首页 > 最新文献

IEEE transactions on biomedical circuits and systems最新文献

英文 中文
Neural Dielet 2.0: A 128-Channel 2mm×2mm Battery-Free Neural Dielet Merging Simultaneous Multi-Channel Transmission through Multi-Carrier Orthogonal Backscatter. 神经小模组 2.0:通过多载波正交反向散射同时进行多信道传输的 128 信道 2mm×2mm 无电池神经小模组。
Pub Date : 2024-06-19 DOI: 10.1109/TBCAS.2024.3416728
Changgui Yang, Zhihuan Zhang, Lei Zhang, Yunshan Zhang, Zhuhao Li, Yuxuan Luo, Gang Pan, Bo Zhao

Miniaturization of wireless neural-recording systems enables minimally-invasive surgery and alleviates the rejection reactions for implanted brain-computer interface (BCI) applications. Simultaneous massive-channel recording capability is essential to investigate the behaviors and inter-connections in billions of neurons. In recent years, battery-free techniques based on wireless power transfer (WPT) and backscatter communication have reduced the sizes of neural-recording implants by battery eliminating and antenna sharing. However, the existing battery-free chips realize the multi-channel merging in the signal-acquisition circuits, which leads to large chip area, signal attenuation, insufficient channel number or low bandwidth, etc. In this work, we demonstrate a 2mm×2mm battery-free neural dielet, which merges 128 channels in the wireless part. The neural dielet is fabricated with 65nm CMOS process, and measured results show that: 1) The proposed multi-carrier orthogonal backscatter technique achieves a high data rate of 20.16Mb/s and an energy efficiency of 0.8pJ/bit. 2) A self-calibrated direct digital converter (SC-DDC) is proposed to fit the 128 channels in the 2mm×2mm die, and then the all-digital implementation achieves 0.02mm2 area and 9.87μW power per channel.

无线神经记录系统的微型化实现了微创手术,减轻了植入式脑机接口(BCI)应用的排斥反应。要研究数十亿个神经元的行为和相互联系,同时进行大通道记录的能力至关重要。近年来,基于无线功率传输(WPT)和反向散射通信的无电池技术通过消除电池和共享天线缩小了神经记录植入物的尺寸。然而,现有的无电池芯片在信号采集电路中实现了多通道合并,导致芯片面积大、信号衰减、通道数不足或带宽低等问题。在这项工作中,我们展示了一种 2 毫米×2 毫米的无电池神经芯片,它在无线部分合并了 128 个信道。该神经芯片采用 65nm CMOS 工艺制造,测量结果表明1) 拟议的多载波正交反向散射技术实现了 20.16Mb/s 的高数据传输率和 0.8pJ/bit 的能效。2) 提出了一种自校准直接数字转换器 (SC-DDC),可在 2mm×2mm 的芯片中容纳 128 个信道,然后通过全数字实现,实现了 0.02mm2 的面积和每个信道 9.87μW 的功率。
{"title":"Neural Dielet 2.0: A 128-Channel 2mm×2mm Battery-Free Neural Dielet Merging Simultaneous Multi-Channel Transmission through Multi-Carrier Orthogonal Backscatter.","authors":"Changgui Yang, Zhihuan Zhang, Lei Zhang, Yunshan Zhang, Zhuhao Li, Yuxuan Luo, Gang Pan, Bo Zhao","doi":"10.1109/TBCAS.2024.3416728","DOIUrl":"10.1109/TBCAS.2024.3416728","url":null,"abstract":"<p><p>Miniaturization of wireless neural-recording systems enables minimally-invasive surgery and alleviates the rejection reactions for implanted brain-computer interface (BCI) applications. Simultaneous massive-channel recording capability is essential to investigate the behaviors and inter-connections in billions of neurons. In recent years, battery-free techniques based on wireless power transfer (WPT) and backscatter communication have reduced the sizes of neural-recording implants by battery eliminating and antenna sharing. However, the existing battery-free chips realize the multi-channel merging in the signal-acquisition circuits, which leads to large chip area, signal attenuation, insufficient channel number or low bandwidth, etc. In this work, we demonstrate a 2mm×2mm battery-free neural dielet, which merges 128 channels in the wireless part. The neural dielet is fabricated with 65nm CMOS process, and measured results show that: 1) The proposed multi-carrier orthogonal backscatter technique achieves a high data rate of 20.16Mb/s and an energy efficiency of 0.8pJ/bit. 2) A self-calibrated direct digital converter (SC-DDC) is proposed to fit the 128 channels in the 2mm×2mm die, and then the all-digital implementation achieves 0.02mm<sup>2</sup> area and 9.87μW power per channel.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical Capacitance Tomography of Cell Cultures on a CMOS Microelectrode Array CMOS 微电极阵列上的细胞培养电容层析成像。
Pub Date : 2024-06-17 DOI: 10.1109/TBCAS.2024.3415360
Manar Abdelatty;Joseph Incandela;Kangping Hu;Pushkaraj Joshi;Joseph W. Larkin;Sherief Reda;Jacob K. Rosenstein
Electrical capacitance tomography (ECT) can be used to predict information about the interior volume of an object based on measured capacitance at its boundaries. Here, we present a microscale capacitance tomography system with a spatial resolution of 10 microns using an active CMOS microelectrode array. We introduce a deep learning model for reconstructing 3-D volumes of cell cultures using the boundary capacitance measurements acquired from the sensor array, which is trained using a multi-objective loss function that combines a pixel-wise loss function, a distribution-based loss function, and a region-based loss function to improve model's reconstruction accuracy. The multi-objective loss function enhances the model's reconstruction accuracy by 3.2% compared to training only with a pixel-wise loss function. Compared to baseline computational methods, our model achieves an average of 4.6% improvement on the datasets evaluated. We demonstrate our approach on experimental datasets of bacterial biofilms, showcasing the system's ability to resolve microscopic spatial features of cell cultures in three dimensions. Microscale capacitance tomography can be a low-cost, low-power, label-free tool for 3-D imaging of biological samples.
