Pub Date : 2024-11-25DOI: 10.1038/s43247-024-01900-y
Jiwon Kim, Jacob Ladenburg
Carbon capture and storage is vital to reduce greenhouse gas emissions, albeit research on the public willingness to pay for it remains limited. Here we address this gap by considering information effects, development magnitude effects and prior familiarity relations on willingness to pay towards carbon capture and storage. Based on national-wide online survey targeting Danish public, conducted from June to August 2022, the contingent valuation method is employed. The study reveals that, irrespective of CO2 reduction goals, enhancing familiarity with carbon capture storage can influence public support. Additionally, we estimate willingness to pay elasticities related to development magnitude using a scope test, ensuring economic significance and validity of our findings. Ultimately, this study provides valuable insights for policymakers and stakeholders, supporting and enabling the design of effective strategies to promote public support for carbon capture and storage, and contribute to global climate change mitigation efforts. Regardless of Denmark’s carbon dioxide emission reduction goal, knowledge and familiarity influence public support and willingness to pay for carbon capture and storage, according to an online survey and econometric model analysis.
{"title":"Public demand for carbon capture and storage varies with information, development magnitude and prior familiarity","authors":"Jiwon Kim, Jacob Ladenburg","doi":"10.1038/s43247-024-01900-y","DOIUrl":"10.1038/s43247-024-01900-y","url":null,"abstract":"Carbon capture and storage is vital to reduce greenhouse gas emissions, albeit research on the public willingness to pay for it remains limited. Here we address this gap by considering information effects, development magnitude effects and prior familiarity relations on willingness to pay towards carbon capture and storage. Based on national-wide online survey targeting Danish public, conducted from June to August 2022, the contingent valuation method is employed. The study reveals that, irrespective of CO2 reduction goals, enhancing familiarity with carbon capture storage can influence public support. Additionally, we estimate willingness to pay elasticities related to development magnitude using a scope test, ensuring economic significance and validity of our findings. Ultimately, this study provides valuable insights for policymakers and stakeholders, supporting and enabling the design of effective strategies to promote public support for carbon capture and storage, and contribute to global climate change mitigation efforts. Regardless of Denmark’s carbon dioxide emission reduction goal, knowledge and familiarity influence public support and willingness to pay for carbon capture and storage, according to an online survey and econometric model analysis.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01900-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1038/s43247-024-01884-9
Sophie Opfergelt, François Gaspard, Catherine Hirst, Laurence Monin, Bennet Juhls, Anne Morgenstern, Michael Angelopoulos, Pier Paul Overduin
The ice-covered period of large Arctic rivers is shortening. To what extent will this affect biogeochemical processing of nutrients? Here we reveal, with silicon isotopes (δ30Si), a key winter pathway for nutrients under river ice. During colder winter phases in the Lena River catchment, conditions are met for frazil ice accumulation, which creates microzones. These are conducive to a lengthened reaction time for biogeochemical processes under ice. The heavier δ30Si values (3.5 ± 0.5 ‰) in river water reflect that 39 ± 11% of the Lena River discharge went through these microzones. Freezing-driven amorphous silica precipitation concomitant to increased ammonium concentration and changes in dissolved organic carbon aromaticity in Lena River water support microbially mediated processing of nutrients in the microzones. Upon warming, suppressing loci for winter intra-river nitrogen processing is likely to modify the balance between N2O production and consumption, a greenhouse gas with a large global warming potential. Frazil ice accumulation during winter creates micro-zones in the Lena River catchment that prolong reaction time for biogeochemical processing of nutrients under ice, according to a high resolution silicon isotope study.
