首页 > 最新文献

Communications Earth & Environment最新文献

英文 中文
Polar ice sheets are decisive contributors to uncertainty in climate tipping projections 极地冰盖是造成气候倾斜预测不确定性的决定性因素
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-27 DOI: 10.1038/s43247-024-01799-5
Jonathan P. Rosser, Ricarda Winkelmann, Nico Wunderling
The Earth’s climate is a complex system including key components such as the Arctic Summer Sea Ice and the El Niño Southern Oscillation alongside climate tipping elements including polar ice sheets, the Atlantic Meridional Overturning Circulation, and the Amazon rainforest. Crossing thresholds of these elements can lead to a qualitatively different climate state, endangering human societies. The cryosphere elements are vulnerable at current levels of global warming (1.3  °C) while also having long response times and large uncertainties. We assess the impact of interacting Earth system components on tipping risks using an established conceptual network model of these components. Polar ice sheets (Greenland and West Antarctic ice sheets) are most decisive for tipping likelihoods and cascading effects within our model. At a global warming level of 1.5  °C, neglecting the polar ice sheets can alter the expected number of tipped elements by more than a factor of 2. This is concerning as overshooting 1.5  °C of global warming is becoming inevitable, while current state-of-the-art IPCC-type models do not (yet) include dynamic ice sheets. Our results suggest that polar ice sheets are critical to improving understanding of tipping risks and cascading effects. Therefore, improved observations and integrated model development are crucial. The polar ice sheets are key contributors to the uncertainty of future climate change projection, according to an analysis using an Earth system network model to assess the contribution of six Earth system components at 1.5 and 4.0 °C of warming.
地球气候是一个复杂的系统,包括北极夏季海冰和厄尔Niño南方涛动等关键组成部分,以及极地冰盖、大西洋经向翻转环流和亚马逊雨林等气候引爆因素。超过这些要素的阈值可能导致一种性质不同的气候状态,危及人类社会。冰冻圈要素在当前全球变暖水平(1.3°C)下是脆弱的,同时也具有较长的响应时间和较大的不确定性。我们使用已建立的地球系统要素概念网络模型来评估相互作用的地球系统要素对引爆风险的影响。极地冰盖(格陵兰岛和南极西部冰盖)是我们模型中引爆可能性和级联效应的最决定性因素。在全球变暖1.5°C的情况下,忽略极地冰盖可能会使顶端元素的预期数量改变2倍以上。这是令人担忧的,因为全球变暖超过1.5°C是不可避免的,而目前最先进的ipcc类型的模型(尚未)不包括动态冰盖。我们的研究结果表明,极地冰盖对于提高对引爆风险和级联效应的理解至关重要。因此,改进观测和综合模型开发是至关重要的。根据一项利用地球系统网络模型评估升温1.5°C和4.0°C时地球系统六个组成部分的贡献的分析,极地冰盖是造成未来气候变化预测不确定性的关键因素。
{"title":"Polar ice sheets are decisive contributors to uncertainty in climate tipping projections","authors":"Jonathan P. Rosser, Ricarda Winkelmann, Nico Wunderling","doi":"10.1038/s43247-024-01799-5","DOIUrl":"10.1038/s43247-024-01799-5","url":null,"abstract":"The Earth’s climate is a complex system including key components such as the Arctic Summer Sea Ice and the El Niño Southern Oscillation alongside climate tipping elements including polar ice sheets, the Atlantic Meridional Overturning Circulation, and the Amazon rainforest. Crossing thresholds of these elements can lead to a qualitatively different climate state, endangering human societies. The cryosphere elements are vulnerable at current levels of global warming (1.3  °C) while also having long response times and large uncertainties. We assess the impact of interacting Earth system components on tipping risks using an established conceptual network model of these components. Polar ice sheets (Greenland and West Antarctic ice sheets) are most decisive for tipping likelihoods and cascading effects within our model. At a global warming level of 1.5  °C, neglecting the polar ice sheets can alter the expected number of tipped elements by more than a factor of 2. This is concerning