Pub Date : 2024-10-29DOI: 10.1038/s43247-024-01810-z
Maximilian Barczok, Chelsea Smith, Lauren Kinsman-Costello, Monique Patzner, Casey Bryce, Andreas Kappler, David Singer, Elizabeth Herndon
Phosphorus limits primary productivity in many (Sub-)Arctic ecosystems and may constrain biological carbon sequestration. Iron (III) oxides strongly bind phosphate in soils but can dissolve under flooded, reducing conditions induced by permafrost thaw and ground collapse. The ability for iron to regulate phosphate storage and solubility in thawing permafrost landscapes remains unclear. Here, iron-rich sediments containing iron oxides and organic-bound iron were incubated with or without added phosphate in soils along a permafrost thaw gradient to evaluate how iron-phosphate associations respond to thaw-induced redox shifts. Iron oxides partially dissolved and released sorbed phosphate when incubated in soils underlain by degraded permafrost. Iron complexed by organic matter remained stable but provided no phosphate binding capacity. Phosphate addition enhanced iron oxide dissolution and phosphorus concentrations in associated microbial biomass. Our study demonstrates that the capacity for iron oxides to immobilize and retain phosphate in permafrost peatlands decreases with permafrost thaw. Thawing of permafrost in peatlands decreases the immobilization and retention of phosphate with Fe oxides and releases initially sorbed phosphate, according to incubation experiments with Fe-rich sediments in soil along a permafrost thaw gradient.
{"title":"Iron transformation mediates phosphate retention across a permafrost thaw gradient","authors":"Maximilian Barczok, Chelsea Smith, Lauren Kinsman-Costello, Monique Patzner, Casey Bryce, Andreas Kappler, David Singer, Elizabeth Herndon","doi":"10.1038/s43247-024-01810-z","DOIUrl":"10.1038/s43247-024-01810-z","url":null,"abstract":"Phosphorus limits primary productivity in many (Sub-)Arctic ecosystems and may constrain biological carbon sequestration. Iron (III) oxides strongly bind phosphate in soils but can dissolve under flooded, reducing conditions induced by permafrost thaw and ground collapse. The ability for iron to regulate phosphate storage and solubility in thawing permafrost landscapes remains unclear. Here, iron-rich sediments containing iron oxides and organic-bound iron were incubated with or without added phosphate in soils along a permafrost thaw gradient to evaluate how iron-phosphate associations respond to thaw-induced redox shifts. Iron oxides partially dissolved and released sorbed phosphate when incubated in soils underlain by degraded permafrost. Iron complexed by organic matter remained stable but provided no phosphate binding capacity. Phosphate addition enhanced iron oxide dissolution and phosphorus concentrations in associated microbial biomass. Our study demonstrates that the capacity for iron oxides to immobilize and retain phosphate in permafrost peatlands decreases with permafrost thaw. Thawing of permafrost in peatlands decreases the immobilization and retention of phosphate with Fe oxides and releases initially sorbed phosphate, according to incubation experiments with Fe-rich sediments in soil along a permafrost thaw gradient.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01810-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glaciers are experiencing unprecedented global warming, resulting in significant changes to microbial communities and nutrient transport within glacial ecosystems. However, the influence of supraglacial and subglacial ecosystems on the proglacial ecosystem remains poorly understood. Here, we investigated microbial communities across seven habitats in three glacial ecosystems on the Tibetan Plateau using 16S rRNA sequencing. Our results revealed that the proglacial ecosystem exhibited higher alpha diversity but lower network stability than other ecosystems. Moreover, supraglacial