{"title":"Frazil ice changes winter biogeochemical processes in the Lena River","authors":"Sophie Opfergelt, François Gaspard, Catherine Hirst, Laurence Monin, Bennet Juhls, Anne Morgenstern, Michael Angelopoulos, Pier Paul Overduin","doi":"10.1038/s43247-024-01884-9","DOIUrl":"10.1038/s43247-024-01884-9","url":null,"abstract":"The ice-covered period of large Arctic rivers is shortening. To what extent will this affect biogeochemical processing of nutrients? Here we reveal, with silicon isotopes (δ30Si), a key winter pathway for nutrients under river ice. During colder winter phases in the Lena River catchment, conditions are met for frazil ice accumulation, which creates microzones. These are conducive to a lengthened reaction time for biogeochemical processes under ice. The heavier δ30Si values (3.5 ± 0.5 ‰) in river water reflect that 39 ± 11% of the Lena River discharge went through these microzones. Freezing-driven amorphous silica precipitation concomitant to increased ammonium concentration and changes in dissolved organic carbon aromaticity in Lena River water support microbially mediated processing of nutrients in the microzones. Upon warming, suppressing loci for winter intra-river nitrogen processing is likely to modify the balance between N2O production and consumption, a greenhouse gas with a large global warming potential. Frazil ice accumulation during winter creates micro-zones in the Lena River catchment that prolong reaction time for biogeochemical processing of nutrients under ice, according to a high resolution silicon isotope study.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01884-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1038/s43247-024-01902-w
Bastien Parisy, Niels M. Schmidt, Alyssa R. Cirtwill, Edith Villa-Galaviz, Mikko Tiusanen, Cornelya F. C. Klütsch, Paul E. Aspholm, Katrine Raundrup, Eero J. Vesterinen, Helena Wirta, Tomas Roslin
Global environmental change may lead to changes in community structure and in species interactions, ultimately changing ecosystem functioning. Focusing on spatial variation in fungus–plant interactions across the rapidly changing Arctic, we quantified variation in the identity of interaction partners. We then related interaction turnover to variation in the bioclimatic environment by combining network analyses with general dissimilarity modelling. Overall, we found species associations to be highly plastic, with major rewiring among interaction partners across variable environmental conditions. Of this turnover, a major part was attributed to specific environmental properties which are likely to change with progressing climate change. Our findings suggest that the current structure of plant-root associated interactions may be severely altered by rapidly advancing global warming. Nonetheless, flexibility in partner choice may contribute to the resilience of the system. Fungus-plant interactions in the Arctic are highly pliable and can alter under changing temperature and soil conditions, according to modelling of plant and fungal communities using DNA metabarcoding data.
{"title":"Arctic plant-fungus interaction networks show major rewiring with environmental variation","authors":"Bastien Parisy, Niels M. Schmidt, Alyssa R. Cirtwill, Edith Villa-Galaviz, Mikko Tiusanen, Cornelya F. C. Klütsch, Paul E. Aspholm, Katrine Raundrup, Eero J. Vesterinen, Helena Wirta, Tomas Roslin","doi":"10.1038/s43247-024-01902-w","DOIUrl":"10.1038/s43247-024-01902-w","url":null,"abstract":"Global environmental change may lead to changes in community structure and in species interactions, ultimately changing ecosystem functioning. Focusing on spatial variation in fungus–plant interactions across the rapidly changing Arctic, we quantified variation in the identity of interaction partners. We then related interaction turnover to variation in the bioclimatic environment by combining network analyses with general dissimilarity modelling. Overall, we found species associations to be highly plastic, with major rewiring among interaction partners across variable environmental conditions. Of this turnover, a major part was attributed to specific environmental properties which are likely to change with progressing climate change. Our findings suggest that the current structure of plant-root associated interactions may be severely altered by rapidly advancing global warming. Nonetheless, flexibility in partner choice may contribute to the resilience of the system. Fungus-plant interactions in the Arctic are highly pliable and can alter under changing temperature and soil conditions, according to modelling of plant and fungal communities using DNA metabarcoding data.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01902-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1038/s43247-024-01890-x
Zhiqi Yang, Michael J. DeFlorio, Agniv Sengupta, Jiabao Wang, Christopher M. Castellano, Alexander Gershunov, Kristen Guirguis, Emily Slinskey, Bin Guan, Luca Delle Monache, F. Martin Ralph
Atmospheric rivers (ARs) are narrow corridors of intense water vapor transport, shaping precipitation, floods, and economies. Temporal clustering of ARs tripled losses compared to isolated events, yet the reasons behind this clustering remain unclear. AR orientation further modulates hydrological impacts through terrain interaction. Here we identify unique ARs over the North Pacific and Western U.S. and utilize Cox regression and composite analysis to examine how six major climate modes influence temporal clustering of unique ARs and orientation during extended boreal winter (November to March). Results show that climate modes condition temporal clustering of unique ARs. The Pacific-North American weather pattern strongly modulates the clustering over the Western U.S. from early to late winter. The quasi-biennial oscillation and Pacific decadal oscillation affect late winter clustering, while the Arctic oscillation dominates early winter. Climate modes also strongly influence AR orientation, with ENSO particularly affecting the orientation of temporally clustered ARs. The Pacific-North American weather pattern significantly influences unique atmospheric river temporal clustering in the Western U.S., with quasi-biennial oscillation and Pacific decadal oscillation affecting late winter clustering and Arctic oscillation dominating early winter, according to analysis of six climate modes’ influence on unique atmospheric river clustering.