电容断层成像(ECT)可用于根据物体边界的电容测量值预测物体内部的体积信息。在这里,我们利用有源 CMOS 微电极阵列展示了一种空间分辨率为 10 微米的微尺度电容层析成像系统。我们引入了一种深度学习模型,用于利用从传感器阵列获取的边界电容测量值重建细胞培养物的三维体积。该模型采用多目标损失函数进行训练,结合了像素损失函数、基于分布的损失函数和基于区域的损失函数,以提高模型的重建精度。与仅使用像素损失函数训练相比,多目标损失函数将模型的重建精度提高了 3.2%。与基线计算方法相比,我们的模型在评估的数据集上平均提高了 4.6%。我们在细菌生物膜的实验数据集上演示了我们的方法,展示了该系统解析三维细胞培养物微观空间特征的能力。微尺度电容层析成像技术是一种低成本、低功耗、无标记的生物样本三维成像工具。
{"title":"Electrical Capacitance Tomography of Cell Cultures on a CMOS Microelectrode Array","authors":"Manar Abdelatty;Joseph Incandela;Kangping Hu;Pushkaraj Joshi;Joseph W. Larkin;Sherief Reda;Jacob K. Rosenstein","doi":"10.1109/TBCAS.2024.3415360","DOIUrl":"10.1109/TBCAS.2024.3415360","url":null,"abstract":"Electrical capacitance tomography (ECT) can be used to predict information about the interior volume of an object based on measured capacitance at its boundaries. Here, we present a microscale capacitance tomography system with a spatial resolution of 10 microns using an active CMOS microelectrode array. We introduce a deep learning model for reconstructing 3-D volumes of cell cultures using the boundary capacitance measurements acquired from the sensor array, which is trained using a multi-objective loss function that combines a pixel-wise loss function, a distribution-based loss function, and a region-based loss function to improve model's reconstruction accuracy. The multi-objective loss function enhances the model's reconstruction accuracy by 3.2% compared to training only with a pixel-wise loss function. Compared to baseline computational methods, our model achieves an average of 4.6% improvement on the datasets evaluated. We demonstrate our approach on experimental datasets of bacterial biofilms, showcasing the system's ability to resolve microscopic spatial features of cell cultures in three dimensions. Microscale capacitance tomography can be a low-cost, low-power, label-free tool for 3-D imaging of biological samples.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
sEMG-Driven Hand Dynamics Estimation With Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller 在并行超低功耗微控制器上利用增量在线学习进行 sEMG 驱动的手部动态估计。
Pub Date : 2024-06-17 DOI: 10.1109/TBCAS.2024.3415392
Marcello Zanghieri;Pierangelo Maria Rapa;Mattia Orlandi;Elisa Donati;Luca Benini;Simone Benatti
Surface electromyography (sEMG) is a State-of-the-Art (SoA) sensing modality for non-invasive human-machine interfaces for consumer, industrial, and rehabilitation use cases. The main limitation of the current sEMG-driven control policies is the sEMG's inherent variability, especially cross-session due to sensor repositioning; this limits the generalization of the Machine/Deep Learning (ML/DL) in charge of the signal-to-command mapping. The other hot front on the ML/DL side of sEMG-driven control is the shift from the classification of fixed hand positions to the regression of hand kinematics and dynamics, promising a more versatile and fluid control. We present an incremental online-training strategy for sEMG-based estimation of simultaneous multi-finger forces, using a small Temporal Convolutional Network suitable for embedded learning-on-device. We validate our method on the HYSER dataset, cross-day. Our incremental online training reaches a cross-day Mean Absolute Error (MAE) of (9.58 ± 3.89)% of the Maximum Voluntary Contraction on HYSER's RANDOM dataset of improvised, non-predefined force sequences, which is the most challenging and closest to real scenarios. This MAE is on par with an accuracy-oriented, non-embeddable offline training exploiting more epochs. Further, we demonstrate that our online training approach can be deployed on the GAP9 ultra-low power microcontroller, obtaining a latency of 1.49 ms and an energy draw of just 40.4 uJ per forward-backward-update step. These results show that our solution fits the requirements for accurate and real-time incremental training-on-device.