as overshooting 1.5  °C of global warming is becoming inevitable, while current state-of-the-art IPCC-type models do not (yet) include dynamic ice sheets. Our results suggest that polar ice sheets are critical to improving understanding of tipping risks and cascading effects. Therefore, improved observations and integrated model development are crucial. The polar ice sheets are key contributors to the uncertainty of future climate change projection, according to an analysis using an Earth system network model to assess the contribution of six Earth system components at 1.5 and 4.0 °C of warming.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01799-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Marsh restoration in front of seawalls is an economically justified nature-based solution for coastal protection 作者更正:在海堤前恢复沼泽是一种经济上合理的基于自然的海岸保护解决方案
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-27 DOI: 10.1038/s43247-024-01918-2
Ernie I. H. Lee, Heidi Nepf
{"title":"Author Correction: Marsh restoration in front of seawalls is an economically justified nature-based solution for coastal protection","authors":"Ernie I. H. Lee, Heidi Nepf","doi":"10.1038/s43247-024-01918-2","DOIUrl":"10.1038/s43247-024-01918-2","url":null,"abstract":"","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-1"},"PeriodicalIF":8.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01918-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weathering crust formation outpaces melt-albedo feedback on blue ice shelves of East Antarctica 在东南极洲的蓝色冰架上,风化壳的形成速度超过了融化反照率反馈
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-26 DOI: 10.1038/s43247-024-01896-5
Giacomo Traversa, Biagio Di Mauro
The penetration of shortwave radiation beneath glacier surfaces has the potential to induce melting leading to the formation of a porous white layer commonly known as weathering crust. Very little is known about its role in the Antarctic Ice Sheet. Here we provide unprecedented observational evidence for the weathering crust formation over blue ice areas of ice shelves of the Northern Victoria Land in austral summer 2022–2023, by means of in-situ and remote-sensing observations. Then, we estimated the radiative impact of the weathering crust, demonstrating a predominant negative albedo feedback over blue ice areas (on 93% of the study area), with respect to positive melt-albedo feedback (supraglacial-pond formation). Furthermore, weathering crust occurred after a period of increasing temperature, relative humidity, low wind speed and clear sky conditions. Moreover, we claim that this new process should be included in regional climate modelling of the Antarctic Ice Sheet. Weathering crust formation over blue ice areas of ice shelves may lead to negative albedo feedback in Antarctic coasts, according to in-situ and remote-sensing observations.
短波辐射在冰川表面下的穿透有可能引起融化,从而形成一种通常称为风化壳的多孔白色层。人们对它在南极冰盖中的作用知之甚少。通过现场观测和遥感观测,为2022-2023年南夏季北维多利亚陆冰架蓝冰区风化壳的形成提供了前所未有的观测证据。然后,我们估计了风化壳的辐射影响,表明蓝色冰区(93%的研究区域)的反照率主要为负反馈,而融化反照率则为正反馈(冰上湖形成)。此外,风化壳是在温度升高、相对湿度增加、风速降低和晴空条件下形成的。此外,我们认为这一新过程应包括在南极冰盖的区域气候模拟中。根据原位和遥感观测,冰架蓝色冰区上风化壳的形成可能导致南极海岸负反照率反馈。
