euphratica plantation via analysing the transformation of soil P pools. Poplar females obtain available inorganic P by increasing specific root length (by 71% compared with males) and releasing organic acids to mobilise P from precipitated P (HCl-P), thus obtaining higher P than males during the mid-growing season (June). The increased mobilisation of moderately precipitated P in the rhizosphere was more significant in females during the whole growing season. During the late-growing season, males showed increased alkaline phosphatase activities (by 25% compared with females) and maintained a higher abundance of arbuscular mycorrhiza fungi to obtain P via higher consumption of organic and residual P (decreased by 68% and 24% from June to October). These changes in P acquisition strategies reflect the temporal niche differentiation: females acquire inorganic P mainly during the beginning and middle of the season, whereas males take up organic P and HCl-P, preferably in the second half of the season. The strategic adjustment of sex-specific P acquisition modulated the transformation of organic and inorganic P sources in soil towards plant-available P, increasing resource niche partitioning between two poplar sexes to maintain P supply.

雌雄异株的物种在资源获取和分配方面具有次生性状二态性,并且性别比例失调。在这里,我们通过分析土壤磷库的转化,评估了在一个 20 年树龄的欧白杨种植园中,无机和有机磷源对土壤中可用磷的贡献,以及在整个生长季(从 6 月到 10 月)中不同性别对磷的获取情况。雌性白杨通过增加比根长度(比雄性增加 71%)和释放有机酸从沉淀 P(HCl-P)中动员 P 来获得可用的无机 P,因此在生长季中期(6 月)获得的 P 比雄性高。在整个生长季期间,雌性根瘤菌对中度沉淀 P 的动员增加更为显著。在生长后期,雄性植物的碱性磷酸酶活性提高(比雌性植物提高了 25%),并保持了较高的丛枝菌根真菌数量,以通过消耗更多的有机钾和残余钾来获取钾(从 6 月到 10 月分别减少了 68% 和 24%)。P获取策略的这些变化反映了时间生态位的分化:雌性主要在季节的初期和中期获取无机P,而雄性主要在季节的后半期获取有机P和HCl-P。性别特异性 P 获取策略的调整调节了土壤中有机和无机 P 来源向植物可利用 P 的转化,增加了两种性别杨树之间的资源生态位分配,以维持 P 的供应。
{"title":"Phosphorus (P) mobilisation from inorganic and organic P sources depends on P-acquisition strategies in dioecious Populus euphratica","authors":"Kaimin Lan, Yijin Li, Yiwei Shuai, Juntuan Zhai, Qingxu Ma, Yakov Kuzyakov, Miao Liu","doi":"10.1007/s00374-024-01799-9","DOIUrl":"https://doi.org/10.1007/s00374-024-01799-9","url":null,"abstract":"<p>Dioecious species have secondary trait dimorphism in resource acquisition, allocation, and a skewed sex ratio. Yet, it is unclear how their sex-specific nutrient acquisition strategy affects the contributions of inorganic and organic phosphorus (P) soil pools to plant-available P. Here, the contribution of inorganic and organic P sources to available P in soil and sex-specific P acquisition during the whole growing season (from June to October) was assessed in a 20-year-old <i>Populus euphratica</i> plantation via analysing the transformation of soil P pools. Poplar females obtain available inorganic P by increasing specific root length (by 71% compared with males) and releasing organic acids to mobilise P from precipitated P (HCl-P), thus obtaining higher P than males during the mid-growing season (June). The increased mobilisation of moderately precipitated P in the rhizosphere was more significant in females during the whole growing season. During the late-growing season, males showed increased alkaline phosphatase activities (by 25% compared with females) and maintained a higher abundance of arbuscular mycorrhiza fungi to obtain P via higher consumption of organic and residual P (decreased by 68% and 24% from June to October). These changes in P acquisition strategies reflect the temporal niche differentiation: females acquire inorganic P mainly during the beginning and middle of the season, whereas males take up organic P and HCl-P, preferably in the second half of the season. The strategic adjustment of sex-specific P acquisition modulated the transformation of organic and inorganic P sources in soil towards plant-available P, increasing resource niche partitioning between two poplar sexes to maintain P supply.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and characterization of Rhizobium from non-leguminous potato plants: New frontiers in Rhizobium research 从非豆科马铃薯植物中分离和鉴定根瘤菌:根瘤菌研究的新领域
