In this research, the impact of pattern geometry on the intensification of the performance of surface patterned membranes for saline water desalination by direct contact membrane distillation (DCMD) is investigated by computational fluid dynamics (CFD) simulation. The Comsol Multiphysics software was applied to solve the governing transport equations for heat, momentum, and mass transfer. The result of the model was validated by the published experimental data, and the maximum deviation was <10 %. The target was to maximize the permeate flux by altering surface pattern geometry and dimensions. Based on the previous studies, a prism pattern was chosen in this work, and the influences of pattern type (3 types), pattern dimension (25–150 µm valley depth), and the distance between the valleys (0–400 µm) were studied on the temperature polarization coefficient (TPC) and DCMD permeate flux. The results showed that the pattern with a valley depth of 25 µm and a distance between the valleys of 300 µm had the best performance in DCMD operation. In this situation and feed temperature of 80 °C, a TPC of 0.78 and a water flux of 49.3 kg m-12.h were attained. The characteristics of flow close to the patterned membrane surface were also investigated, and it was observed that there are weak shear stresses in the lower zone of the valleys, while stronger shear stresses are created in the upper regions that are responsible for improving the TPC and water flux in the patterned membranes.