大气河流(ARs)是强烈水汽输送的狭窄走廊,影响着降水、洪水和经济。与孤立事件相比,AR 的时间集群使损失增加了两倍,但这种集群背后的原因仍不清楚。AR 方向通过地形相互作用进一步调节水文影响。在此,我们确定了北太平洋和美国西部的独特 AR,并利用考克斯回归和综合分析来研究六种主要气候模式如何在延长的北方冬季(11 月至次年 3 月)影响独特 AR 的时间集群和方向。结果表明,气候模式对独特 AR 的时间聚类有影响。从初冬到晚冬,太平洋-北美天气模式对美国西部的集群有强烈的调节作用。准两年涛动和太平洋十年涛动影响冬末集群,而北极涛动则主导冬初集群。气候模式也强烈影响着AR的方向,厄尔尼诺/南方涛动尤其影响着时间上聚集的AR的方向。根据六种气候模式对美国西部独特的大气河流时间聚类的影响分析,太平洋-北美气候模式对美国西部独特的大气河流时间聚类有显著影响,准双年性涛动和太平洋十年涛动影响晚冬的聚类,而北极涛动主导早冬的聚类。
{"title":"Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western U.S","authors":"Zhiqi Yang, Michael J. DeFlorio, Agniv Sengupta, Jiabao Wang, Christopher M. Castellano, Alexander Gershunov, Kristen Guirguis, Emily Slinskey, Bin Guan, Luca Delle Monache, F. Martin Ralph","doi":"10.1038/s43247-024-01890-x","DOIUrl":"10.1038/s43247-024-01890-x","url":null,"abstract":"Atmospheric rivers (ARs) are narrow corridors of intense water vapor transport, shaping precipitation, floods, and economies. Temporal clustering of ARs tripled losses compared to isolated events, yet the reasons behind this clustering remain unclear. AR orientation further modulates hydrological impacts through terrain interaction. Here we identify unique ARs over the North Pacific and Western U.S. and utilize Cox regression and composite analysis to examine how six major climate modes influence temporal clustering of unique ARs and orientation during extended boreal winter (November to March). Results show that climate modes condition temporal clustering of unique ARs. The Pacific-North American weather pattern strongly modulates the clustering over the Western U.S. from early to late winter. The quasi-biennial oscillation and Pacific decadal oscillation affect late winter clustering, while the Arctic oscillation dominates early winter. Climate modes also strongly influence AR orientation, with ENSO particularly affecting the orientation of temporally clustered ARs. The Pacific-North American weather pattern significantly influences unique atmospheric river temporal clustering in the Western U.S., with quasi-biennial oscillation and Pacific decadal oscillation affecting late winter clustering and Arctic oscillation dominating early winter, according to analysis of six climate modes’ influence on unique atmospheric river clustering.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01890-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1038/s43247-024-01891-w
Masoud Zaerpour, Shadi Hatami, André S. Ballarin, Wouter J. M. Knoben, Simon Michael Papalexiou, Alain Pietroniro, Martyn P. Clark
The Budyko water balance is a fundamental concept in hydrology that links aridity to how precipitation is divided between evapotranspiration and streamflow. While the model is powerful, its ability to explain temporal changes and the influence of human activities and climate change is limited. Here we introduce a causal discovery algorithm to explore deviations from the Budyko water balance, attributing them to human interventions such as agricultural activities and snow dynamics. Our analysis of 1342 catchments across the U.S. and Great Britain reveals distinct patterns: in the U.S., snow fraction and irrigation alter the Budyko water balance predominantly through changes in aridity-streamflow relationships, while in Great Britain, deviations are primarily driven by changes in precipitation-streamflow relationships, notable in catchments with high cropland percentage. By integrating causal analysis with the Budyko water balance, we enhance understanding of how human activities and climate dynamics affect water balance, offering insights for water management and sustainability in the Anthropocene. The U.S. Budyko water balance is influenced by snow fraction and irrigation, driving changes in aridity-streamflow dynamics, while deviations in Great Britain are driven by precipitation-streamflow dynamics, according to an analysis of 1,342 catchments.