表面肌电图(sEMG)是一种先进的传感模式,可用于消费、工业和康复领域的无创人机界面。目前由 sEMG 驱动的控制策略的主要局限性在于 sEMG 固有的可变性,尤其是由于传感器重新定位而导致的跨时段变化;这限制了负责信号到指令映射的机器/深度学习(ML/DL)的通用性。机器/深度学习(ML/DL)在 sEMG 驱动控制方面的另一个热点是,从固定手部位置分类转向手部运动学和动力学回归,从而有望实现更加灵活和流畅的控制。我们提出了一种基于 sEMG 的多指同时受力估计的增量在线训练策略,使用的是适合嵌入式设备学习的小型时序卷积网络。我们在 HYSER 数据集上跨天验证了我们的方法。我们的增量在线训练在 HYSER 的随机数据集上达到了最大自主收缩的跨天平均绝对误差(MAE)为 (9.58 ± 3.89)%,该数据集为即兴、非预定义力序列,最具挑战性且最接近真实场景。这一 MAE 与利用更多历时进行的以准确性为导向的非嵌入式离线训练相当。此外,我们还证明了我们的在线训练方法可以部署在 GAP9 超低功耗微控制器上,延迟时间为 1.49 ms,每个前向-后向-更新步骤的能耗仅为 40.4 uJ。这些结果表明,我们的解决方案符合在设备上进行精确和实时增量训练的要求。
{"title":"sEMG-Driven Hand Dynamics Estimation With Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller","authors":"Marcello Zanghieri;Pierangelo Maria Rapa;Mattia Orlandi;Elisa Donati;Luca Benini;Simone Benatti","doi":"10.1109/TBCAS.2024.3415392","DOIUrl":"10.1109/TBCAS.2024.3415392","url":null,"abstract":"Surface electromyography (sEMG) is a State-of-the-Art (SoA) sensing modality for non-invasive human-machine interfaces for consumer, industrial, and rehabilitation use cases. The main limitation of the current sEMG-driven control policies is the sEMG's inherent variability, especially cross-session due to sensor repositioning; this limits the generalization of the Machine/Deep Learning (ML/DL) in charge of the signal-to-command mapping. The other hot front on the ML/DL side of sEMG-driven control is the shift from the classification of fixed hand positions to the regression of hand kinematics and dynamics, promising a more versatile and fluid control. We present an incremental online-training strategy for sEMG-based estimation of simultaneous multi-finger forces, using a small Temporal Convolutional Network suitable for embedded learning-on-device. We validate our method on the HYSER dataset, cross-day. Our incremental online training reaches a cross-day Mean Absolute Error (MAE) of (9.58 ± 3.89)% of the Maximum Voluntary Contraction on HYSER's RANDOM dataset of improvised, non-predefined force sequences, which is the most challenging and closest to real scenarios. This MAE is on par with an accuracy-oriented, non-embeddable offline training exploiting more epochs. Further, we demonstrate that our online training approach can be deployed on the GAP9 ultra-low power microcontroller, obtaining a latency of 1.49 ms and an energy draw of just 40.4 uJ per forward-backward-update step. These results show that our solution fits the requirements for accurate and real-time incremental training-on-device.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Mode Imaging System for Early Detection and Monitoring of Ocular Surface Diseases 用于早期检测和监控眼表疾病的双模式成像系统。
Pub Date : 2024-06-14 DOI: 10.1109/TBCAS.2024.3411713
Yuxing Li;Pak Wing Chiu;Vincent Tam;Allie Lee;Edmund Y. Lam
The global prevalence of ocular surface diseases (OSDs), such as dry eyes, conjunctivitis, and subconjunctival hemorrhage (SCH), is steadily increasing due to factors such as aging populations, environmental influences, and lifestyle changes. These diseases affect millions of individuals worldwide, emphasizing the importance of early diagnosis and continuous monitoring for effective treatment. Therefore, we present a deep learning-enhanced imaging system for the automated, objective, and reliable assessment of these three representative OSDs. Our comprehensive pipeline incorporates processing techniques derived from dual-mode infrared (IR) and visible (RGB) images. It employs a multi-stage deep learning model to enable accurate and consistent measurement of OSDs. This proposed method has achieved a 98.7% accuracy with an F1 score of 0.980 in class classification and a 96.2% accuracy with an F1 score of 0.956 in SCH region identification. Furthermore, our system aims to facilitate early diagnosis of meibomian gland dysfunction (MGD), a primary factor causing dry eyes, by quantitatively analyzing the meibomian gland (MG) area ratio and detecting gland morphological irregularities with an accuracy of 88.1% and an F1 score of 0.781. To enhance convenience and timely OSD management, we are integrating a portable IR camera for obtaining meibography during home inspections. Our system demonstrates notable improvements in expanding dual-mode image-based diagnosis for broader applicability, effectively enhancing patient care efficiency. With its automation, accuracy, and compact design, this system is well-suited for early detection and ongoing assessment of OSDs, contributing to improved eye healthcare in an accessible and comprehensible manner.