{"title":"Weathering crust formation outpaces melt-albedo feedback on blue ice shelves of East Antarctica","authors":"Giacomo Traversa, Biagio Di Mauro","doi":"10.1038/s43247-024-01896-5","DOIUrl":"10.1038/s43247-024-01896-5","url":null,"abstract":"The penetration of shortwave radiation beneath glacier surfaces has the potential to induce melting leading to the formation of a porous white layer commonly known as weathering crust. Very little is known about its role in the Antarctic Ice Sheet. Here we provide unprecedented observational evidence for the weathering crust formation over blue ice areas of ice shelves of the Northern Victoria Land in austral summer 2022–2023, by means of in-situ and remote-sensing observations. Then, we estimated the radiative impact of the weathering crust, demonstrating a predominant negative albedo feedback over blue ice areas (on 93% of the study area), with respect to positive melt-albedo feedback (supraglacial-pond formation). Furthermore, weathering crust occurred after a period of increasing temperature, relative humidity, low wind speed and clear sky conditions. Moreover, we claim that this new process should be included in regional climate modelling of the Antarctic Ice Sheet. Weathering crust formation over blue ice areas of ice shelves may lead to negative albedo feedback in Antarctic coasts, according to in-situ and remote-sensing observations.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01896-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restoration of forestry-drained boreal peatland ecosystems can effectively stop and reverse ecosystem degradation 森林排水北方泥炭地生态系统的恢复可以有效地阻止和扭转生态系统的退化。
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-26 DOI: 10.1038/s43247-024-01844-3
Merja Elo, Santtu Kareksela, Otso Ovaskainen, Nerea Abrego, Jenni Niku, Sara Taskinen, Kaisu Aapala, Janne S. Kotiaho
Ecosystem restoration will increase following the ambitious international targets, which calls for a rigorous evaluation of restoration effectiveness. Here, we present results from a long-term before-after control-impact experiment on the restoration of forestry-drained boreal peatland ecosystems. Our data comprise 151 sites, representing six ecosystem types. Species-level vegetation sampling has been conducted before, two, five, and ten years after restoration. With joint species distribution modelling, we show that, on average, not restoring leads to further degradation, but restoration stops and reverses this trend. The variation in restoration outcomes largely arises from ecosystem types: restoration of nutrient-poor ecosystems has a higher probability of failure. Yet, the ten-year study period is insufficient to capture the restoration effects in slow-recovering ecosystems. Altogether, restoration can effectively halt the biodiversity loss of degraded ecosystems, although ecosystem attributes affect the outcome. This variability in outcomes underlies the need for evidence-based prioritization of restoration efforts across ecosystems. Restoration halts and reverses degradation of boreal peatlands in nutrient-rich ecosystems, though the impact may be weak in nutrient-poor ones, according to a long-term experiment in Finland comprising 151 sites and 6 ecosystem types
在雄心勃勃的国际目标之后,生态系统恢复将会增加,这需要对恢复效果进行严格的评估。在这里,我们介绍了一项长期的森林排水北方泥炭地生态系统恢复前后控制影响实验的结果。我们的数据包括151个地点,代表6种生态系统类型。在恢复前、恢复后2年、恢复后5年和恢复后10年分别进行了物种水平的植被采样。通过联合物种分布模型,我们表明,平均而言,不恢复会导致进一步的退化,但恢复会阻止并逆转这一趋势。恢复结果的差异主要是由生态系统类型引起的:营养不良生态系统的恢复失败的可能性更高。然而,10年的研究周期不足以捕捉到恢复缓慢的生态系统的恢复效应。总的来说,恢复可以有效地阻止退化生态系统的生物多样性丧失,尽管生态系统属性会影响结果。这种结果的可变性表明,需要基于证据对整个生态系统的恢复工作进行优先排序。
