Pub Date : 2021-05-15DOI: 10.20998/2079-0821.2021.01.03
O. Borysenko, Sergii Logvinkov, H. Shabanova, Igor Остапенко, Vita Шумейко
Among the materials that attract attention from the point of view of creating refractory products with increased heat resistance, one can single out materials based on compositions of the MgO – Al2O3 – TiO2 system. As a result of the thermodynamic analysis of the MgO – Al2O3 – TiO2 system, it was found that the partition of the system into elementary triangles will change in three temperature ranges: I – up to 1537 K, II – in the temperature range 1537 – 2076 K and above 2076 K. It has been established that up to a temperature of 2076 K there is a concentration range of spinel phases: magnesium aluminate spinel – quandylite. Above 1537 K, there is a concentration range: tialite – karroite, which meets the requirements for materials with high heat resistance. The elementary triangle TiO2 – Al2TiO5 – MgTi2O5 can be used to obtain heat–resistant materials based on Al2TiO5 stabilized by MgTi2O5. To obtain heat–resistant periclase–spinel materials, an elementary triangle Mg2TiO4 – MgAl2O4 – MgO is recommended, in which only compounds with a cubic crystal lattice are present. Thus, the division of the MgO – Al2O3 – TiO2 system into elementary triangles and the analysis of the geometrical–topological characteristics of the phases of the system made it possible to select in the system under study the regions of compositions that have optimal properties for obtaining materials with the specified optimal properties.
{"title":"GEOMETRICAL–TOPOLOGICAL CHARACTERISTICS OF THE SUBSOLIDUS STRUCTURE IN THE MgO – Al2O3 – TiO2 SYSTEM","authors":"O. Borysenko, Sergii Logvinkov, H. Shabanova, Igor Остапенко, Vita Шумейко","doi":"10.20998/2079-0821.2021.01.03","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.01.03","url":null,"abstract":"Among the materials that attract attention from the point of view of creating refractory products with increased heat resistance, one can single out materials based on compositions of the MgO – Al2O3 – TiO2 system. As a result of the thermodynamic analysis of the MgO – Al2O3 – TiO2 system, it was found that the partition of the system into elementary triangles will change in three temperature ranges: I – up to 1537 K, II – in the temperature range 1537 – 2076 K and above 2076 K. It has been established that up to a temperature of 2076 K there is a concentration range of spinel phases: magnesium aluminate spinel – quandylite. Above 1537 K, there is a concentration range: tialite – karroite, which meets the requirements for materials with high heat resistance. The elementary triangle TiO2 – Al2TiO5 – MgTi2O5 can be used to obtain heat–resistant materials based on Al2TiO5 stabilized by MgTi2O5. To obtain heat–resistant periclase–spinel materials, an elementary triangle Mg2TiO4 – MgAl2O4 – MgO is recommended, in which only compounds with a cubic crystal lattice are present. Thus, the division of the MgO – Al2O3 – TiO2 system into elementary triangles and the analysis of the geometrical–topological characteristics of the phases of the system made it possible to select in the system under study the regions of compositions that have optimal properties for obtaining materials with the specified optimal properties.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79115105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-15DOI: 10.20998/2079-0821.2021.01.02
Liudmyla Firsunina, Akhmetova Viktoria Akhmetova, Ivan Zezekalo
The article analyzes the main causes of fluid manifestations that occur in wells with side shafts and horizontal bottom at the stage of construction and operation of wells. It is established that the fluid manifestations are mainly due to the design features of such wells. The presence of overflow and interstratal overflows, in case of untimely detection and liquidation, can lead to emissions, accidents and large–scale environmental disasters. The cause of most complications at the stages of construction and operation of wells is the hydraulic connection of the drilled fluid–saturated formations with the wellbore, which accompanies all subsequent periods of well operation. To solve this problem, it is necessary to carry out repair and insulation works to eliminate overflow flows in wells with horizontal sections using blocking fluids for temporary insulation of the perforated part of the production string. Technological solutions for the elimination of intercolumn flows by pumping blocking tamponing compositions in the intervals of flow of liquids or gases, the installation of cut–off bridges to protect the productive layers from the cement material; carrying out insulation work through the upper part of the perforation zone. The authors propose the current directions of development of existing insulation technologies, taking into account the peculiarities of work in horizontal wells, in the construction of which use non–cemented shank–filters using physico–chemical and mechanical solutions. The selected technology and materials should ensure the filling of the entire porous medium and channels in the well and downhole section of rocks, as well as the optimal structure of the composition in a technologically acceptable time.