and subglacial ecosystems contributed differently to the community diversity and stability of the proglacial ecosystem. Supraglacial ecosystems provided more high-abundance species and had a greater impact on the proglacial ecosystem’s stability, while subglacial ecosystems released a broader range of diverse taxa. These findings highlight the distinct influences of supraglacial and subglacial ecosystems on microbial community dynamics in proglacial environments, offering insights into their interactions and potential impacts on downstream environments as glaciers retreat. Proglacial ecosystem community structure is driven both by high-abundance supraglacial ecosystems and high-diversity subglacial ecosystems, according to in-situ data from the Tibetan Plateau
{"title":"Supraglacial and subglacial ecosystems contribute differently towards proglacial ecosystem communities in Kuoqionggangri Glacier, Tibetan Plateau","authors":"Zhihao Zhang, Yongqin Liu, Keshao Liu, Yuying Chen, Xuezi Guo, Mukan Ji, Weishu Zhao","doi":"10.1038/s43247-024-01809-6","DOIUrl":"10.1038/s43247-024-01809-6","url":null,"abstract":"Glaciers are experiencing unprecedented global warming, resulting in significant changes to microbial communities and nutrient transport within glacial ecosystems. However, the influence of supraglacial and subglacial ecosystems on the proglacial ecosystem remains poorly understood. Here, we investigated microbial communities across seven habitats in three glacial ecosystems on the Tibetan Plateau using 16S rRNA sequencing. Our results revealed that the proglacial ecosystem exhibited higher alpha diversity but lower network stability than other ecosystems. Moreover, supraglacial and subglacial ecosystems contributed differently to the community diversity and stability of the proglacial ecosystem. Supraglacial ecosystems provided more high-abundance species and had a greater impact on the proglacial ecosystem’s stability, while subglacial ecosystems released a broader range of diverse taxa. These findings highlight the distinct influences of supraglacial and subglacial ecosystems on microbial community dynamics in proglacial environments, offering insights into their interactions and potential impacts on downstream environments as glaciers retreat. Proglacial ecosystem community structure is driven both by high-abundance supraglacial ecosystems and high-diversity subglacial ecosystems, according to in-situ data from the Tibetan Plateau","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01809-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1038/s43247-024-01820-x
Rui Xu, Zhiyong Xiao, Yichen Wang, Fanglu Luo, Yizhen Ma
The minimum velocity (v) for impact ejecta to form secondary craters (secondaries) remains enigmatic, but it is a crucial parameter in untangling the fate of impact ejecta on planetary surfaces. By cataloging the distances (L) of the nearest secondaries from centers of various-sized (D) primary craters (primaries) on the Moon, Mars and Mercury, we find that v can be as small as ~25 m/s, and an unified power-law relationship of L = 1.86D0.93 (both in meters) works for both simple and complex craters, regardless of different surface gravity and target properties. This relationship also successfully predicts occurrences of secondaries formed by craters on Venus. The constraint on v explains the common concurrences of structural disturbances in crater walls and continuous ejecta deposits caused by landing of cogenetic ejecta, suggesting that ejecta forming self-secondaries do not need near-vertical ejection angles and tertiary craters should be abundant on terrestrial bodies. Mapping of the distances of secondary craters from their primary crater on the Moon, Mars, and Mercury indicates a unified power law relationship, regardless of gravity and target properties and suggests the minimum impact velocity is lower than expected.