{"title":"Restoration of forestry-drained boreal peatland ecosystems can effectively stop and reverse ecosystem degradation","authors":"Merja Elo, Santtu Kareksela, Otso Ovaskainen, Nerea Abrego, Jenni Niku, Sara Taskinen, Kaisu Aapala, Janne S. Kotiaho","doi":"10.1038/s43247-024-01844-3","DOIUrl":"10.1038/s43247-024-01844-3","url":null,"abstract":"Ecosystem restoration will increase following the ambitious international targets, which calls for a rigorous evaluation of restoration effectiveness. Here, we present results from a long-term before-after control-impact experiment on the restoration of forestry-drained boreal peatland ecosystems. Our data comprise 151 sites, representing six ecosystem types. Species-level vegetation sampling has been conducted before, two, five, and ten years after restoration. With joint species distribution modelling, we show that, on average, not restoring leads to further degradation, but restoration stops and reverses this trend. The variation in restoration outcomes largely arises from ecosystem types: restoration of nutrient-poor ecosystems has a higher probability of failure. Yet, the ten-year study period is insufficient to capture the restoration effects in slow-recovering ecosystems. Altogether, restoration can effectively halt the biodiversity loss of degraded ecosystems, although ecosystem attributes affect the outcome. This variability in outcomes underlies the need for evidence-based prioritization of restoration efforts across ecosystems. Restoration halts and reverses degradation of boreal peatlands in nutrient-rich ecosystems, though the impact may be weak in nutrient-poor ones, according to a long-term experiment in Finland comprising 151 sites and 6 ecosystem types","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Summer heatwaves on the Baltic Sea seabed contribute to oxygen deficiency in shallow areas 作者更正:波罗的海海底的夏季热浪导致浅海区域缺氧
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-25 DOI: 10.1038/s43247-024-01858-x
Kseniia Safonova, H. E. Markus Meier, Matthias Gröger
{"title":"Author Correction: Summer heatwaves on the Baltic Sea seabed contribute to oxygen deficiency in shallow areas","authors":"Kseniia Safonova, H. E. Markus Meier, Matthias Gröger","doi":"10.1038/s43247-024-01858-x","DOIUrl":"10.1038/s43247-024-01858-x","url":null,"abstract":"","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-3"},"PeriodicalIF":8.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01858-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved estimates of net ecosystem exchanges in mega-countries using GOSAT and OCO-2 observations 利用 GOSAT 和 OCO-2 观测数据改进对特大国家生态系统净交换的估算
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-25 DOI: 10.1038/s43247-024-01910-w
Lingyu Zhang, Fei Jiang, Wei He, Mousong Wu, Jun Wang, Weimin Ju, Hengmao Wang, Yongguang Zhang, Stephen Sitch, Jing M. Chen
Accurate national terrestrial net ecosystem exchange estimates are crucial for the global stocktake. Net ecosystem exchange estimates from different inversion models vary greatly at national scale, and the relative impacts of prior fluxes and observations on these inversions remain unclear. Here we estimate the net ecosystem exchange of 51 land regions for the 2017-2019 period, focusing on the 10 largest countries, using prior fluxes from 12 terrestrial biosphere models and XCO2 retrievals from GOSAT and OCO-2 satellites as constraints. The average uncertainty reduction for the 10 countries increases from 37% with GOSAT and 45% with OCO-2 to 50% with combined observations, indicating a trend towards robust estimates. At finer spatial scales, even with combined observations, the uncertainty reduction is only 33%, i.e., the prior flux dominates the estimates. This finding underscores the critical importance of integrating multi-source observations and refining prior fluxes to improve the accuracy of carbon flux estimates. Choice of ecosystem model and input satellite data has a significant impact on modelled carbon dioxide flux and its associated uncertainty for large countries, according to atmospheric inversions using GOSAT and OCO-2 data.