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-02-17 DOI: 10.1007/s00374-024-01800-5
Tahir Naqqash, Kauser Abdullah Malik, Asma Imran, Sohail Hameed, Muhammad Shahid, Muhammad Kashif Hanif, Afshan Majeed, Muhammad Arshad, Jan Dirk van Elsas

Rhizobium is well-documented for its symbiotic relationship with legume plants, where it plays a crucial role in biological nitrogen-(N)-fixation within their root nodules. However, the isolation, identification, and association of Rhizobium as a free-living diazotroph with potato plants remain relatively less explored. The present study reports the isolation and characterization of free-living Rhizobium strain from the rhizosphere of potato plants and its potential for promoting growth and N-fixation. Diazotrophic strain (TN04) was isolated from rhizosphere of potato plants on nitrogen-free media and identified on the basis of 16S rRNA gene sequence (Accession number: LN833444). TN04 strain also contained nifH gene and showed N-fixation potential (151.70 nmolmg/protein/h) through ARA activity, indicating its ability to fix atmospheric nitrogen. TN04 exhibited potential for phosphate solubilization (272.5 µg/mL) and produced indole acetic acid at concentration of 3.50 µg/mL. To assess the N-fixing ability of TN04 diazotroph, a 15N dilution experiment was conducted in pots using sterilized sand and sterilized soil under various fertilizer doses. The results of pot experiments demonstrated significant improvement in N content and growth parameters of inoculated potato plants compared to un-inoculated controls, suggesting that diazotrophic strain effectively fixed atmospheric N through isotopic dilution. Moreover, Rhizobium sp. TN04 remarkably improved plant growth and agronomic parameters under field conditions. Significant improvements were observed in N uptake, N utilization, and N use efficiency in field trails. In addition, microscopic analysis using transmission electron and confocal laser scanning microscopy provided insights into the colonization patterns of TN04 strain at the junctions between the secondary and primary roots, forming strong association with potato roots. Our study presents novel insights into the presence and interaction of Rhizobium with non-host plants, shedding light on its N-fixing capabilities in non-leguminous crops. These findings pave the way for developing strategies to explore microbiome of non-leguminous crops and exploit the N-fixation of Rhizobium in non-host crops.

根瘤菌因其与豆科植物的共生关系而广为人知,它在豆科植物根瘤内的生物固氮过程中发挥着至关重要的作用。然而,对于根瘤菌作为一种自由生活的重氮营养体与马铃薯植物的分离、鉴定和关联的探索仍然相对较少。本研究报告了从马铃薯植物根瘤中分离和鉴定的自由生活根瘤菌菌株及其促进生长和固氮的潜力。研究人员在无氮培养基上从马铃薯根瘤菌中分离出了重氮菌株(TN04),并根据 16S rRNA 基因序列对其进行了鉴定(登录号:LN833444)。TN04 菌株还含有 nifH 基因,并通过 ARA 活性显示出固氮潜力(151.70 nmolmg/蛋白质/小时),表明其具有固定大气氮的能力。TN04 具有溶解磷酸盐的潜力(272.5 微克/毫升),并在 3.50 微克/毫升的浓度下产生吲哚乙酸。为评估 TN04 重氮营养体的固氮能力,在不同肥料剂量下,使用灭菌沙和灭菌土壤在盆中进行了 15N 稀释实验。盆栽实验结果表明,与未接种的对照组相比,接种马铃薯植株的氮含量和生长参数均有显著改善,这表明重氮菌株通过同位素稀释有效固定了大气中的氮。此外,根瘤菌 TN04 显著改善了田间条件下植物的生长和农艺参数。在田间试验中,氮吸收、氮利用和氮利用效率都有显著提高。此外,利用透射电子显微镜和激光共聚焦扫描显微镜进行的显微分析深入揭示了 TN04 菌株在次生根和主根交界处的定殖模式,它与马铃薯根系形成了牢固的结合。我们的研究对根瘤菌的存在及其与非寄主植物的相互作用提出了新的见解,揭示了根瘤菌在非豆科作物中的固氮能力。这些发现为制定探索非豆科作物微生物组和利用根瘤菌在非寄主作物中的固氮能力的战略铺平了道路。
{"title":"Isolation and characterization of Rhizobium from non-leguminous potato plants: New frontiers in Rhizobium research","authors":"Tahir Naqqash, Kauser Abdullah Malik, Asma Imran, Sohail Hameed, Muhammad Shahid, Muhammad Kashif Hanif, Afshan Majeed, Muhammad Arshad, Jan Dirk van Elsas","doi":"10.1007/s00374-024-01800-5","DOIUrl":"https://doi.org/10.1007/s00374-024-01800-5","url":null,"abstract":"<p><i>Rhizobium</i> is well-documented for its symbiotic relationship with legume plants, where it plays a crucial role in biological nitrogen-(N)-fixation within their root nodules. However, the isolation, identification, and association of <i>Rhizobium</i> as a free-living diazotroph with potato plants remain relatively less explored. The present study reports the isolation and characterization of free-living <i>Rhizobium</i> strain from the