由于人口老龄化、环境影响和生活方式改变等因素,干眼症、结膜炎和结膜下出血(SCH)等眼表疾病(OSDs)的全球发病率正在稳步上升。这些疾病影响着全球数百万人,因此强调早期诊断和持续监测对有效治疗的重要性。因此,我们提出了一种深度学习增强成像系统,用于自动、客观、可靠地评估这三种具有代表性的 OSD。我们的综合管道采用了源自双模红外(IR)和可见光(RGB)图像的处理技术。它采用了多级深度学习模型,能够对 OSD 进行准确一致的测量。该方法的分类准确率为 98.7%,F1 得分为 0.980;SCH 区域识别准确率为 96.2%,F1 得分为 0.956。此外,我们的系统旨在通过定量分析睑板腺(MG)面积比率和检测腺体形态异常,帮助早期诊断导致干眼症的主要因素--睑板腺功能障碍(MGD),准确率达 88.1%,F1 得分为 0.781。为了提高 OSD 管理的便利性和及时性,我们正在整合便携式红外相机,以便在家庭检查时获取睑板腺造影。我们的系统在扩大双模式图像诊断的适用范围方面取得了显著进步,有效提高了患者护理效率。该系统具有自动化、准确性和紧凑型设计等特点,非常适合早期检测和持续评估 OSD,以方便易懂的方式为改善眼科保健做出贡献。
{"title":"Dual-Mode Imaging System for Early Detection and Monitoring of Ocular Surface Diseases","authors":"Yuxing Li;Pak Wing Chiu;Vincent Tam;Allie Lee;Edmund Y. Lam","doi":"10.1109/TBCAS.2024.3411713","DOIUrl":"10.1109/TBCAS.2024.3411713","url":null,"abstract":"The global prevalence of ocular surface diseases (OSDs), such as dry eyes, conjunctivitis, and subconjunctival hemorrhage (SCH), is steadily increasing due to factors such as aging populations, environmental influences, and lifestyle changes. These diseases affect millions of individuals worldwide, emphasizing the importance of early diagnosis and continuous monitoring for effective treatment. Therefore, we present a deep learning-enhanced imaging system for the automated, objective, and reliable assessment of these three representative OSDs. Our comprehensive pipeline incorporates processing techniques derived from dual-mode infrared (IR) and visible (RGB) images. It employs a multi-stage deep learning model to enable accurate and consistent measurement of OSDs. This proposed method has achieved a 98.7% accuracy with an F1 score of 0.980 in class classification and a 96.2% accuracy with an F1 score of 0.956 in SCH region identification. Furthermore, our system aims to facilitate early diagnosis of meibomian gland dysfunction (MGD), a primary factor causing dry eyes, by quantitatively analyzing the meibomian gland (MG) area ratio and detecting gland morphological irregularities with an accuracy of 88.1% and an F1 score of 0.781. To enhance convenience and timely OSD management, we are integrating a portable IR camera for obtaining meibography during home inspections. Our system demonstrates notable improvements in expanding dual-mode image-based diagnosis for broader applicability, effectively enhancing patient care efficiency. With its automation, accuracy, and compact design, this system is well-suited for early detection and ongoing assessment of OSDs, contributing to improved eye healthcare in an accessible and comprehensible manner.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MorphBungee: A 65-nm 7.2-mm2 27-μJ/image Digital Edge Neuromorphic Chip with On-Chip 802-frame/s Multi-Layer Spiking Neural Network Learning. MorphBungee:具有片上 802 帧/秒多层尖峰神经网络学习功能的 65 纳米 7.2 mm2 27-μJ/image 数字边缘神经形态芯片。
Pub Date : 2024-06-11 DOI: 10.1109/TBCAS.2024.3412908
Tengxiao Wang, Min Tian, Haibing Wang, Zhengqing Zhong, Junxian He, Fang Tang, Xichuan Zhou, Yingcheng Lin, Shuang-Ming Yu, Liyuan Liu, Cong Shi

This paper presents a digital edge neuromorphic spiking neural network (SNN) processor chip for a variety of edge intelligent cognitive applications. This processor allows high-speed, high-accuracy and fully on-chip spike-timing-based multi-layer SNN learning. It is characteristic of hierarchical multi-core architecture, event-driven processing paradigm, meta-crossbar for efficient spike communication, and hybrid and reconfigurable parallelism. A prototype chip occupying an active silicon area of 7.2 mm2 was fabricated using a 65-nm 1P9M CMOS process. when running a 256-256-256-256-200 4-layer fully-connected SNN on downscaled 16 × 16 MNIST images. it typically achieved a high-speed throughput of 802 and 2270 frames/s for on-chip learning and inference, respectively, with a relatively low power dissipation of around 61 mW at a 100 MHz clock rate under a 1.0V core power supply, Our on-chip learning results in comparably high visual recognition accuracies of 96.06%, 83.38%, 84.53%, 99.22% and 100% on the MNIST, Fashion-MNIST, ETH-80, Yale-10 and ORL-10 datasets, respectively. In addition, we have successfully applied our neuromorphic chip to demonstrate high-resolution satellite cloud image segmentation and non-visual tasks including olfactory classification and textural news categorization. These results indicate that our neuromorphic chip is suitable for various intelligent edge systems under restricted cost, energy and latency budgets while requiring in-situ self-adaptative learning capability.