准确的国家陆地净生态系统交换估算值对全球清查至关重要。在国家尺度上,不同反演模型得出的净生态系统交换估算值差异很大,而先前通量和观测数据对这些反演值的相对影响仍不清楚。在此,我们以 10 个最大的国家为重点,利用 12 个陆地生物圈模型的先验通量以及 GOSAT 和 OCO-2 卫星的 XCO2 检索结果作为约束条件,估算了 2017-2019 年期间 51 个陆地区域的净生态系统交换量。这 10 个国家的平均不确定性降低率从 GOSAT 卫星的 37% 和 OCO-2 卫星的 45% 增加到综合观测数据的 50%,表明了稳健估算的趋势。在更细的空间尺度上,即使采用综合观测,不确定性降低率也只有 33%,即先验通量在估算中占主导地位。这一发现强调了整合多源观测数据和完善先验通量对提高碳通量估算精度的重要性。利用 GOSAT 和 OCO-2 数据进行的大气反演表明,生态系统模型和输入卫星数据的选择对模拟的大国二氧化碳通量及其相关不确定性有重大影响。
{"title":"Improved estimates of net ecosystem exchanges in mega-countries using GOSAT and OCO-2 observations","authors":"Lingyu Zhang, Fei Jiang, Wei He, Mousong Wu, Jun Wang, Weimin Ju, Hengmao Wang, Yongguang Zhang, Stephen Sitch, Jing M. Chen","doi":"10.1038/s43247-024-01910-w","DOIUrl":"10.1038/s43247-024-01910-w","url":null,"abstract":"Accurate national terrestrial net ecosystem exchange estimates are crucial for the global stocktake. Net ecosystem exchange estimates from different inversion models vary greatly at national scale, and the relative impacts of prior fluxes and observations on these inversions remain unclear. Here we estimate the net ecosystem exchange of 51 land regions for the 2017-2019 period, focusing on the 10 largest countries, using prior fluxes from 12 terrestrial biosphere models and XCO2 retrievals from GOSAT and OCO-2 satellites as constraints. The average uncertainty reduction for the 10 countries increases from 37% with GOSAT and 45% with OCO-2 to 50% with combined observations, indicating a trend towards robust estimates. At finer spatial scales, even with combined observations, the uncertainty reduction is only 33%, i.e., the prior flux dominates the estimates. This finding underscores the critical importance of integrating multi-source observations and refining prior fluxes to improve the accuracy of carbon flux estimates. Choice of ecosystem model and input satellite data has a significant impact on modelled carbon dioxide flux and its associated uncertainty for large countries, according to atmospheric inversions using GOSAT and OCO-2 data.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01910-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Public demand for carbon capture and storage varies with information, development magnitude and prior familiarity 公众对碳捕获和封存的需求随信息、发展程度和先前的熟悉程度而变化
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-25 DOI: 10.1038/s43247-024-01900-y
Jiwon Kim, Jacob Ladenburg
Carbon capture and storage is vital to reduce greenhouse gas emissions, albeit research on the public willingness to pay for it remains limited. Here we address this gap by considering information effects, development magnitude effects and prior familiarity relations on willingness to pay towards carbon capture and storage. Based on national-wide online survey targeting Danish public, conducted from June to August 2022, the contingent valuation method is employed. The study reveals that, irrespective of CO2 reduction goals, enhancing familiarity with carbon capture storage can influence public support. Additionally, we estimate willingness to pay elasticities related to development magnitude using a scope test, ensuring economic significance and validity of our findings. Ultimately, this study provides valuable insights for policymakers and stakeholders, supporting and enabling the design of effective strategies to promote public support for carbon capture and storage, and contribute to global climate change mitigation efforts. Regardless of Denmark’s carbon dioxide emission reduction goal, knowledge and familiarity influence public support and willingness to pay for carbon capture and storage, according to an online survey and econometric model analysis.