{"title":"Проблемы заколонных перетоков в скважинах с боковыми стволами и горизонтальным забоем","authors":"Liudmyla Firsunina, Akhmetova Viktoria Akhmetova, Ivan Zezekalo","doi":"10.20998/2079-0821.2021.01.02","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.01.02","url":null,"abstract":" \u0000The article analyzes the main causes of fluid manifestations that occur in wells with side shafts and horizontal bottom at the stage of construction and operation of wells. It is established that the fluid manifestations are mainly due to the design features of such wells. The presence of overflow and interstratal overflows, in case of untimely detection and liquidation, can lead to emissions, accidents and large–scale environmental disasters. The cause of most complications at the stages of construction and operation of wells is the hydraulic connection of the drilled fluid–saturated formations with the wellbore, which accompanies all subsequent periods of well operation. To solve this problem, it is necessary to carry out repair and insulation works to eliminate overflow flows in wells with horizontal sections using blocking fluids for temporary insulation of the perforated part of the production string. Technological solutions for the elimination of intercolumn flows by pumping blocking tamponing compositions in the intervals of flow of liquids or gases, the installation of cut–off bridges to protect the productive layers from the cement material; carrying out insulation work through the upper part of the perforation zone. The authors propose the current directions of development of existing insulation technologies, taking into account the peculiarities of work in horizontal wells, in the construction of which use non–cemented shank–filters using physico–chemical and mechanical solutions. The selected technology and materials should ensure the filling of the entire porous medium and channels in the well and downhole section of rocks, as well as the optimal structure of the composition in a technologically acceptable time.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72692853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-15DOI: 10.20998/2079-0821.2021.01.09
Saif Ali Abdulhadi, Alona Tulskа, Volodymyr Bayrachnyi, I. Sinkevich
Dimethyl sulfoxide is a feedstock for a large number of organic substances syntheses. Nowadays research is considerably focused on the production of general products of dimethyl sulfoxide oxidation – dimethyl sulfone and methane sulfonic acid. Dimethyl sulfone is well–known as a food supplement for the treating and strengthening of human joints and ligaments. dimethyl sulfone is basically synthesized by oxidation of dimethyl sulfoxide in hot 30 % hydrogen peroxide in glacial acetic acid. Synthesis is accompanied by significant losses of hydrogen peroxide, the target product has to be significantly purified. It becomes possible to control the synthesis of pure dimethyl sulfone and methane sulfonic acid when using the electrochemical method of oxidation of dimethyl sulfoxide in its aqueous solution with chemically resistant anode and high overvoltage of oxygen reaction Controlled synthesis is relevant because sulfur tends to change the oxidation rate. Study of kinetics of anodic processes at platinum electrode was performed in the dimethyl sulfoxide concentration range about 1.0…4.0 mol∙dm–3. Current raise was observed at potentials that are more positive than 1.3…1.4 V. This potential range corresponds to oxygen release. Dissolved sulfuric acid (0.2 mol∙dm–3) was added in order to inhibit the oxygen release and achieve the potential for the formation of peroxide radicals in aqueous solutions of dimethyl sulfoxide. It is known that sulfate ions are adsorbed on the surface of the platinum anode, displacing molecules of protonated water. This allows to shift the potentials and increase of the electrolysis current in 0.2 mol∙dm–3 H2SO4 to 1.7…1.9 V. It indicates the processes of formation of peroxide radicals on the surface of the platinum anode. Further shift of the anode potential into more positive area than 2.00…2.05 V leads to a rapid increase in current density. At such potentials, dimethyl sulfoxide and dimethyl sulfone are oxidized to methane sulfonic acid with a parallel oxygen and hydrogen peroxide release. Current–voltage study has shown that the oxidation of dimethyl sulfoxide in aqueous solutions runs through the formation of dimethyl sulfone. When conducting electrochemical synthesis with control of the anode potential, it is possible to produce dimethyl sulfone without further oxidation to methane sulfonic acid. The addition of 0.2 mol∙dm–3 H2SO4 to aqueous dimethyl sulfoxide solutions inhibits oxygen release and intensifies oxidation of dipole dimethyl sulfoxide molecules adsorbed on the platinum surface. The influence of adsorption processes on the kinetics of anode processes at the platinum anode in aqueous solutions of dimethyl sulfoxide at high anode potentials has been studied.