{"title":"Impacts of agriculture and snow dynamics on catchment water balance in the U.S. and Great Britain","authors":"Masoud Zaerpour, Shadi Hatami, André S. Ballarin, Wouter J. M. Knoben, Simon Michael Papalexiou, Alain Pietroniro, Martyn P. Clark","doi":"10.1038/s43247-024-01891-w","DOIUrl":"10.1038/s43247-024-01891-w","url":null,"abstract":"The Budyko water balance is a fundamental concept in hydrology that links aridity to how precipitation is divided between evapotranspiration and streamflow. While the model is powerful, its ability to explain temporal changes and the influence of human activities and climate change is limited. Here we introduce a causal discovery algorithm to explore deviations from the Budyko water balance, attributing them to human interventions such as agricultural activities and snow dynamics. Our analysis of 1342 catchments across the U.S. and Great Britain reveals distinct patterns: in the U.S., snow fraction and irrigation alter the Budyko water balance predominantly through changes in aridity-streamflow relationships, while in Great Britain, deviations are primarily driven by changes in precipitation-streamflow relationships, notable in catchments with high cropland percentage. By integrating causal analysis with the Budyko water balance, we enhance understanding of how human activities and climate dynamics affect water balance, offering insights for water management and sustainability in the Anthropocene. The U.S. Budyko water balance is influenced by snow fraction and irrigation, driving changes in aridity-streamflow dynamics, while deviations in Great Britain are driven by precipitation-streamflow dynamics, according to an analysis of 1,342 catchments.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-14"},"PeriodicalIF":8.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01891-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1038/s43247-024-01909-3
Felipe Benra, Maria Brück, Emily Sigman, Manuel Pacheco-Romero, Girma Shumi, David J. Abson, Marina Frietsch, Joern Fischer
Ecosystem restoration is widely recognized as a key strategy to address social-ecological challenges. National governments have pledged to restore millions of hectares of land. However, the ability to accomplish these pledges remains opaque, because restoration efforts are influenced by complex social-ecological factors. We provide a global analysis of national-level enabling and hindering conditions and their relation to restoration pledges undertaken by different nations. We developed an archetype characterization of within-country conditions using biophysical, socio-economic and governance indicators. Additionally, we investigated between-country conditions by examining flows of embodied land. Our analysis suggests that the countries with the most ambitious restoration pledges also tend to have the weakest enabling conditions (and vice versa). These results highlight the need to account for social, economic and governance factors alongside biophysical factors when considering where restoration ought to take place. Countries with more ambitious pledges for the restoration of their ecosystems tend to exhibit socio-economic, governance and biophysical conditions that may hinder meeting such pledges, suggests a global analysis of the enabling or hindering conditions for ecosystem restoration.