碳捕获和储存对于减少温室气体排放至关重要,尽管关于公众愿意为此付费的研究仍然有限。在这里,我们通过考虑信息效应、发展幅度效应和对碳捕获和储存支付意愿的先验熟悉关系来解决这一差距。基于2022年6月至8月对丹麦公众进行的全国性在线调查,采用条件估值法。该研究表明,无论二氧化碳减排目标如何,提高对碳捕获储存的熟悉程度都可以影响公众的支持。此外,我们使用范围测试来估计与开发规模相关的支付弹性的意愿,以确保我们的发现的经济意义和有效性。最终,本研究为决策者和利益相关者提供了有价值的见解,支持并使设计有效战略成为可能,以促进公众对碳捕获和封存的支持,并为全球减缓气候变化的努力作出贡献。根据一项在线调查和计量经济模型分析,无论丹麦的二氧化碳减排目标是什么,知识和熟悉程度都会影响公众对碳捕获和储存的支持和支付意愿。
{"title":"Public demand for carbon capture and storage varies with information, development magnitude and prior familiarity","authors":"Jiwon Kim, Jacob Ladenburg","doi":"10.1038/s43247-024-01900-y","DOIUrl":"10.1038/s43247-024-01900-y","url":null,"abstract":"Carbon capture and storage is vital to reduce greenhouse gas emissions, albeit research on the public willingness to pay for it remains limited. Here we address this gap by considering information effects, development magnitude effects and prior familiarity relations on willingness to pay towards carbon capture and storage. Based on national-wide online survey targeting Danish public, conducted from June to August 2022, the contingent valuation method is employed. The study reveals that, irrespective of CO2 reduction goals, enhancing familiarity with carbon capture storage can influence public support. Additionally, we estimate willingness to pay elasticities related to development magnitude using a scope test, ensuring economic significance and validity of our findings. Ultimately, this study provides valuable insights for policymakers and stakeholders, supporting and enabling the design of effective strategies to promote public support for carbon capture and storage, and contribute to global climate change mitigation efforts. Regardless of Denmark’s carbon dioxide emission reduction goal, knowledge and familiarity influence public support and willingness to pay for carbon capture and storage, according to an online survey and econometric model analysis.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01900-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frazil ice changes winter biogeochemical processes in the Lena River 弗拉齐尔冰改变了勒拿河的冬季生物地球化学过程
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-25 DOI: 10.1038/s43247-024-01884-9
Sophie Opfergelt, François Gaspard, Catherine Hirst, Laurence Monin, Bennet Juhls, Anne Morgenstern, Michael Angelopoulos, Pier Paul Overduin
The ice-covered period of large Arctic rivers is shortening. To what extent will this affect biogeochemical processing of nutrients? Here we reveal, with silicon isotopes (δ30Si), a key winter pathway for nutrients under river ice. During colder winter phases in the Lena River catchment, conditions are met for frazil ice accumulation, which creates microzones. These are conducive to a lengthened reaction time for biogeochemical processes under ice. The heavier δ30Si values (3.5 ± 0.5 ‰) in river water reflect that 39 ± 11% of the Lena River discharge went through these microzones. Freezing-driven amorphous silica precipitation concomitant to increased ammonium concentration and changes in dissolved organic carbon aromaticity in Lena River water support microbially mediated processing of nutrients in the microzones. Upon warming, suppressing loci for winter intra-river nitrogen processing is likely to modify the balance between N2O production and consumption, a greenhouse gas with a large global warming potential. Frazil ice accumulation during winter creates micro-zones in the Lena River catchment that prolong reaction time for biogeochemical processing of nutrients under ice, according to a high resolution silicon isotope study.