rhizosphere of potato plants and its potential for promoting growth and N-fixation. Diazotrophic strain (TN04) was isolated from rhizosphere of potato plants on nitrogen-free media and identified on the basis of 16S rRNA gene sequence (Accession number: LN833444). TN04 strain also contained <i>nif</i>H gene and showed N-fixation potential (151.70 nmolmg/protein/h) through ARA activity, indicating its ability to fix atmospheric nitrogen. TN04 exhibited potential for phosphate solubilization (272.5 µg/mL) and produced indole acetic acid at concentration of 3.50 µg/mL. To assess the N-fixing ability of TN04 diazotroph, a <sup>15</sup>N dilution experiment was conducted in pots using sterilized sand and sterilized soil under various fertilizer doses. The results of pot experiments demonstrated significant improvement in N content and growth parameters of inoculated potato plants compared to un-inoculated controls, suggesting that diazotrophic strain effectively fixed atmospheric N through isotopic dilution. Moreover, <i>Rhizobium</i> sp. TN04 remarkably improved plant growth and agronomic parameters under field conditions. Significant improvements were observed in N uptake, N utilization, and N use efficiency in field trails. In addition, microscopic analysis using transmission electron and confocal laser scanning microscopy provided insights into the colonization patterns of TN04 strain at the junctions between the secondary and primary roots, forming strong association with potato roots. Our study presents novel insights into the presence and interaction of <i>Rhizobium</i> with non-host plants, shedding light on its N-fixing capabilities in non-leguminous crops. These findings pave the way for developing strategies to explore microbiome of non-leguminous crops and exploit the N-fixation of <i>Rhizobium</i> in non-host crops.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of no-till followed by crop diversification on the soil microbiome in a boreal short cereal rotation 免耕和作物多样化对北方短谷物轮作中土壤微生物群的影响
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-02-06 DOI: 10.1007/s00374-024-01797-x
Hannu Fritze, Tero Tuomivirta, Luigi Orrù, Loredana Canfora, Jessica Cuartero, Margarita Ros, Jose Antonio Pascual, Raúl Zornosa, Marcos Egea-Cortines, Kristiina Lång, Janne Kaseva, Krista Peltoniemi

Diversification of agricultural practices, including changes in crop rotation, intercropping or cover cropping, influence the soil microbiome. Here the impact of tillage and crop diversification on the soil microbiome is reported, being one of the few boreal studies. The field experiment consisted of four treatments with four replications all having a short cereal rotation practice namely an oat (Avena sativa) – spring barley (Hordeum vulgare) – wheat (Triticum aestivum) rotation for the past 10 years until spring 2018. During that period two of the treatments were conventionally tilled with moldboard ploughing whereas the other two were no-tillage treatments. From the growing season 2018 until fall 2020 the main crop in all treatments was spring barley. The first conventional tillage treatment was diversified with English ryegrass (Lolium perenne) as an undersown cover crop for the next three growing seasons. The first no-tillage treatment continued with spring barley only. The second conventional tillage and no-tillage treatment had winter rapeseed in rotation in 2019. Bulk soils were sampled in May 2018 before diversification and then in October 2018, 2019, and 2020. The results showed a clear effect of tillage on the beta-diversity of the soil microbiome and an increase in fungal richness. Barley monoculture interrupted with winter rapeseed resulted in a minor change of the fungal and bacterial community composition. Other fungal and bacterial alpha diversity measures did not react to tillage or diversification nor did the gene copy abundances involved in the N cycle. In conclusion tillage had a profound effect on the soil microbiome hindering impact of the diversification.