{"title":"National ecosystem restoration pledges are mismatched with social-ecological enabling conditions","authors":"Felipe Benra, Maria Brück, Emily Sigman, Manuel Pacheco-Romero, Girma Shumi, David J. Abson, Marina Frietsch, Joern Fischer","doi":"10.1038/s43247-024-01909-3","DOIUrl":"10.1038/s43247-024-01909-3","url":null,"abstract":"Ecosystem restoration is widely recognized as a key strategy to address social-ecological challenges. National governments have pledged to restore millions of hectares of land. However, the ability to accomplish these pledges remains opaque, because restoration efforts are influenced by complex social-ecological factors. We provide a global analysis of national-level enabling and hindering conditions and their relation to restoration pledges undertaken by different nations. We developed an archetype characterization of within-country conditions using biophysical, socio-economic and governance indicators. Additionally, we investigated between-country conditions by examining flows of embodied land. Our analysis suggests that the countries with the most ambitious restoration pledges also tend to have the weakest enabling conditions (and vice versa). These results highlight the need to account for social, economic and governance factors alongside biophysical factors when considering where restoration ought to take place. Countries with more ambitious pledges for the restoration of their ecosystems tend to exhibit socio-economic, governance and biophysical conditions that may hinder meeting such pledges, suggests a global analysis of the enabling or hindering conditions for ecosystem restoration.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01909-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1038/s43247-024-01907-5
Mohima Sultana Mimi, Wei Liu
Wind-driven and thermohaline circulations, two major components of global large-scale ocean circulations, are intrinsically related. As part of the thermohaline circulation, the Atlantic Meridional Overturning Circulation has been observed and is expected to decline over the twenty-first century, potentially modulating global wind-driven circulation. Here we perform coupled climate model experiments with either a slow or steady Atlantic overturning under anthropogenic warming to segregate its effect on wind-driven circulation. We find that the weakened Atlantic overturning generates anticyclonic surface wind anomalies over the subpolar North Atlantic to decelerate the gyre circulation there. Fingerprints of overturning slowdown are evident on Atlantic western boundary currents, encompassing a weaker northward Gulf Stream and Guiana Current and a stronger southward Brazil Current. Beyond the Atlantic, the weakened Atlantic overturning causes a poleward displacement of Southern Hemisphere surface westerly winds by changing meridional gradients of atmospheric temperature, leading to poleward shifts of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulations. Warmer climates weaken the Atlantic Meridional Overturning Circulation, causing anticyclonic surface wind anomalies in the subpolar North Atlantic, decelerating gyre circulation and affecting Atlantic western boundary currents, according to analysis of fully coupled climate model experiments under anthropogenic warming.
{"title":"Atlantic Meridional Overturning Circulation slowdown modulates wind-driven circulations in a warmer climate","authors":"Mohima Sultana Mimi, Wei Liu","doi":"10.1038/s43247-024-01907-5","DOIUrl":"10.1038/s43247-024-01907-5","url":null,"abstract":"Wind-driven and thermohaline circulations, two major components of global large-scale ocean circulations, are intrinsically related. As part of the thermohaline circulation, the Atlantic Meridional Overturning Circulation has been observed and is expected to decline over the twenty-first century, potentially modulating global wind-driven circulation. Here we perform coupled climate model experiments with either a slow or steady Atlantic overturning under anthropogenic warming to segregate its effect on wind-driven circulation. We find that the weakened Atlantic overturning generates anticyclonic surface wind anomalies over the subpolar North Atlantic to decelerate the gyre circulation there. Fingerprints of overturning slowdown are evident on Atlantic western boundary currents, encompassing a weaker northward Gulf Stream and Guiana Current and a stronger southward Brazil Current. Beyond the Atlantic, the weakened Atlantic overturning causes a poleward displacement of Southern Hemisphere surface westerly winds by changing meridional gradients of atmospheric temperature, leading to poleward shifts of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulations. Warmer climates weaken the Atlantic Meridional Overturning Circulation, causing anticyclonic surface wind anomalies in the subpolar North Atlantic, decelerating gyre circulation and affecting Atlantic western boundary currents, according to analysis of fully coupled climate model experiments under anthropogenic warming.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01907-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1038/s43247-024-01906-6
Dingding Hu, Kaile Zhou, Rong Hu, Jingna Yang
It is still unclear whether emissions reductions from electric vehicles can be achieved across different regions from a lifecycle perspective. Here we use the life cycle assessment model and Quasi Input-Output model to evaluate the carbon dioxide emissions and air pollutants of internal combustion engine vehicles, plug-in hybrid electric vehicles, and battery electric vehicles in different provinces of China, with the provincial electricity consumption data and the sales data of electric vehicles. We find that battery electric vehicles have achieved 11.8% and 1.1% reduction in carbon dioxide and nitrogen oxide emissions, respectively, compared to internal combustion engine vehicles. In contrast, the emissions of sulfur dioxide and particulate matter 2.5 increased by 10% and 20%, respectively. Due to the coal-based power generation structure and the cold weather, the emission intensity of battery electric vehicles in most northern provinces is higher than that in southern provinces. From 2020 to 2030, improving technological progress and optimizing electricity mix will greatly assist in achieving emissions reduction. The results can help policy-makers better understand the emission characteristics and reasonably plan future emission reduction strategies in transportation. The emission intensities of carbon dioxide and air pollutants from battery electric vehicles are high in northern provinces of China due to the coal-based electricity mix and cold weather, according to an analysis that uses a life cycle assessment model and data on electricity generation.