{"title":"ON THE KINETICS OF ANODIC PROCESSES AT OXIDATION OF AQUEOUS SOLUTIONS OF DIMETHYL SULFOXIDE","authors":"Saif Ali Abdulhadi, Alona Tulskа, Volodymyr Bayrachnyi, I. Sinkevich","doi":"10.20998/2079-0821.2021.01.09","DOIUrl":"https://doi.org/10.20998/2079-0821.2021.01.09","url":null,"abstract":"Dimethyl sulfoxide is a feedstock for a large number of organic substances syntheses. Nowadays research is considerably focused on the production of general products of dimethyl sulfoxide oxidation – dimethyl sulfone and methane sulfonic acid. Dimethyl sulfone is well–known as a food supplement for the treating and strengthening of human joints and ligaments. dimethyl sulfone is basically synthesized by oxidation of dimethyl sulfoxide in hot 30 % hydrogen peroxide in glacial acetic acid. Synthesis is accompanied by significant losses of hydrogen peroxide, the target product has to be significantly purified. It becomes possible to control the synthesis of pure dimethyl sulfone and methane sulfonic acid when using the electrochemical method of oxidation of dimethyl sulfoxide in its aqueous solution with chemically resistant anode and high overvoltage of oxygen reaction Controlled synthesis is relevant because sulfur tends to change the oxidation rate. Study of kinetics of anodic processes at platinum electrode was performed in the dimethyl sulfoxide concentration range about 1.0…4.0 mol∙dm–3. Current raise was observed at potentials that are more positive than 1.3…1.4 V. This potential range corresponds to oxygen release. Dissolved sulfuric acid (0.2 mol∙dm–3) was added in order to inhibit the oxygen release and achieve the potential for the formation of peroxide radicals in aqueous solutions of dimethyl sulfoxide. It is known that sulfate ions are adsorbed on the surface of the platinum anode, displacing molecules of protonated water. This allows to shift the potentials and increase of the electrolysis current in 0.2 mol∙dm–3 H2SO4 to 1.7…1.9 V. It indicates the processes of formation of peroxide radicals on the surface of the platinum anode. Further shift of the anode potential into more positive area than 2.00…2.05 V leads to a rapid increase in current density. At such potentials, dimethyl sulfoxide and dimethyl sulfone are oxidized to methane sulfonic acid with a parallel oxygen and hydrogen peroxide release. Current–voltage study has shown that the oxidation of dimethyl sulfoxide in aqueous solutions runs through the formation of dimethyl sulfone. When conducting electrochemical synthesis with control of the anode potential, it is possible to produce dimethyl sulfone without further oxidation to methane sulfonic acid. The addition of 0.2 mol∙dm–3 H2SO4 to aqueous dimethyl sulfoxide solutions inhibits oxygen release and intensifies oxidation of dipole dimethyl sulfoxide molecules adsorbed on the platinum surface. The influence of adsorption processes on the kinetics of anode processes at the platinum anode in aqueous solutions of dimethyl sulfoxide at high anode potentials has been studied.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"108 5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79457510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14DOI: 10.20998/10.20998/2079-0821.2020.02.06
N. Rudenko, B. Bairachniy
The paper presents the features of the synthesis of hydrogen released as a result of dissolution of the aluminum alloy AMg. To more fully determine the technological characteristics of hydrogen synthesis, we studied the volumes of hydrogen released in the reactor as a result of dissolution of the aluminum alloy AMg. The mechanism of alloy dissolution is established taking into account the effect of impurities in the alloy on the anodic dissolution process. The conditions for accelerating the anodic dissolution of the AMg alloy in the presence of chlorine ions under the conditions of the “negative differential effect” are determined. The dissolution of the AMg alloy in an alkaline chloride solution has an electrochemical nature, which is based on the electrochemical mechanism of hydrogen reduction with the subsequent process of its diffusion into the gas phase. Chloride ions accelerate the active dissolution of aluminum at current densities of 5 A/dm2 instead of 3 A/dm2 at room temperature and surface roughness of class 3-5 (≈5 μm). The greatest influence on the dissolution rate of the alloy has the concentration of NaOH, the dissolution temperature and the surface cleanliness class. The main technological indicator of the improvement of hydrogen electrosynthesis is the use of anodic depolarization of aluminum, its negative values and, as a consequence, the evolution of hydrogen on both electrodes. The depolarization effect is achieved by dissolving the aluminum alloy instead of the oxygen evolution reaction at the anode. The voltage on the cell is 2 times lower compared to industrial alkaline water electrolysis. This makes it possible to save up to 50% of electricity. The absence of oxygen evolution makes this process safer.