农业生产方式的多样化,包括轮作、间作或覆盖种植的改变,都会影响土壤微生物组。本文报告了耕作和作物多样化对土壤微生物组的影响,这是为数不多的北方研究之一。田间试验由四个重复的四个处理组成,所有处理在过去 10 年里都采用了短谷物轮作方法,即燕麦(Avena sativa)-春大麦(Hordeum vulgare)-小麦(Triticum aestivum)轮作,直至 2018 年春季。在此期间,其中两个处理采用传统的模犁耕作,而另外两个处理则为免耕处理。从 2018 年生长季到 2020 年秋季,所有处理的主要作物都是春大麦。在第一个常规耕作处理中,英国黑麦草(Lolium perenne)作为未播覆盖作物在接下来的三个生长季中进行了多样化种植。第一个免耕处理继续只种植春大麦。第二个常规耕作和免耕处理在 2019 年轮作冬油菜。在多样化之前的 2018 年 5 月以及 2018 年 10 月、2019 年和 2020 年,对大块土壤进行了取样。结果显示,耕作对土壤微生物群的β-多样性有明显影响,真菌丰富度有所增加。大麦单作与冬油菜间作导致真菌和细菌群落组成发生轻微变化。其他真菌和细菌的α多样性测量值对耕作或多样化没有反应,参与氮循环的基因拷贝丰度也没有反应。总之,耕作对土壤微生物群有着深远的影响,阻碍了多样化的效果。
{"title":"Effect of no-till followed by crop diversification on the soil microbiome in a boreal short cereal rotation","authors":"Hannu Fritze, Tero Tuomivirta, Luigi Orrù, Loredana Canfora, Jessica Cuartero, Margarita Ros, Jose Antonio Pascual, Raúl Zornosa, Marcos Egea-Cortines, Kristiina Lång, Janne Kaseva, Krista Peltoniemi","doi":"10.1007/s00374-024-01797-x","DOIUrl":"https://doi.org/10.1007/s00374-024-01797-x","url":null,"abstract":"<p>Diversification of agricultural practices, including changes in crop rotation, intercropping or cover cropping, influence the soil microbiome. Here the impact of tillage and crop diversification on the soil microbiome is reported, being one of the few boreal studies. The field experiment consisted of four treatments with four replications all having a short cereal rotation practice namely an oat (<i>Avena sativa</i>) – spring barley (<i>Hordeum vulgare</i>) – wheat (<i>Triticum aestivum</i>) rotation for the past 10 years until spring 2018. During that period two of the treatments were conventionally tilled with moldboard ploughing whereas the other two were no-tillage treatments. From the growing season 2018 until fall 2020 the main crop in all treatments was spring barley. The first conventional tillage treatment was diversified with English ryegrass (<i>Lolium perenne</i>) as an undersown cover crop for the next three growing seasons. The first no-tillage treatment continued with spring barley only. The second conventional tillage and no-tillage treatment had winter rapeseed in rotation in 2019. Bulk soils were sampled in May 2018 before diversification and then in October 2018, 2019, and 2020. The results showed a clear effect of tillage on the beta-diversity of the soil microbiome and an increase in fungal richness. Barley monoculture interrupted with winter rapeseed resulted in a minor change of the fungal and bacterial community composition. Other fungal and bacterial alpha diversity measures did not react to tillage or diversification nor did the gene copy abundances involved in the N cycle. In conclusion tillage had a profound effect on the soil microbiome hindering impact of the diversification.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: a comparison of long-term non-inversion minimum tillage and conventional tillage 从传统耕作向有机耕作过渡对土壤有机碳和微生物群落的影响:长期非逆转最小耕作与传统耕作的比较
IF 6.5 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-01-30 DOI: 10.1007/s00374-024-01796-y
Rok Mihelič, Sara Pintarič, Klemen Eler, Marjetka Suhadolc

The combination of conservation tillage (non-inversion and no-till) with organic farming is rare due to weed problems. However, both practices have the potential to improve soil quality and increase soil organic C (SOC). This study investigated the changes in SOC, microbial biomass, and microbial composition during the transition from conventional to organic farming (from 2014 to 2020) in a long-term tillage trial established in 1999. Non-inversion minimum tillage to a depth of 10 cm (MT) resulted in SOC stratification, whilst conventional soil tillage with 25-cm-deep mouldboard ploughing (CT) maintained an even SOC distribution in the plough layer. After 12 years of contrasting tillage in 2011, the uppermost soil layer under MT had a 10% higher SOC content (1.6% w/w) than CT (1.45% w/w). This difference became even more pronounced after introducing organic farming in 2014. By the fall of 2020, the SOC content under MT increased to 1.94%, whilst it decreased slightly to 1.36% under CT, resulting in a 43% difference between the two systems. Conversion to organic farming increased microbial biomass under both tillage systems, whilst SOC remained unchanged in CT. Abundances of total bacterial and Crenarchaeal 16S rRNA and fungal ITS genes indicated shifts in the microbial community in response to tillage and depth. Fungal communities under MT were more responsive to organic farming than bacterial communities. The improved soil quality observed under MT supports its adoption in both organic and conventional systems, but potentially large yield losses due to increased weed cover discourage farmers from combining MT and organic farming.