北极大河的冰封期正在缩短。这会在多大程度上影响营养物质的生物地球化学处理?在这里,我们用硅同位素(δ30Si)揭示了河流冰层下营养物质的一个关键冬季途径。在勒拿河流域较冷的冬季阶段,有条件进行碎冰堆积,从而形成微区。这有利于延长冰下生物地球化学过程的反应时间。河水中较高的δ30Si 值(3.5 ± 0.5 ‰)表明,39 ± 11% 的勒拿河排水量通过了这些微区。冻结导致的无定形二氧化硅沉淀、铵浓度的增加以及勒拿河水体中溶解有机碳芳香度的变化,都支持微生物介导的微区养分处理过程。气候变暖时,抑制冬季河内氮处理的位点很可能会改变一氧化二氮的产生和消耗之间的平衡,而一氧化二氮是一种温室气体,具有很大的全球变暖潜力。根据一项高分辨率硅同位素研究,冬季Frazil冰的堆积在勒拿河流域形成了微区,延长了冰下养分生物地球化学处理的反应时间。
{"title":"Frazil ice changes winter biogeochemical processes in the Lena River","authors":"Sophie Opfergelt, François Gaspard, Catherine Hirst, Laurence Monin, Bennet Juhls, Anne Morgenstern, Michael Angelopoulos, Pier Paul Overduin","doi":"10.1038/s43247-024-01884-9","DOIUrl":"10.1038/s43247-024-01884-9","url":null,"abstract":"The ice-covered period of large Arctic rivers is shortening. To what extent will this affect biogeochemical processing of nutrients? Here we reveal, with silicon isotopes (δ30Si), a key winter pathway for nutrients under river ice. During colder winter phases in the Lena River catchment, conditions are met for frazil ice accumulation, which creates microzones. These are conducive to a lengthened reaction time for biogeochemical processes under ice. The heavier δ30Si values (3.5 ± 0.5 ‰) in river water reflect that 39 ± 11% of the Lena River discharge went through these microzones. Freezing-driven amorphous silica precipitation concomitant to increased ammonium concentration and changes in dissolved organic carbon aromaticity in Lena River water support microbially mediated processing of nutrients in the microzones. Upon warming, suppressing loci for winter intra-river nitrogen processing is likely to modify the balance between N2O production and consumption, a greenhouse gas with a large global warming potential. Frazil ice accumulation during winter creates micro-zones in the Lena River catchment that prolong reaction time for biogeochemical processing of nutrients under ice, according to a high resolution silicon isotope study.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01884-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arctic plant-fungus interaction networks show major rewiring with environmental variation 北极植物-真菌相互作用网络随环境变化出现重大重构
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-23 DOI: 10.1038/s43247-024-01902-w
Bastien Parisy, Niels M. Schmidt, Alyssa R. Cirtwill, Edith Villa-Galaviz, Mikko Tiusanen, Cornelya F. C. Klütsch, Paul E. Aspholm, Katrine Raundrup, Eero J. Vesterinen, Helena Wirta, Tomas Roslin
Global environmental change may lead to changes in community structure and in species interactions, ultimately changing ecosystem functioning. Focusing on spatial variation in fungus–plant interactions across the rapidly changing Arctic, we quantified variation in the identity of interaction partners. We then related interaction turnover to variation in the bioclimatic environment by combining network analyses with general dissimilarity modelling. Overall, we found species associations to be highly plastic, with major rewiring among interaction partners across variable environmental conditions. Of this turnover, a major part was attributed to specific environmental properties which are likely to change with progressing climate change. Our findings suggest that the current structure of plant-root associated interactions may be severely altered by rapidly advancing global warming. Nonetheless, flexibility in partner choice may contribute to the resilience of the system. Fungus-plant interactions in the Arctic are highly pliable and can alter under changing temperature and soil conditions, according to modelling of plant and fungal communities using DNA metabarcoding data.