撞击喷出物形成次级陨石坑(次级)的最小速度(v)仍然是个谜,但它是解开行星表面撞击喷出物命运的一个关键参数。通过对月球、火星和水星上不同大小(D)的主陨石坑(原陨石坑)中心到最近的次级陨石坑的距离(L)进行编目,我们发现 v 可以小到 ~25 m/s,而统一的幂律关系 L = 1.86D0.93(单位均为米)适用于简单和复杂的陨石坑,与不同的表面重力和目标特性无关。这一关系也成功地预测了金星上陨石坑所形成的次级陨石坑的出现。对 v 的限制解释了陨石坑壁结构扰动和同源喷出物着陆造成的连续喷出物沉积的常见现象,表明形成自次级的喷出物不需要接近垂直的喷射角,三级陨石坑在陆地天体上应该非常多。对月球、火星和水星上次级陨石坑与其初级陨石坑距离的测绘表明,无论重力和目标特性如何,都存在统一的幂律关系,并表明最小撞击速度比预期的要低。
{"title":"Minimum velocity for impact ejecta to form secondaries on terrestrial bodies","authors":"Rui Xu, Zhiyong Xiao, Yichen Wang, Fanglu Luo, Yizhen Ma","doi":"10.1038/s43247-024-01820-x","DOIUrl":"10.1038/s43247-024-01820-x","url":null,"abstract":"The minimum velocity (v) for impact ejecta to form secondary craters (secondaries) remains enigmatic, but it is a crucial parameter in untangling the fate of impact ejecta on planetary surfaces. By cataloging the distances (L) of the nearest secondaries from centers of various-sized (D) primary craters (primaries) on the Moon, Mars and Mercury, we find that v can be as small as ~25 m/s, and an unified power-law relationship of L = 1.86D0.93 (both in meters) works for both simple and complex craters, regardless of different surface gravity and target properties. This relationship also successfully predicts occurrences of secondaries formed by craters on Venus. The constraint on v explains the common concurrences of structural disturbances in crater walls and continuous ejecta deposits caused by landing of cogenetic ejecta, suggesting that ejecta forming self-secondaries do not need near-vertical ejection angles and tertiary craters should be abundant on terrestrial bodies. Mapping of the distances of secondary craters from their primary crater on the Moon, Mars, and Mercury indicates a unified power law relationship, regardless of gravity and target properties and suggests the minimum impact velocity is lower than expected.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01820-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1038/s43247-024-01807-8
Robert Guralnick, Theresa Crimmins, Erin Grady, Lindsay Campbell
Climatic change is dramatically altering phenology but generalities regarding tempo and mode of response remain limited. Here we present a general model framework incorporating spring temperature, velocity of spring warming, and species’ thermal requirements for predicting phenological response to warming. A key prediction of this framework is that species active earlier in the season and located in warmer regions where spring temperature velocity is lowest show strongest sensitivity to climatic change and greatest advancement in response to warming. We test this prediction using plant phenology datasets collected in the 1850s and 2010s. Our results strikingly confirm model predictions, showing that while temperature sensitivity is higher in regions with low temperature velocity, the greatest realized change in phenological onset is northern areas where warming rates have been fastest. Our framework offers enhanced utility for predicting phenological sensitivity and responsiveness in temperate regions and across multiple plant species and potentially other groups. Spring temperature velocity impacts cycles of plant flowering and leaf-out, and realized change is greatest in areas where warming is most rapid, according to a model framework tested against Eastern USA plant phenology data.
{"title":"Phenological response to climatic change depends on spring warming velocity","authors":"Robert Guralnick, Theresa Crimmins, Erin Grady, Lindsay Campbell","doi":"10.1038/s43247-024-01807-8","DOIUrl":"10.1038/s43247-024-01807-8","url":null,"abstract":"Climatic change is dramatically altering phenology but generalities regarding tempo and mode of response remain limited. Here we present a general model framework incorporating spring temperature, velocity of spring warming, and species’ thermal requirements for predicting phenological response to warming. A key prediction of this framework is that species active earlier in the season and located in warmer regions where spring temperature velocity is lowest show strongest sensitivity to climatic change and greatest advancement in response to warming. We test this prediction using plant phenology datasets collected in the 1850s and 2010s. Our results strikingly confirm model predictions, showing that while temperature sensitivity is higher in regions with low temperature velocity, the greatest realized change in phenological onset is northern areas where warming rates have been fastest. Our framework offers enhanced utility for predicting phenological sensitivity and responsiveness in temperate regions and across multiple plant species and potentially other groups. Spring temperature velocity impacts cycles of plant flowering and leaf-out, and realized change is greatest in areas where warming is most rapid, according to a model framework tested against Eastern USA plant phenology data.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01807-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1038/s43247-024-01815-8