本文介绍了一种数字边缘神经形态尖峰神经网络(SNN)处理器芯片,适用于各种边缘智能认知应用。该处理器可实现高速、高精度和基于尖峰计时的多层 SNN 学习。它具有分层多核架构、事件驱动处理模式、用于高效尖峰通信的元交叉条以及混合和可重构并行性等特点。当在缩小的 16 × 16 MNIST 图像上运行 256-256-256-256-200 4 层全连接 SNN 时,片上学习和推理的高速吞吐量通常分别达到 802 帧/秒和 2270 帧/秒,而功耗相对较低,在 100 MHz 时钟频率和 1.我们的片上学习在 MNIST、Fashion-MNIST、ETH-80、Yale-10 和 ORL-10 数据集上分别实现了 96.06%、83.38%、84.53%、99.22% 和 100% 的视觉识别准确率。此外,我们还成功应用神经形态芯片演示了高分辨率卫星云图分割和非视觉任务,包括嗅觉分类和纹理新闻分类。这些结果表明,我们的神经形态芯片适用于成本、能耗和延迟预算受限的各种智能边缘系统,同时需要原位自适应学习能力。
{"title":"MorphBungee: A 65-nm 7.2-mm<sup>2</sup> 27-μJ/image Digital Edge Neuromorphic Chip with On-Chip 802-frame/s Multi-Layer Spiking Neural Network Learning.","authors":"Tengxiao Wang, Min Tian, Haibing Wang, Zhengqing Zhong, Junxian He, Fang Tang, Xichuan Zhou, Yingcheng Lin, Shuang-Ming Yu, Liyuan Liu, Cong Shi","doi":"10.1109/TBCAS.2024.3412908","DOIUrl":"10.1109/TBCAS.2024.3412908","url":null,"abstract":"<p><p>This paper presents a digital edge neuromorphic spiking neural network (SNN) processor chip for a variety of edge intelligent cognitive applications. This processor allows high-speed, high-accuracy and fully on-chip spike-timing-based multi-layer SNN learning. It is characteristic of hierarchical multi-core architecture, event-driven processing paradigm, meta-crossbar for efficient spike communication, and hybrid and reconfigurable parallelism. A prototype chip occupying an active silicon area of 7.2 mm<sup>2</sup> was fabricated using a 65-nm 1P9M CMOS process. when running a 256-256-256-256-200 4-layer fully-connected SNN on downscaled 16 × 16 MNIST images. it typically achieved a high-speed throughput of 802 and 2270 frames/s for on-chip learning and inference, respectively, with a relatively low power dissipation of around 61 mW at a 100 MHz clock rate under a 1.0V core power supply, Our on-chip learning results in comparably high visual recognition accuracies of 96.06%, 83.38%, 84.53%, 99.22% and 100% on the MNIST, Fashion-MNIST, ETH-80, Yale-10 and ORL-10 datasets, respectively. In addition, we have successfully applied our neuromorphic chip to demonstrate high-resolution satellite cloud image segmentation and non-visual tasks including olfactory classification and textural news categorization. These results indicate that our neuromorphic chip is suitable for various intelligent edge systems under restricted cost, energy and latency budgets while requiring in-situ self-adaptative learning capability.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Motor Unit Tracking From sEMG Signals With Adaptive ICA on a Parallel Ultra-Low Power Processor 利用并行超低功耗处理器上的自适应 ICA,从 sEMG 信号中实时跟踪电机单元。
Pub Date : 2024-06-07 DOI: 10.1109/TBCAS.2024.3410840
Mattia Orlandi;Pierangelo Maria Rapa;Marcello Zanghieri;Sebastian Frey;Victor Kartsch;Luca Benini;Simone Benatti
Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58 $pm$ 14.91% and macro-F1 score of 85.86 $pm$ 14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.
通过盲源分离(BSS)算法提取尖峰,可以成功地从 sEMG 信号中提取出有生理意义的信息,因为它们能够识别肌肉收缩中的运动单元(MU)放电。然而,BSS 方法目前仅限于等长收缩,限制了其在现实世界中的应用。我们提出了一种利用自适应独立分量分析(ICA)在不同动态手势中跟踪运动单元的策略:首先,在等长收缩过程中识别运动单元池,并存储分解参数;在动态手势过程中,以无监督方式在线更新分解参数,从而得到细化的运动单元;然后,受 Pan-Tompkins 启发的算法检测每个运动单元中的尖峰;最后,将识别出的尖峰输入分类器以识别手势。我们在使用定制的 16 通道干式 sEMG 臂带收集的 4 个受试者、7 种手势 + 休息数据集上验证了我们的方法,取得了平均 85.58±14.91% 的平衡准确率和 85.86±14.48% 的宏 F1 分数。我们在 GAP9 上部署了我们的解决方案,GAP9 是一种并行超低功耗微控制器,专门用于边缘计算密集型线性代数应用,在 240 MHz 频率下能耗为 4.72 mJ,每个 200 毫秒长的 sEMG 信号窗口的延迟时间为 121.3 毫秒。
{"title":"Real-Time Motor Unit Tracking From sEMG Signals With Adaptive ICA on a Parallel Ultra-Low Power Processor","authors":"Mattia Orlandi;Pierangelo Maria Rapa;Marcello Zanghieri;Sebastian Frey;Victor Kartsch;Luca Benini;Simone Benatti","doi":"10.1109/TBCAS.2024.3410840","DOIUrl":"10.1109/TBCAS.2024.3410840","url":null,"abstract":"Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58 \u0000<inline-formula><tex-math>$pm$</tex-math></inline-formula>\u0000 14.91% and macro-F1 score of 85.86 \u0000<inline-formula><tex-math>$pm$</tex-math></inline-formula>\u0000 14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptable Dual-Tuned Optically Controlled On-Coil RF Power Amplifier for MRI. 用于核磁共振成像的适应性双调谐光控线圈上射频功率放大器。
Pub Date : 2024-06-05 DOI: 10.1109/TBCAS.2024.3403093
Natalia Gudino

An adaptable optically controlled RF power amplifier (RFPA) is presented for direct implementation on the Magnetic Resonance Imaging (MRI) transmit coil. Operation at 1H and multiple X-nuclei frequencies for 7T MRI was demonstrated through the automated tuning of an effective voltage-modulated inductor located in the gate driver circuit of the FET switches in the different amplification stages. Through this automated tuning the amplifier can be adapted from the control to operate at the selected 1H and X-nuclei frequency in a multinuclear MRI study. Bench and MRI data acquired with the adaptable dual-tuned on-coil RFPA is presented. This technology should allow a simpler, more efficient and versatile implementation of the multinuclear multichannel MRI hardware. Ultimately, to extend the research on MRI detectable nuclei that can provide new insights about healthy and diseased tissue.