由于杂草问题,很少将保护性耕作(非翻转和免耕)与有机耕作相结合。然而,这两种耕作方法都有可能改善土壤质量,增加土壤有机碳(SOC)。本研究调查了 1999 年建立的长期耕作试验中,从传统耕作向有机耕作过渡期间(2014 年至 2020 年)SOC、微生物生物量和微生物组成的变化。深度为 10 厘米的非反转最小耕作(MT)导致了 SOC 的分层,而深度为 25 厘米的模板犁(CT)的常规土壤耕作则保持了犁层中 SOC 的均匀分布。2011 年,经过 12 年的对比耕作后,MT 下最上层土壤的 SOC 含量(1.6% w/w)比 CT 下(1.45% w/w)高出 10%。2014 年引入有机耕作后,这一差异变得更加明显。到 2020 年秋季,MT 下的 SOC 含量增加到 1.94%,而 CT 下的 SOC 含量则略微下降到 1.36%,两个系统的 SOC 含量相差 43%。转为有机耕作后,两种耕作制度下的微生物生物量都有所增加,而 CT 下的 SOC 保持不变。总细菌和 Crenarchaeal 16S rRNA 以及真菌 ITS 基因的丰度表明,微生物群落随耕作和耕作深度而变化。与细菌群落相比,MT 条件下的真菌群落对有机耕作的反应更灵敏。在 MT 条件下观察到的土壤质量改善支持了有机耕作和常规耕作制度的采用,但由于杂草覆盖率的增加可能会造成巨大的产量损失,因此农民不愿意将 MT 和有机耕作结合起来。
{"title":"Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: a comparison of long-term non-inversion minimum tillage and conventional tillage","authors":"Rok Mihelič, Sara Pintarič, Klemen Eler, Marjetka Suhadolc","doi":"10.1007/s00374-024-01796-y","DOIUrl":"https://doi.org/10.1007/s00374-024-01796-y","url":null,"abstract":"<p>The combination of conservation tillage (non-inversion and no-till) with organic farming is rare due to weed problems. However, both practices have the potential to improve soil quality and increase soil organic C (SOC). This study investigated the changes in SOC, microbial biomass, and microbial composition during the transition from conventional to organic farming (from 2014 to 2020) in a long-term tillage trial established in 1999. Non-inversion minimum tillage to a depth of 10 cm (MT) resulted in SOC stratification, whilst conventional soil tillage with 25-cm-deep mouldboard ploughing (CT) maintained an even SOC distribution in the plough layer. After 12 years of contrasting tillage in 2011, the uppermost soil layer under MT had a 10% higher SOC content (1.6% w/w) than CT (1.45% w/w). This difference became even more pronounced after introducing organic farming in 2014. By the fall of 2020, the SOC content under MT increased to 1.94%, whilst it decreased slightly to 1.36% under CT, resulting in a 43% difference between the two systems. Conversion to organic farming increased microbial biomass under both tillage systems, whilst SOC remained unchanged in CT. Abundances of total bacterial and Crenarchaeal 16S rRNA and fungal ITS genes indicated shifts in the microbial community in response to tillage and depth. Fungal communities under MT were more responsive to organic farming than bacterial communities. The improved soil quality observed under MT supports its adoption in both organic and conventional systems, but potentially large yield losses due to increased weed cover discourage farmers from combining MT and organic farming.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":6.5,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139644161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology and Fertility of Soils
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1