Iván Vergara, René Garreaud, Ian Delaney, Álvaro Ayala
Glaciers are thinning and retreating as climate warms, thus eroding less of the Earth’s surface. However, other hydrological factors in glacierized catchments are likely producing a transient increase in sediment delivery, resulting in ‘peak sediment’. Estimating the trajectory of the peak sediment is ecologically and socially important but scientifically challenging because of the delayed and non-linear response of glacier sediment export to climate forcing. This study used time series of suspended sediment concentration starting in the 1960s from 11 Andean rivers at subtropical latitudes to analyse past changes in sediment export and infer its future behaviour. The recent decade has experienced anomalously high sediment concentration in most glacierized catchments, but the 1970s experienced even higher values. Decadal variations in the relationship between sediment concentration and ice melt suggest that the magnitude of the current decade was lower due to reduced glacial sediment rather than other factors. Combining this result with the fact that glacial runoff is decreasing, it is inferred that, for most of the glacierized catchments, the peak sediment generated by the anthropogenic deglaciation started two centuries ago has already passed its maximum. The sediment delivery product of climate-change-driven deglaciation has passed its maximum for most of the subtropical Andes, according to the analysis of suspended sediment concentration from 11 rivers at subtropical latitudes.
{"title":"Deglaciation in the subtropical Andes has led to a peak in sediment delivery","authors":"Iván Vergara, René Garreaud, Ian Delaney, Álvaro Ayala","doi":"10.1038/s43247-024-01815-8","DOIUrl":"10.1038/s43247-024-01815-8","url":null,"abstract":"Glaciers are thinning and retreating as climate warms, thus eroding less of the Earth’s surface. However, other hydrological factors in glacierized catchments are likely producing a transient increase in sediment delivery, resulting in ‘peak sediment’. Estimating the trajectory of the peak sediment is ecologically and socially important but scientifically challenging because of the delayed and non-linear response of glacier sediment export to climate forcing. This study used time series of suspended sediment concentration starting in the 1960s from 11 Andean rivers at subtropical latitudes to analyse past changes in sediment export and infer its future behaviour. The recent decade has experienced anomalously high sediment concentration in most glacierized catchments, but the 1970s experienced even higher values. Decadal variations in the relationship between sediment concentration and ice melt suggest that the magnitude of the current decade was lower due to reduced glacial sediment rather than other factors. Combining this result with the fact that glacial runoff is decreasing, it is inferred that, for most of the glacierized catchments, the peak sediment generated by the anthropogenic deglaciation started two centuries ago has already passed its maximum. The sediment delivery product of climate-change-driven deglaciation has passed its maximum for most of the subtropical Andes, according to the analysis of suspended sediment concentration from 11 rivers at subtropical latitudes.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-7"},"PeriodicalIF":8.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01815-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1038/s43247-024-01812-x
Lu Qian, Jian Rao, Rongcai Ren, Chunhua Shi, Siming Liu
The stratosphere-troposphere and the tropics-Arctic couplings were intermittently enhanced in the 2023/24 winter. Here we used ERA5 reanalysis data and found that due to the amplification of planetary wavenumber 1 and 2 pulses, three displacement-type sudden stratospheric warming events occurred in one winter under the background conditions of warming equatorial middle and east Pacific, active equatorial convections, and easterly stratospheric equatorial winds. During the sudden stratospheric warming events, the stratospheric disturbances propagated downward to the surface, followed by continental cold surges. The residual meridional circulation was strengthened across the tropics and Arctic, anomalously more water vapor was transported into the stratosphere in tropics, while ozone content diminished in the lower stratosphere and grew in the upper stratosphere over the tropics. Meanwhile, water vapor and ozone over the Arctic exhibited a dipping pattern from the upper to the lower stratosphere. In early 2024, three sudden stratospheric warming events occurred due to warming equatorial middle and east Pacific, active equatorial convections, and easterly equatorial winds, enhancing stratosphere- troposphere and tropics-Arctic coupling, according to analysis of zonal wind, temperature, and geopotential height from ERA5 reanalysis data.