本文介绍了一种可在磁共振成像(MRI)发射线圈上直接实施的可适应光控射频功率放大器(RFPA)。通过对位于不同放大级场效应管开关栅极驱动电路中的有效电压调制电感器进行自动调节,演示了在 7T 磁共振成像中 1H 和多个 X 核频率下的运行情况。通过这种自动调谐,放大器可在多核磁共振成像研究中根据选定的 1H 和 X 核频率进行控制调整。本文介绍了利用可调整的双调谐线圈上 RFPA 获得的工作台和磁共振成像数据。这项技术将使多核多通道磁共振成像硬件的实施更加简单、高效和通用。最终,将扩展核磁共振成像可探测核的研究,为健康和疾病组织提供新的见解。
{"title":"Adaptable Dual-Tuned Optically Controlled On-Coil RF Power Amplifier for MRI.","authors":"Natalia Gudino","doi":"10.1109/TBCAS.2024.3403093","DOIUrl":"10.1109/TBCAS.2024.3403093","url":null,"abstract":"<p><p>An adaptable optically controlled RF power amplifier (RFPA) is presented for direct implementation on the Magnetic Resonance Imaging (MRI) transmit coil. Operation at <sup>1</sup>H and multiple X-nuclei frequencies for 7T MRI was demonstrated through the automated tuning of an effective voltage-modulated inductor located in the gate driver circuit of the FET switches in the different amplification stages. Through this automated tuning the amplifier can be adapted from the control to operate at the selected <sup>1</sup>H and X-nuclei frequency in a multinuclear MRI study. Bench and MRI data acquired with the adaptable dual-tuned on-coil RFPA is presented. This technology should allow a simpler, more efficient and versatile implementation of the multinuclear multichannel MRI hardware. Ultimately, to extend the research on MRI detectable nuclei that can provide new insights about healthy and diseased tissue.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supervised Contrastive Learning Framework and Hardware Implementation of Learned ResNet for Real-time Respiratory Sound Classification. 用于实时呼吸声分类的有监督对比学习框架和学习到的 ResNet 硬件实现。
Pub Date : 2024-06-05 DOI: 10.1109/TBCAS.2024.3409584
Jinhai Hu, Cong Sheng Leow, Shuailin Tao, Wang Ling Goh, Yuan Gao

This paper presents a supervised contrastive learning (SCL) framework for respiratory sound classification and the hardware implementation of learned ResNet on field programmable gate array (FPGA) for real-time monitoring. At the algorithmic level, multiple techniques such as features augmentation and MixUp are combined holistically to mitigate the impact of data scarcity and imbalanced classes in the training dataset. Bayesian optimization further enhances the classification accuracy through parameter tuning in pre-processing and SCL. The proposed framework achieves 0.8725 total score (including runtime score) on a ResNet-18 model in both event and record multi-class classification tasks using the SJTU Paediatric Respiratory Sound Database (SPRSound). In addition, algorithm-hardware co-optimizations including Quantization-Aware Training (QAT), merge of network layers, optimization of memory size and number of parallel threads are performed for hardware implementation on FPGA. This approach reduces 40% model size and 70% computation latency. The learned ResNet is implemented on a Xilinx Zynq ZCU102 FPGA with 16ms latency and less than 2% inference score degradation compared to the software model.