{"title":"EFFICIENCY OF WATER-BASED ELECTROLYSIS DEPENDING ON TECHNOLOGICAL PARAMETERS OF CORROSIVE AND ANODE DISSOLUTION OF ALUMINUM","authors":"N. Rudenko, B. Bairachniy","doi":"10.20998/10.20998/2079-0821.2020.02.06","DOIUrl":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.06","url":null,"abstract":"The paper presents the features of the synthesis of hydrogen released as a result of dissolution of the aluminum alloy AMg. To more fully determine the technological characteristics of hydrogen synthesis, we studied the volumes of hydrogen released in the reactor as a result of dissolution of the aluminum alloy AMg. The mechanism of alloy dissolution is established taking into account the effect of impurities in the alloy on the anodic dissolution process. The conditions for accelerating the anodic dissolution of the AMg alloy in the presence of chlorine ions under the conditions of the “negative differential effect” are determined. The dissolution of the AMg alloy in an alkaline chloride solution has an electrochemical nature, which is based on the electrochemical mechanism of hydrogen reduction with the subsequent process of its diffusion into the gas phase. Chloride ions accelerate the active dissolution of aluminum at current densities of 5 A/dm2 instead of 3 A/dm2 at room temperature and surface roughness of class 3-5 (≈5 μm). The greatest influence on the dissolution rate of the alloy has the concentration of NaOH, the dissolution temperature and the surface cleanliness class. The main technological indicator of the improvement of hydrogen electrosynthesis is the use of anodic depolarization of aluminum, its negative values and, as a consequence, the evolution of hydrogen on both electrodes. The depolarization effect is achieved by dissolving the aluminum alloy instead of the oxygen evolution reaction at the anode. The voltage on the cell is 2 times lower compared to industrial alkaline water electrolysis. This makes it possible to save up to 50% of electricity. The absence of oxygen evolution makes this process safer.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90287352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14DOI: 10.20998/10.20998/2079-0821.2020.02.03
V. Sebko, Y. Pyrozhenko, V. Zdorenko, T. Novozhilova, Dmytro Nechiporenko
The studies of technoecology problems in the field of brewing established the need to predict the condition of equipment, the quality of semi-finished products, as well as the creation of algorithms for extracting and processing information on quality indicators. The necessity of developing new effective methods for monitoring brewing equipment, semi-finished products, finished products and the state of stock water samples has been proved. Thanks to this, it will become possible to determine the reasons for the deviation of the product characteristics from the set quality indicators and to take measures for appropriate adjustment. Experimental studies have confirmed that, thanks to the allocation of important informative parameters, it becomes possible to increase the overall component of the reliability of control.This leads to an increase in the quality of the finished product. In particular, it was found that due to the hardware techniques associated with heating the sample during the control process and compensating for the influence of the parasitic magnetic flux, it becomes possible to carry out joint control of quantitative parameters that are related to the physicomechanical properties of equipment parts, assemblies and designs of the beer column. The latter, in particular, relates to the implementation of joint control of the geometric, electrical and temperature parameters of parts of brewing equipment.Thus, there is reason to argue about the prospects of further research in the creation of automated computer systems for monitoring the electrical and temperature characteristics of semi-finished brewing products when implementing new informative methods.