{"title":"Provincial inequalities in life cycle carbon dioxide emissions and air pollutants from electric vehicles in China","authors":"Dingding Hu, Kaile Zhou, Rong Hu, Jingna Yang","doi":"10.1038/s43247-024-01906-6","DOIUrl":"10.1038/s43247-024-01906-6","url":null,"abstract":"It is still unclear whether emissions reductions from electric vehicles can be achieved across different regions from a lifecycle perspective. Here we use the life cycle assessment model and Quasi Input-Output model to evaluate the carbon dioxide emissions and air pollutants of internal combustion engine vehicles, plug-in hybrid electric vehicles, and battery electric vehicles in different provinces of China, with the provincial electricity consumption data and the sales data of electric vehicles. We find that battery electric vehicles have achieved 11.8% and 1.1% reduction in carbon dioxide and nitrogen oxide emissions, respectively, compared to internal combustion engine vehicles. In contrast, the emissions of sulfur dioxide and particulate matter 2.5 increased by 10% and 20%, respectively. Due to the coal-based power generation structure and the cold weather, the emission intensity of battery electric vehicles in most northern provinces is higher than that in southern provinces. From 2020 to 2030, improving technological progress and optimizing electricity mix will greatly assist in achieving emissions reduction. The results can help policy-makers better understand the emission characteristics and reasonably plan future emission reduction strategies in transportation. The emission intensities of carbon dioxide and air pollutants from battery electric vehicles are high in northern provinces of China due to the coal-based electricity mix and cold weather, according to an analysis that uses a life cycle assessment model and data on electricity generation.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01906-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1038/s43247-024-01875-w
Ziliang Zhang, William C. Eddy III, Emily R. Stuchiner, Evan H. DeLucia, Wendy H. Yang
Soil emissions of nitrous oxide contribute substantially to global warming from agriculture. Spatiotemporal variation in nitrous oxide emissions within agricultural fields leads to uncertainty in the benefits of climate-smart agricultural practices. Here, we present a conceptual model explaining spatial variation in temporal patterns of soil nitrous oxide emissions developed from high spatial resolution measurements of soil nitrous oxide emissions, gross nitrous oxide fluxes, and soil physicochemical properties in two maize fields in Illinois, USA. In sub-field locations with consistently low nitrous oxide emissions, soil nitrate and dissolved organic carbon constrained nitrous oxide production irrespective of changes in soil moisture. In sub-field locations where high emissions occurred episodically, soil nitrate and dissolved organic carbon availability were higher, and increases in soil moisture stimulated nitrous oxide production. These findings form the ‘cannon model’ which conceptualizes how sub-field scale variation in soil nitrate and dissolved organic carbon determines where increases in soil moisture can trigger high soil nitrous oxide emissions within agricultural fields. Only in areas of agricultural fields where nitrate and dissolved organic carbon availability were high could soil moisture stimulate high nitrous oxide emissions, according to a conceptual model based on spatial measurements of emissions and soil properties.