{"title":"Enhanced stratosphere-troposphere and tropics-Arctic couplings in the 2023/24 winter","authors":"Lu Qian, Jian Rao, Rongcai Ren, Chunhua Shi, Siming Liu","doi":"10.1038/s43247-024-01812-x","DOIUrl":"10.1038/s43247-024-01812-x","url":null,"abstract":"The stratosphere-troposphere and the tropics-Arctic couplings were intermittently enhanced in the 2023/24 winter. Here we used ERA5 reanalysis data and found that due to the amplification of planetary wavenumber 1 and 2 pulses, three displacement-type sudden stratospheric warming events occurred in one winter under the background conditions of warming equatorial middle and east Pacific, active equatorial convections, and easterly stratospheric equatorial winds. During the sudden stratospheric warming events, the stratospheric disturbances propagated downward to the surface, followed by continental cold surges. The residual meridional circulation was strengthened across the tropics and Arctic, anomalously more water vapor was transported into the stratosphere in tropics, while ozone content diminished in the lower stratosphere and grew in the upper stratosphere over the tropics. Meanwhile, water vapor and ozone over the Arctic exhibited a dipping pattern from the upper to the lower stratosphere. In early 2024, three sudden stratospheric warming events occurred due to warming equatorial middle and east Pacific, active equatorial convections, and easterly equatorial winds, enhancing stratosphere- troposphere and tropics-Arctic coupling, according to analysis of zonal wind, temperature, and geopotential height from ERA5 reanalysis data.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01812-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1038/s43247-024-01811-y
Sen Yang, Youzheng Zhang, Defeng Tian, Zekang Liu, Zhijun Ma
The implementation of water-surface photovoltaic systems as a source of renewable power has expanded rapidly worldwide in recent decades. Water-surface photovoltaic avoids negative impacts on terrestrial ecosystems, while the impacts on aquatic physical and chemical properties and biodiversity are unclear. To understand the ecological and environmental impacts of water-surface photovoltaic systems, here we conducted a field survey on water physical and chemical properties, plankton and bird communities of 26 water-surface photovoltaic systems in the Yangtze River basin in China during the winter and summer of 2022. We found that water-surface photovoltaic systems decreased water temperature, dissolved oxygen saturation and uncovered area of the water surface, which caused a reduction in plankton species and individual density, altering the community composition. Water-surface photovoltaic systems also caused an overall decrease in bird diversity and changed bird community compositions. These findings suggested that water-surface photovoltaic systems have impacts on the water environment and ecology. Since water-surface photovoltaic systems will continue to expand in the future, our results emphasize that rational planning is critical for the sustainable development of water-surface photovoltaic systems and the protection of the aquatic environment and biodiversity. Plankton species richness and individual density, and bird diversity decreased where water-surface photovoltaic systems were installed, according to a field survey in the Yangtze River basin, China during the winter and summer of 2022.