{"title":"METHODS OF NON-CONTACT PARAMETRIC CONTROL OF EQUIPMENT OF BREWING APPARATUS AND WASTE WATER SAMPLES","authors":"V. Sebko, Y. Pyrozhenko, V. Zdorenko, T. Novozhilova, Dmytro Nechiporenko","doi":"10.20998/10.20998/2079-0821.2020.02.03","DOIUrl":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.03","url":null,"abstract":"The studies of technoecology problems in the field of brewing established the need to predict the condition of equipment, the quality of semi-finished products, as well as the creation of algorithms for extracting and processing information on quality indicators. The necessity of developing new effective methods for monitoring brewing equipment, semi-finished products, finished products and the state of stock water samples has been proved. Thanks to this, it will become possible to determine the reasons for the deviation of the product characteristics from the set quality indicators and to take measures for appropriate adjustment. Experimental studies have confirmed that, thanks to the allocation of important informative parameters, it becomes possible to increase the overall component of the reliability of control.This leads to an increase in the quality of the finished product. In particular, it was found that due to the hardware techniques associated with heating the sample during the control process and compensating for the influence of the parasitic magnetic flux, it becomes possible to carry out joint control of quantitative parameters that are related to the physicomechanical properties of equipment parts, assemblies and designs of the beer column. The latter, in particular, relates to the implementation of joint control of the geometric, electrical and temperature parameters of parts of brewing equipment.Thus, there is reason to argue about the prospects of further research in the creation of automated computer systems for monitoring the electrical and temperature characteristics of semi-finished brewing products when implementing new informative methods.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78773695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14DOI: 10.20998/10.20998/2079-0821.2020.02.07
O. Burachok, D. Pershyn, S. Matkivskyi, Y. Bikman, O. Kondrat, Viacheslav Yuriiovych Filatov
The problems of gas-condensate PVT-models (Pressure Volume Temperature, PVT) creation under limited input information were analyzed. Traditional fluid phase behavior characterization approach relies on creation of the equation of state (EOS) based on initial composition of reservoir fluid and its future regression for critical parameters (pressure and temperature), binary interaction coefficients, acentric factors of residual “plus” fraction or pseudo-components. The adjustment is done until the moment when EOS is reproducing the results of laboratory experiments. Classic PVT experiments performed on gas-condensates and volatile oils are constant composition expansion (CCE), constant volume depletion (CVD) and separator tests. However, in the case of most Ukrainian fields, discovered and explored in the last century, not only the reliable detailed initial fluid composition is not available, but phase behavior was studied with non-equilibrium method of so-called differential condensation, that does not allow their direct application for PVT models creation. Previously, the authors [1, 2] presented an alternative method for fluid characterization based on the fractional distillation test. At the same time, due to significant uncertainty in input data, particularly a) condensate production allocation; b) commingled production from multiple reservoirs with different C5+ yield; c) non-recorded change of separator conditions that affects liquid extraction and its density; d) technological production losses, issues of reproducing the condensate production during history matching of several models of Dniper-Donetsk Basin were faced. There was proposed and explained in detail an example of single-cell reservoir simulation model application concept for quality check of created PVT model for one of the fields with potential yield of 86 g/m3. The idea of the concept is based on the reproduction of material balance of gas-condensate reservoir through one conditional well controlled on a primary (gas) phase, that allows quick identification of changes into calculated gas-condensate yield curve, necessary for matching of condensate production. Implementation of these changes allows quick and precise full-field model calibration.