{"title":"A conceptual model explaining spatial variation in soil nitrous oxide emissions in agricultural fields","authors":"Ziliang Zhang, William C. Eddy III, Emily R. Stuchiner, Evan H. DeLucia, Wendy H. Yang","doi":"10.1038/s43247-024-01875-w","DOIUrl":"10.1038/s43247-024-01875-w","url":null,"abstract":"Soil emissions of nitrous oxide contribute substantially to global warming from agriculture. Spatiotemporal variation in nitrous oxide emissions within agricultural fields leads to uncertainty in the benefits of climate-smart agricultural practices. Here, we present a conceptual model explaining spatial variation in temporal patterns of soil nitrous oxide emissions developed from high spatial resolution measurements of soil nitrous oxide emissions, gross nitrous oxide fluxes, and soil physicochemical properties in two maize fields in Illinois, USA. In sub-field locations with consistently low nitrous oxide emissions, soil nitrate and dissolved organic carbon constrained nitrous oxide production irrespective of changes in soil moisture. In sub-field locations where high emissions occurred episodically, soil nitrate and dissolved organic carbon availability were higher, and increases in soil moisture stimulated nitrous oxide production. These findings form the ‘cannon model’ which conceptualizes how sub-field scale variation in soil nitrate and dissolved organic carbon determines where increases in soil moisture can trigger high soil nitrous oxide emissions within agricultural fields. Only in areas of agricultural fields where nitrate and dissolved organic carbon availability were high could soil moisture stimulate high nitrous oxide emissions, according to a conceptual model based on spatial measurements of emissions and soil properties.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01875-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1038/s43247-024-01901-x
Sjoukje I. de Lange, Anne van der Wilk, Claire Chassagne, Waqas Ali, Maximilian P. Born, Kristian Brodersen, Antonius J. F. Hoitink, Kryss Waldschläger
Recent research highlights the abundance of floccule (flocs) in rivers, formed by aggregation of clay particles with organic matter. These flocs affect the transport and the eventual fate of clay. Flocs exhibit distinct behaviour from the unflocculated sedimentary counterparts: they can deform and break, and have higher settling velocities, which may in turn cause flocs to deposit and possibly interact with the riverbed. Here, we conducted systematic experiments in a laboratory flume to identify the mechanisms by which flocs and bedforms interact. Flocs showed a saltating (bouncing) behaviour, and were incorporated in the sediment bed as single flocs, clusters, or strings, via deposition and burial in the lee of a dune. Dune geometry was negligibly impacted by the presence of flocs. In natural systems, the burial of flocculated clay particles can affect contaminant spreading, aquatic ecology, the interpretation of deposition patterns, and clay transport. Flocculated clay particles exhibit a bouncing behaviour and can be incorporated into the bed as single flocs, clusters, or strings and revealing significant implications for contaminant transport and ecological dynamics in rivers, according to laboratory flume experiment results.
{"title":"Migrating subaqueous dunes capture clay flocs","authors":"Sjoukje I. de Lange, Anne van der Wilk, Claire Chassagne, Waqas Ali, Maximilian P. Born, Kristian Brodersen, Antonius J. F. Hoitink, Kryss Waldschläger","doi":"10.1038/s43247-024-01901-x","DOIUrl":"10.1038/s43247-024-01901-x","url":null,"abstract":"Recent research highlights the abundance of floccule (flocs) in rivers, formed by aggregation of clay particles with organic matter. These flocs affect the transport and the eventual fate of clay. Flocs exhibit distinct behaviour from the unflocculated sedimentary counterparts: they can deform and break, and have higher settling velocities, which may in turn cause flocs to deposit and possibly interact with the riverbed. Here, we conducted systematic experiments in a laboratory flume to identify the mechanisms by which flocs and bedforms interact. Flocs showed a saltating (bouncing) behaviour, and were incorporated in the sediment bed as single flocs, clusters, or strings, via deposition and burial in the lee of a dune. Dune geometry was negligibly impacted by the presence of flocs. In natural systems, the burial of flocculated clay particles can affect contaminant spreading, aquatic ecology, the interpretation of deposition patterns, and clay transport. Flocculated clay particles exhibit a bouncing behaviour and can be incorporated into the bed as single flocs, clusters, or strings and revealing significant implications for contaminant transport and ecological dynamics in rivers, according to laboratory flume experiment results.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01901-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}