本文介绍了用于呼吸声音分类的有监督对比学习(SCL)框架,以及用于实时监测的现场可编程门阵列(FPGA)上学习到的 ResNet 的硬件实现。在算法层面,多种技术(如特征增强和 MixUp)被全面结合起来,以减轻数据稀缺和训练数据集中的不平衡类别的影响。贝叶斯优化技术通过调整预处理和 SCL 的参数,进一步提高了分类的准确性。在使用上海交通大学儿科呼吸声数据库(SPRSound)进行事件和记录多类分类任务时,所提出的框架在 ResNet-18 模型上取得了 0.8725 的总分(包括运行时得分)。此外,为了在 FPGA 上进行硬件实现,还对算法和硬件进行了共同优化,包括量化感知训练(QAT)、网络层合并、内存大小和并行线程数量的优化。这种方法可减少 40% 的模型大小和 70% 的计算延迟。学习到的 ResNet 在 Xilinx Zynq ZCU102 FPGA 上实现,与软件模型相比,延迟时间仅为 16ms,推理得分下降不到 2%。
{"title":"Supervised Contrastive Learning Framework and Hardware Implementation of Learned ResNet for Real-time Respiratory Sound Classification.","authors":"Jinhai Hu, Cong Sheng Leow, Shuailin Tao, Wang Ling Goh, Yuan Gao","doi":"10.1109/TBCAS.2024.3409584","DOIUrl":"10.1109/TBCAS.2024.3409584","url":null,"abstract":"<p><p>This paper presents a supervised contrastive learning (SCL) framework for respiratory sound classification and the hardware implementation of learned ResNet on field programmable gate array (FPGA) for real-time monitoring. At the algorithmic level, multiple techniques such as features augmentation and MixUp are combined holistically to mitigate the impact of data scarcity and imbalanced classes in the training dataset. Bayesian optimization further enhances the classification accuracy through parameter tuning in pre-processing and SCL. The proposed framework achieves 0.8725 total score (including runtime score) on a ResNet-18 model in both event and record multi-class classification tasks using the SJTU Paediatric Respiratory Sound Database (SPRSound). In addition, algorithm-hardware co-optimizations including Quantization-Aware Training (QAT), merge of network layers, optimization of memory size and number of parallel threads are performed for hardware implementation on FPGA. This approach reduces 40% model size and 70% computation latency. The learned ResNet is implemented on a Xilinx Zynq ZCU102 FPGA with 16ms latency and less than 2% inference score degradation compared to the software model.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 1.11 mm2 IVUS SoC with ±50°-Range Plane Wave Transmit Beamforming at 40 MHz. 1.11 平方毫米 IVUS 系统芯片,采用 40 兆赫 ±50° 范围平面波发射波束成形技术。
Pub Date : 2024-06-04 DOI: 10.1109/TBCAS.2024.3409162
Xitie Zhang, Evren F Arkan, Coskun Tekes, M Sait Kilinc, Tzu-Han Wang, F Levent Degertekin, Shaolan Li

Intravascular ultrasound (IVUS) imaging catheters are significant tools for cardiovascular interventions, and their use can be expanded by realizing IVUS imaging guidewires and microcatheters. The miniaturization of these devices creates challenges in SNR due to the need for higher frequencies to provide adequate resolution. An integrated IVUS system with transmit beamforming can mitigate these limitations. This work presents the first practical highly integrated system-on-a-chip (SoC) with plane wave transmit beamforming at 40 MHz for IVUS on guidewire or microcatheters. The front-end circuitry has a 20-channel ultrasound transmitter (Tx) and receiver (Rx) array interfaced with a capacitive micromachined ultrasound transducer (CMUT) array. During each firing, all 20 Tx are excited with the same analog delay with respect to each other, which can be continuously adjusted between ~0 and 10 ns in two directions, generating a steerable plane wave in a range of ±/-50° for a phased array at 40 MHz. The unit delays are generated via a voltage-controlled delay line (VCDL), which only needs two external controls, one tuning the unit delay and the other determining the steering direction. The SoC is fabricated using a 180-nm high-voltage (HV) CMOS process and features a slender active area of 0.3 mm × 3.7 mm. The proposed SoC consumes 31.3 mW during the receiving mode. The beamformer's functionality and the SoC's overall performance were validated through acoustic characterization and imaging experiments.

血管内超声(IVUS)成像导管是心血管介入治疗的重要工具,通过实现 IVUS 成像导丝和微导管,可以扩大其使用范围。这些设备的微型化给信噪比带来了挑战,因为需要更高的频率才能提供足够的分辨率。具有发射波束成形功能的集成 IVUS 系统可减轻这些限制。这项研究提出了首个实用的高度集成的片上系统(SoC),该系统具有 40 MHz 的平面波发射波束成形功能,可用于导丝或微导管上的 IVUS。前端电路有 20 个通道的超声波发射器(Tx)和接收器(Rx)阵列,与电容式微机械超声波换能器(CMUT)阵列相连接。在每次发射过程中,所有 20 个 Tx 都以相对于彼此的相同模拟延迟进行激励,该延迟可在两个方向上在 ~0 至 10 ns 之间连续调整,从而在 40 MHz 的相控阵列中产生 ±/-50° 范围内的可转向平面波。单元延迟通过压控延迟线(VCDL)产生,只需两个外部控制,一个调整单元延迟,另一个确定转向方向。系统级芯片采用 180 纳米高压 (HV) CMOS 工艺制造,有效面积仅为 0.3 毫米 × 3.7 毫米。拟议的 SoC 在接收模式下的功耗为 31.3 mW。波束形成器的功能和 SoC 的整体性能通过声学表征和成像实验得到了验证。
{"title":"A 1.11 mm2 IVUS SoC with ±50°-Range Plane Wave Transmit Beamforming at 40 MHz.","authors":"Xitie Zhang, Evren F Arkan, Coskun Tekes, M Sait Kilinc, Tzu-Han Wang, F Levent Degertekin, Shaolan Li","doi":"10.1109/TBCAS.2024.3409162","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3409162","url":null,"abstract":"<p><p>Intravascular ultrasound (IVUS) imaging catheters are significant tools for cardiovascular interventions, and their use can be expanded by realizing IVUS imaging guidewires and microcatheters. The miniaturization of these devices creates challenges in SNR due to the need for higher frequencies to provide adequate resolution. An integrated IVUS system with transmit beamforming can mitigate these limitations. This work presents the first practical highly integrated system-on-a-chip (SoC) with plane wave transmit beamforming at 40 MHz for IVUS on guidewire or microcatheters. The front-end circuitry has a 20-channel ultrasound transmitter (Tx) and receiver (Rx) array