{"title":"GAS-CONDENSATE FLUID PVT MODEL QUALITY CHECK BASED ON THE CONCEPT OF A SINGLE-CELL SIMULATION MODEL","authors":"O. Burachok, D. Pershyn, S. Matkivskyi, Y. Bikman, O. Kondrat, Viacheslav Yuriiovych Filatov","doi":"10.20998/10.20998/2079-0821.2020.02.07","DOIUrl":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.07","url":null,"abstract":"The problems of gas-condensate PVT-models (Pressure Volume Temperature, PVT) creation under limited input information were analyzed. Traditional fluid phase behavior characterization approach relies on creation of the equation of state (EOS) based on initial composition of reservoir fluid and its future regression for critical parameters (pressure and temperature), binary interaction coefficients, acentric factors of residual “plus” fraction or pseudo-components. The adjustment is done until the moment when EOS is reproducing the results of laboratory experiments. Classic PVT experiments performed on gas-condensates and volatile oils are constant composition expansion (CCE), constant volume depletion (CVD) and separator tests. However, in the case of most Ukrainian fields, discovered and explored in the last century, not only the reliable detailed initial fluid composition is not available, but phase behavior was studied with non-equilibrium method of so-called differential condensation, that does not allow their direct application for PVT models creation. Previously, the authors [1, 2] presented an alternative method for fluid characterization based on the fractional distillation test. At the same time, due to significant uncertainty in input data, particularly a) condensate production allocation; b) commingled production from multiple reservoirs with different C5+ yield; c) non-recorded change of separator conditions that affects liquid extraction and its density; d) technological production losses, issues of reproducing the condensate production during history matching of several models of Dniper-Donetsk Basin were faced. There was proposed and explained in detail an example of single-cell reservoir simulation model application concept for quality check of created PVT model for one of the fields with potential yield of 86 g/m3. The idea of the concept is based on the reproduction of material balance of gas-condensate reservoir through one conditional well controlled on a primary (gas) phase, that allows quick identification of changes into calculated gas-condensate yield curve, necessary for matching of condensate production. Implementation of these changes allows quick and precise full-field model calibration.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"82 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79671475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14DOI: 10.20998/10.20998/2079-0821.2020.02.10
A. Grigorov, K. Shevchenko, I. Sinkevich
ДОСЛІДЖЕННЯ КОРОЗІЙНОГО ВПЛИВУ НА МЕТАЛ ШИРОКОЇ ПАЛИВНОЇ ФРАКЦІЇ, ОТРИМАНОЇ З ВТОРИННОЇ ПОЛІМЕРНОЇ СИРОВИНИ Наведено дослідження корозійного впливу на метал (мідну пластину) широкої паливної фракції (ШПФ) рідкого продукту термічної деструкції вторинної сировини, виготовленої з поліетилену низького тиску (ПЄНТ) при температурах до 380°С та тиску 0,12-0,15 МПа. Визначення корозійного впливу на мідну пластину ШПФ здійснювалося у відповідності до стандарту ASTM D 130-10 при температурі 50°С впродовж 120 хвилин як для зневодненої проби ШПФ, так і у присутності 1% води. Встановлено, що мідні пластини, які перебували у ШПФ та ШПФ + 1% води при візуальній оцінці мали світло-оранжевий колір, близький до кольору вихідної пластини. Це, у свою чергу, свідчить про те, що досліджувані проби ШПФ витримали випробування, а корозійний вплив на мідну пластину можна віднести до легкого потьмяніння, клас 1.а. Також, разом з дослідженням у стандартних умовах визначався корозійний вплив на мідну пластину продуктів згоряння ШПФ при різних температурах при яких було встановлено, що в інтервалі температур 180-230°С поверхня мідної пластини набуває блідно-ліловий колір, а корозійний вплив на мідну пластину можна віднести до помірного потьмяніння, клас 2.b; при температурах 230290° поверхня мідної пластини вже має сріблястий колір, а корозійний вплив на мідну пластину відповідає помірному потьмянінню, клас 2.d. Отже, при впливі продуктів згоряння ШПФ на мідну пластину відбувається лише киснева корозія, що зумовлена присутністю кисню у зоні розташування мідної пластини та температурою продуктів згоряння. Таким чином, було зроблено висновок про відсутність корозійноактивних елементів у ШПФ, що робить її придатною для застосування як дешевого компонента моторних, пічних та котельних палив, поліпшуючого їх експлуатаційні властивості (наприклад, зниження вмісту сірки). Ключові слова: широка паливна фракція, корозія, вторинна сировина, полімери, деструкція, мідна пластина, продукти згоряння, корозійно-активні елементи, оксидування.
{"title":"INVESTIGATION OF CORROSIVE EFFECT ON METAL OF A BROAD FUEL FRACTION OBTAINED FROM SECONDARY POLYMER RAW MATERIAL","authors":"A. Grigorov, K. Shevchenko, I. Sinkevich","doi":"10.20998/10.20998/2079-0821.2020.02.10","DOIUrl":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.10","url":null,"abstract":"ДОСЛІДЖЕННЯ КОРОЗІЙНОГО ВПЛИВУ НА МЕТАЛ ШИРОКОЇ ПАЛИВНОЇ ФРАКЦІЇ, ОТРИМАНОЇ З ВТОРИННОЇ ПОЛІМЕРНОЇ СИРОВИНИ Наведено дослідження корозійного впливу на метал (мідну пластину) широкої паливної фракції (ШПФ) рідкого продукту термічної деструкції вторинної сировини, виготовленої з поліетилену низького тиску (ПЄНТ) при температурах до 380°С та тиску 0,12-0,15 МПа. Визначення корозійного впливу на мідну пластину ШПФ здійснювалося у відповідності до стандарту ASTM D 130-10 при температурі 50°С впродовж 120 хвилин як для зневодненої проби ШПФ, так і у присутності 1% води. Встановлено, що мідні пластини, які перебували у ШПФ та ШПФ + 1% води при візуальній оцінці мали світло-оранжевий колір, близький до кольору вихідної пластини. Це, у свою чергу, свідчить про те, що досліджувані проби ШПФ витримали випробування, а корозійний вплив на мідну пластину можна віднести до легкого потьмяніння, клас 1.