{"title":"Water-surface photovoltaic systems have affected water physical and chemical properties and biodiversity","authors":"Sen Yang, Youzheng Zhang, Defeng Tian, Zekang Liu, Zhijun Ma","doi":"10.1038/s43247-024-01811-y","DOIUrl":"10.1038/s43247-024-01811-y","url":null,"abstract":"The implementation of water-surface photovoltaic systems as a source of renewable power has expanded rapidly worldwide in recent decades. Water-surface photovoltaic avoids negative impacts on terrestrial ecosystems, while the impacts on aquatic physical and chemical properties and biodiversity are unclear. To understand the ecological and environmental impacts of water-surface photovoltaic systems, here we conducted a field survey on water physical and chemical properties, plankton and bird communities of 26 water-surface photovoltaic systems in the Yangtze River basin in China during the winter and summer of 2022. We found that water-surface photovoltaic systems decreased water temperature, dissolved oxygen saturation and uncovered area of the water surface, which caused a reduction in plankton species and individual density, altering the community composition. Water-surface photovoltaic systems also caused an overall decrease in bird diversity and changed bird community compositions. These findings suggested that water-surface photovoltaic systems have impacts on the water environment and ecology. Since water-surface photovoltaic systems will continue to expand in the future, our results emphasize that rational planning is critical for the sustainable development of water-surface photovoltaic systems and the protection of the aquatic environment and biodiversity. Plankton species richness and individual density, and bird diversity decreased where water-surface photovoltaic systems were installed, according to a field survey in the Yangtze River basin, China during the winter and summer of 2022.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01811-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1038/s43247-024-01801-0
Jinfu Ren, Yang Liu, Jiming Liu
Temperature prediction over decades provides crucial information for quantifying the expected effects of future climate changes. However, such predictions are extremely challenging due to the chaotic nature of temperature variations. Here we devise a prediction method involving an information tracking mechanism that aims to track and adapt to changes in temperature dynamics during the prediction phase by providing probabilistic feedback on the prediction error of the next step based on the current prediction. We integrate this information tracking mechanism, which can be considered as a model calibrator, into the objective function of the proposed method to obtain the corrections needed to avoid error accumulation. Experimental results on the task of global weekly land surface temperature prediction over a decade validate the effectiveness of the proposed method. Using an information tracking mechanism that provides probabilistic feedback on weekly predictions of temperature variations to calibrate a numerical weather prediction model helps avoid error accumulation over a decade.
{"title":"Consecutive one-week model predictions of land surface temperature stay on track for a decade with chaotic behavior tracking","authors":"Jinfu Ren, Yang Liu, Jiming Liu","doi":"10.1038/s43247-024-01801-0","DOIUrl":"10.1038/s43247-024-01801-0","url":null,"abstract":"Temperature prediction over decades provides crucial information for quantifying the expected effects of future climate changes. However, such predictions are extremely challenging due to the chaotic nature of temperature variations. Here we devise a prediction method involving an information tracking mechanism that aims to track and adapt to changes in temperature dynamics during the prediction phase by providing probabilistic feedback on the prediction error of the next step based on the current prediction. We integrate this information tracking mechanism, which can be considered as a model calibrator, into the objective function of the proposed method to obtain the corrections needed to avoid error accumulation. Experimental results on the task of global weekly land surface temperature prediction over a decade validate the effectiveness of the proposed method. Using an information tracking mechanism that provides probabilistic feedback on weekly predictions of temperature variations to calibrate a numerical weather prediction model helps avoid error accumulation over a decade.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01801-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1038/s43247-024-01797-7
Lisa Mandle, Andrew Shea, Emily Soth, Jesse A. Goldstein, Stacie Wolny, Jeffrey R. Smith, Rebecca Chaplin-Kramer, Richard P. Sharp, Mayur Patel
Existing approaches to evaluating companies on sustainability-related issues include limited accounting of impacts on nature and its contributions to human well-being. Here we present an approach for quantifying the direct impacts of companies’ physical assets on nature based on global maps for eight ecosystem service and biodiversity metrics. We apply this approach to a set of over 2000 global, publicly traded companies with 580,000 mapped physical assets and find that companies in utility, real estate, materials, and financial sectors have the largest impacts on average, with substantial variation within all sectors. Using high-spatial-resolution satellite imagery to map individual mine footprints, we compare a set of active lithium mines and find that impacts vary substantially among mines and change over time. By using open-source models and drawing on the growing availability of high-spatial-resolution satellite imagery, this approach could provide more transparent measures of corporate impacts to nature for nature-related reporting. The direct impact of companies’ physical assets on the environment can be estimated from global maps of ecosystem services and biodiversity to understand companies’ nature-related risks and opportunities, according to an assessment of more than 2000 global companies.