interfaced with a capacitive micromachined ultrasound transducer (CMUT) array. During each firing, all 20 Tx are excited with the same analog delay with respect to each other, which can be continuously adjusted between ~0 and 10 ns in two directions, generating a steerable plane wave in a range of ±/-50° for a phased array at 40 MHz. The unit delays are generated via a voltage-controlled delay line (VCDL), which only needs two external controls, one tuning the unit delay and the other determining the steering direction. The SoC is fabricated using a 180-nm high-voltage (HV) CMOS process and features a slender active area of 0.3 mm × 3.7 mm. The proposed SoC consumes 31.3 mW during the receiving mode. The beamformer's functionality and the SoC's overall performance were validated through acoustic characterization and imaging experiments.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-Efficient Spectral Analysis of ECGs on Resource Constrained IoT Devices. 在资源受限的物联网设备上对心电图进行高能效频谱分析
Pub Date : 2024-05-29 DOI: 10.1109/TBCAS.2024.3406520
Charalampos Eleftheriadis, Georgios Karakonstantis

Power spectral analysis (PSA) is one of the most popular and insightful methods, currently employed in several biomedical applications, aiming to identify and monitor various health related conditions. Among the most common applications of PSA is heart rate variability (HRV) analysis, which allows the extraction of further insights compared with conventional time-domain methods. Unfortunately, existing PSA approaches exhibit high computational complexity, hindering their execution on power-constrained embedded internet of things (IoT) devices. Such IoT devices are increasingly used for monitoring various conditions mainly by processing the input signals in the less complex time-domain. In this paper, a new low-complexity PSA system based on fast Gaussian gridding (FGG) is proposed, which can be used to calculate the Lomb-Scargle periodogram (LSP) of a non-uniformly spaced RR tachogram. The proposed approach is implemented on a popular ARM Cortex-M4 based embedded system, which is widely used in common wearables, and compared with conventional LSP-based approaches. Utilizing this experimental setup, a meticulous analysis is performed in terms of power, performance and quality under different operational settings, such as the total input/output samples, precision of computations, computer arithmetic (floating/fixed-point), and clock frequency. The experimental results show that the proposed FGG-based LSP approach, when specifically optimized for the targeted embedded device, outperforms existing approaches by up-to 92.99% and 91.70% in terms of energy consumption and total execution time respectively, with minimal accuracy loss.

功率谱分析(PSA)是最流行、最具洞察力的方法之一,目前已应用于多个生物医学领域,旨在识别和监测各种健康相关状况。心率变异性(HRV)分析是功率谱分析最常见的应用之一,与传统的时域方法相比,该方法可以提取更多的信息。遗憾的是,现有的 PSA 方法显示出较高的计算复杂性,阻碍了它们在功耗受限的嵌入式物联网(IoT)设备上的执行。此类物联网设备主要通过处理复杂度较低的时域输入信号,越来越多地用于监测各种情况。本文提出了一种基于快速高斯网格划分(FGG)的新型低复杂度 PSA 系统,可用于计算非均匀间隔 RR 流速图的 Lomb-Scargle 周期图(LSP)。建议的方法在基于 ARM Cortex-M4 的嵌入式系统上实现,该系统广泛应用于常见的可穿戴设备,并与传统的基于 LSP 的方法进行了比较。利用该实验装置,对不同操作设置下的功耗、性能和质量进行了细致分析,如总输入/输出采样、计算精度、计算机算术(浮点/定点)和时钟频率。实验结果表明,当针对目标嵌入式设备进行专门优化时,所提出的基于 FGG 的 LSP 方法在能耗和总执行时间方面分别优于现有方法高达 92.99% 和 91.70%,且精度损失极小。
{"title":"Energy-Efficient Spectral Analysis of ECGs on Resource Constrained IoT Devices.","authors":"Charalampos Eleftheriadis, Georgios Karakonstantis","doi":"10.1109/TBCAS.2024.3406520","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3406520","url":null,"abstract":"<p><p>Power spectral analysis (PSA) is one of the most popular and insightful methods, currently employed in several biomedical applications, aiming to identify and monitor various health related conditions. Among the most common applications of PSA is heart rate variability (HRV) analysis, which allows the extraction of further insights compared with conventional time-domain methods. Unfortunately, existing PSA approaches exhibit high computational complexity, hindering their execution on power-constrained embedded internet of things (IoT) devices. Such IoT devices are increasingly used for monitoring various conditions mainly by processing the input signals in the less complex time-domain. In this paper, a new low-complexity PSA system based on fast Gaussian gridding (FGG) is proposed, which can be used to calculate the Lomb-Scargle periodogram (LSP) of a non-uniformly spaced RR tachogram. The proposed approach is implemented on a popular ARM Cortex-M4 based embedded system, which is widely used in common wearables, and compared with conventional LSP-based approaches. Utilizing this experimental setup, a meticulous analysis is performed in terms of power, performance and quality under different operational settings, such as the total input/output samples, precision of computations, computer arithmetic (floating/fixed-point), and clock frequency. The experimental results show that the proposed FGG-based LSP approach, when specifically optimized for the targeted embedded device, outperforms existing approaches by up-to 92.99% and 91.70% in terms of energy consumption and total execution time respectively, with minimal accuracy loss.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE transactions on biomedical circuits and systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1