а. Також, разом з дослідженням у стандартних умовах визначався корозійний вплив на мідну пластину продуктів згоряння ШПФ при різних температурах при яких було встановлено, що в інтервалі температур 180-230°С поверхня мідної пластини набуває блідно-ліловий колір, а корозійний вплив на мідну пластину можна віднести до помірного потьмяніння, клас 2.b; при температурах 230290° поверхня мідної пластини вже має сріблястий колір, а корозійний вплив на мідну пластину відповідає помірному потьмянінню, клас 2.d. Отже, при впливі продуктів згоряння ШПФ на мідну пластину відбувається лише киснева корозія, що зумовлена присутністю кисню у зоні розташування мідної пластини та температурою продуктів згоряння. Таким чином, було зроблено висновок про відсутність корозійноактивних елементів у ШПФ, що робить її придатною для застосування як дешевого компонента моторних, пічних та котельних палив, поліпшуючого їх експлуатаційні властивості (наприклад, зниження вмісту сірки). Ключові слова: широка паливна фракція, корозія, вторинна сировина, полімери, деструкція, мідна пластина, продукти згоряння, корозійно-активні елементи, оксидування.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74282666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14DOI: 10.20998/10.20998/2079-0821.2020.02.11
S. Poverennyi, I. Fyk, O. Varavina, O. Yatskevych
In the complex of petrophysical methods for studying reservoir rocks, the semi-permeable membrane method whereby the residual water saturation and the structure of the pore space are mainly determined during the modeling of the process of produced water displacement by gas during the deposit formation, is quite widely used. In this case, the membrane operates in drainage mode. To address issues that arise during the oil and gas fields development, the reverse process is also of interest - modeling the reverse water flooding of the pore space when the gas pressure in the deposits decreases or during forced water flooding of the deposits, or when studying the processes of selective water flooding of wells. In this case, the membrane should work in the drainage mode for the first part of the experiment, creating residual water saturation, and.it should work in the impregnation mode fo rthe second part of theex periment. The drainage mode is described in sufficient detail in the literature, there are practically no materials on reverse impregnation. The carried out work was aimed at developing a semi-permeable membrane method for the drainage-impregnation regime to the extent of practical use, including carryingouta small number of test studies. The developed methodology will be explained in complete detail in the corresponding methodological manual, mainly its problematic aspects are considered here. Further application of the developed methodology will be aimed at solving specific problems arising in the process of hydrocarbon deposits development. Among the priority objects of study are the processes of gas displacement by oil from oil banks, oil displacement by water, oil and gas mixture displacement during the cycling process.
{"title":"SEMI–PERMEABLE MEMBRANE METHOD IN DRAINING-IMPREGNATION MODE IN THE INVESTIGATION OF OIL AND GAS COLLECTORS","authors":"S. Poverennyi, I. Fyk, O. Varavina, O. Yatskevych","doi":"10.20998/10.20998/2079-0821.2020.02.11","DOIUrl":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.11","url":null,"abstract":"In the complex of petrophysical methods for studying reservoir rocks, the semi-permeable membrane method whereby the residual water saturation and the structure of the pore space are mainly determined during the modeling of the process of produced water displacement by gas during the deposit formation, is quite widely used. In this case, the membrane operates in drainage mode. To address issues that arise during the oil and gas fields development, the reverse process is also of interest - modeling the reverse water flooding of the pore space when the gas pressure in the deposits decreases or during forced water flooding of the deposits, or when studying the processes of selective water flooding of wells. In this case, the membrane should work in the drainage mode for the first part of the experiment, creating residual water saturation, and.it should work in the impregnation mode fo rthe second part of theex periment. The drainage mode is described in sufficient detail in the literature, there are practically no materials on reverse impregnation. The carried out work was aimed at developing a semi-permeable membrane method for the drainage-impregnation regime to the extent of practical use, including carryingouta small number of test studies. The developed methodology will be explained in complete detail in the corresponding methodological manual, mainly its problematic aspects are considered here. Further application of the developed methodology will be aimed at solving specific problems arising in the process of hydrocarbon deposits development. Among the priority objects of study are the processes of gas displacement by oil from oil banks, oil displacement by water, oil and gas mixture displacement during the cycling process.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83099397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14DOI: 10.20998/10.20998/2079-0821.2020.02.08