{"title":"An open-source approach for measuring corporate impacts on ecosystem services and biodiversity","authors":"Lisa Mandle, Andrew Shea, Emily Soth, Jesse A. Goldstein, Stacie Wolny, Jeffrey R. Smith, Rebecca Chaplin-Kramer, Richard P. Sharp, Mayur Patel","doi":"10.1038/s43247-024-01797-7","DOIUrl":"10.1038/s43247-024-01797-7","url":null,"abstract":"Existing approaches to evaluating companies on sustainability-related issues include limited accounting of impacts on nature and its contributions to human well-being. Here we present an approach for quantifying the direct impacts of companies’ physical assets on nature based on global maps for eight ecosystem service and biodiversity metrics. We apply this approach to a set of over 2000 global, publicly traded companies with 580,000 mapped physical assets and find that companies in utility, real estate, materials, and financial sectors have the largest impacts on average, with substantial variation within all sectors. Using high-spatial-resolution satellite imagery to map individual mine footprints, we compare a set of active lithium mines and find that impacts vary substantially among mines and change over time. By using open-source models and drawing on the growing availability of high-spatial-resolution satellite imagery, this approach could provide more transparent measures of corporate impacts to nature for nature-related reporting. The direct impact of companies’ physical assets on the environment can be estimated from global maps of ecosystem services and biodiversity to understand companies’ nature-related risks and opportunities, according to an assessment of more than 2000 global companies.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01797-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1038/s43247-024-01793-x
Hugues Goosse, Quentin Dalaiden, F. Feba, Bianca Mezzina, Ryan L. Fogt
After a period of relative stability, the Antarctic sea ice extent has abruptly decreased in 2016 and has remained low since then. Both atmospheric and oceanic processes likely contributed to this drop but many questions remain regarding the underlying dynamics and it is unknown if this drop is unprecedented. Here we produce a new multi-variate spatial reconstruction covering 1958–2023 and show that a similar drop in sea ice extent occurred at the end of the 1970s, albeit with a smaller magnitude. Both drops show similar spatial patterns, with a higher sea ice loss in the East Antarctic sector than in the West Antarctic sector where the variability is strongly modulated by wind-driven changes. The ocean integrates the atmospheric forcing and provides memory that amplifies the magnitude of both drops. Antarctic sea ice extent decreased abruptly in 2016 and has remained low since then, with similar drops in the 1970s but smaller magnitude, in which the higher sea ice loss occurred in the East Antarctic sector due to ocean atmospheric forcing, according to results from a multi-variate spatial reconstruction from 1958 to 2023.
{"title":"A drop in Antarctic sea ice extent at the end of the 1970s","authors":"Hugues Goosse, Quentin Dalaiden, F. Feba, Bianca Mezzina, Ryan L. Fogt","doi":"10.1038/s43247-024-01793-x","DOIUrl":"10.1038/s43247-024-01793-x","url":null,"abstract":"After a period of relative stability, the Antarctic sea ice extent has abruptly decreased in 2016 and has remained low since then. Both atmospheric and oceanic processes likely contributed to this drop but many questions remain regarding the underlying dynamics and it is unknown if this drop is unprecedented. Here we produce a new multi-variate spatial reconstruction covering 1958–2023 and show that a similar drop in sea ice extent occurred at the end of the 1970s, albeit with a smaller magnitude. Both drops show similar spatial patterns, with a higher sea ice loss in the East Antarctic sector than in the West Antarctic sector where the variability is strongly modulated by wind-driven changes. The ocean integrates the atmospheric forcing and provides memory that amplifies the magnitude of both drops. Antarctic sea ice extent decreased abruptly in 2016 and has remained low since then, with similar drops in the 1970s but smaller magnitude, in which the higher sea ice loss occurred in the East Antarctic sector due to ocean atmospheric forcing, according to results from a multi-variate spatial reconstruction from 1958 to 2023.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01793-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}