S. Logvinkov, O. Borisenko, N. Tsapko, G. Shabanova, A. Korohodska, Vita Shumejko, O. Gaponova
{"title":"CALCULATED EVALUATION OF THE DEGREE OF SUBSOLIDUS STRUCTURE COMPLEXITY OF THE PHYSICO-CHEMICAL THREE-COMPONENT SYSTEMS","authors":"S. Logvinkov, O. Borisenko, N. Tsapko, G. Shabanova, A. Korohodska, Vita Shumejko, O. Gaponova","doi":"10.20998/10.20998/2079-0821.2020.02.08","DOIUrl":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.08","url":null,"abstract":"","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89275501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ВИВЧЕННЯ ГІРНИЧО-ГЕОЛОГІЧНИХ ОСОБЛИВОСТЕЙ ПЕРСПЕКТИВНИХ НАФТОВИДОБУВНИХ РАЙОНІВ ІРАКУ Ірак знаходиться в північно-східній частині Аравійської плити, яка особливо піддавалася тектонічним рухам в минулі геологічні періоди, де знаходиться кілька гігантських родовищ, які містять велику частину запасів нафти цієї країни. Структурні особливості нафтових родовищ півдня Іраку (Мішріф і Зубейр) формують ряд факторів, які ускладнюють будівництво і експлуатацію свердловин для видобутку нафти в цьому регіоні. Були розглянуті можливі негативні наслідки протікання процесів корозії нафтогазового обладнання та перспективн використання нових технологій та матеріалів з огляду на той факт, що в даний час основною технологією при нафтовидобутку в Іраку є заводнення, яке в даних умовах вимагає великої кількості води і несе ряд негативних факторів, які ускладнюють експлуатацію нафтовидобувного обладнання. Основними цими факторами є вміст кислих газів (сірководню і вуглекислого газу), висока мінералізація пластової води, яка повязана з присутністю хлорид-іонів , підвищена температура, яка обумовлена глибиною буріння та експлуатації свердловин. Дослідження базувалось на комплексному підході, який здійснювався шляхом аналізу даних про формування геологічної обстановки на півдні Іраку (тектоніка, стратиграфія, літолого-фаціальний і гідрологічний аналіз), узагальненні світового досвіду використання технологій нафтовилучення, використанні методик оцінки ресурсів нафти і газу. Ключові слова: вуглеводнева сировина, тектонічні рухи, структурні особливості, гірничо-геологічна будова, експлуатація родовища, ускладнюючі фактори,мінералізація,хлорид-іони,сірководень,вуглекислий газ,температура
{"title":"STUDY OF MINING AND GEOLOGICAL FEATURES OF PROMISING CRUDE OIL-PRODUCING AREAS OF IRAQ","authors":"Ameer Mohammed Alajmeen Neamah, Begench Halatovich Muhamedov, Dmytro Fedorovich Donsky, Sergii Viktorovich Nesterenko","doi":"10.20998/10.20998/2079-0821.2020.02.12","DOIUrl":"https://doi.org/10.20998/10.20998/2079-0821.2020.02.12","url":null,"abstract":"ВИВЧЕННЯ ГІРНИЧО-ГЕОЛОГІЧНИХ ОСОБЛИВОСТЕЙ ПЕРСПЕКТИВНИХ НАФТОВИДОБУВНИХ РАЙОНІВ ІРАКУ Ірак знаходиться в північно-східній частині Аравійської плити, яка особливо піддавалася тектонічним рухам в минулі геологічні періоди, де знаходиться кілька гігантських родовищ, які містять велику частину запасів нафти цієї країни. Структурні особливості нафтових родовищ півдня Іраку (Мішріф і Зубейр) формують ряд факторів, які ускладнюють будівництво і експлуатацію свердловин для видобутку нафти в цьому регіоні. Були розглянуті можливі негативні наслідки протікання процесів корозії нафтогазового обладнання та перспективн використання нових технологій та матеріалів з огляду на той факт, що в даний час основною технологією при нафтовидобутку в Іраку є заводнення, яке в даних умовах вимагає великої кількості води і несе ряд негативних факторів, які ускладнюють експлуатацію нафтовидобувного обладнання. Основними цими факторами є вміст кислих газів (сірководню і вуглекислого газу), висока мінералізація пластової води, яка повязана з присутністю хлорид-іонів , підвищена температура, яка обумовлена глибиною буріння та експлуатації свердловин. Дослідження базувалось на комплексному підході, який здійснювався шляхом аналізу даних про формування геологічної обстановки на півдні Іраку (тектоніка, стратиграфія, літолого-фаціальний і гідрологічний аналіз), узагальненні світового досвіду використання технологій нафтовилучення, використанні методик оцінки ресурсів нафти і газу. Ключові слова: вуглеводнева сировина, тектонічні рухи, структурні особливості, гірничо-геологічна будова, експлуатація родовища, ускладнюючі фактори,мінералізація,хлорид-іони,сірководень,вуглекислий газ,температура","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83044605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}