全球环境变化可能导致群落结构和物种相互作用发生变化,最终改变生态系统的功能。我们以瞬息万变的北极地区真菌-植物相互作用的空间变化为重点,量化了相互作用伙伴身份的变化。然后,我们将网络分析与一般相似性建模相结合,将相互作用的更替与生物气候环境的变化联系起来。总体而言,我们发现物种之间的联系具有高度可塑性,在不同的环境条件下,相互作用伙伴之间的关系会发生重大变化。在这种变化中,很大一部分归因于特定的环境属性,而这些属性很可能会随着气候变化的加剧而发生变化。我们的研究结果表明,当前植物与根系的相互作用结构可能会因全球气候迅速变暖而发生严重改变。不过,灵活选择合作伙伴可能有助于提高系统的复原力。根据使用DNA代谢编码数据建立的植物和真菌群落模型,北极地区真菌与植物之间的相互作用非常灵活,在温度和土壤条件不断变化的情况下也会发生改变。
{"title":"Arctic plant-fungus interaction networks show major rewiring with environmental variation","authors":"Bastien Parisy, Niels M. Schmidt, Alyssa R. Cirtwill, Edith Villa-Galaviz, Mikko Tiusanen, Cornelya F. C. Klütsch, Paul E. Aspholm, Katrine Raundrup, Eero J. Vesterinen, Helena Wirta, Tomas Roslin","doi":"10.1038/s43247-024-01902-w","DOIUrl":"10.1038/s43247-024-01902-w","url":null,"abstract":"Global environmental change may lead to changes in community structure and in species interactions, ultimately changing ecosystem functioning. Focusing on spatial variation in fungus–plant interactions across the rapidly changing Arctic, we quantified variation in the identity of interaction partners. We then related interaction turnover to variation in the bioclimatic environment by combining network analyses with general dissimilarity modelling. Overall, we found species associations to be highly plastic, with major rewiring among interaction partners across variable environmental conditions. Of this turnover, a major part was attributed to specific environmental properties which are likely to change with progressing climate change. Our findings suggest that the current structure of plant-root associated interactions may be severely altered by rapidly advancing global warming. Nonetheless, flexibility in partner choice may contribute to the resilience of the system. Fungus-plant interactions in the Arctic are highly pliable and can alter under changing temperature and soil conditions, according to modelling of plant and fungal communities using DNA metabarcoding data.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01902-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western U.S 季节性和气候模式影响美国西部独特大气河流的时间聚类
IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-11-23 DOI: 10.1038/s43247-024-01890-x
Zhiqi Yang, Michael J. DeFlorio, Agniv Sengupta, Jiabao Wang, Christopher M. Castellano, Alexander Gershunov, Kristen Guirguis, Emily Slinskey, Bin Guan, Luca Delle Monache, F. Martin Ralph
Atmospheric rivers (ARs) are narrow corridors of intense water vapor transport, shaping precipitation, floods, and economies. Temporal clustering of ARs tripled losses compared to isolated events, yet the reasons behind this clustering remain unclear. AR orientation further modulates hydrological impacts through terrain interaction. Here we identify unique ARs over the North Pacific and Western U.S. and utilize Cox regression and composite analysis to examine how six major climate modes influence temporal clustering of unique ARs and orientation during extended boreal winter (November to March). Results show that climate modes condition temporal clustering of unique ARs. The Pacific-North American weather pattern strongly modulates the clustering over the Western U.S. from early to late winter. The quasi-biennial oscillation and Pacific decadal oscillation affect late winter clustering, while the Arctic oscillation dominates early winter. Climate modes also strongly influence AR orientation, with ENSO particularly affecting the orientation of temporally clustered ARs. The Pacific-North American weather pattern significantly influences unique atmospheric river temporal clustering in the Western U.S., with quasi-biennial oscillation and Pacific decadal oscillation affecting late winter clustering and Arctic oscillation dominating early winter, according to analysis of six climate modes’ influence on unique atmospheric river clustering.
大气河流(ARs)是强烈水汽输送的狭窄走廊,影响着降水、洪水和经济。与孤立事件相比,AR 的时间集群使损失增加了两倍,但这种集群背后的原因仍不清楚。AR 方向通过地形相互作用进一步调节水文影响。在此,我们确定了北太平洋和美国西部的独特 AR,并利用考克斯回归和综合分析来研究六种主要气候模式如何在延长的北方冬季(11 月至次年 3 月)影响独特 AR 的时间集群和方向。结果表明,气候模式对独特 AR 的时间聚类有影响。从初冬到晚冬,太平洋-北美天气模式对美国西部的集群有强烈的调节作用。准两年涛动和太平洋十年涛动影响冬末集群,而北极涛动则主导冬初集群。气候模式也强烈影响着AR的方向,厄尔尼诺/南方涛动尤其影响着时间上聚集的AR的方向。根据六种气候模式对美国西部独特的大气河流时间聚类的影响分析,太平洋-北美气候模式对美国西部独特的大气河流时间聚类有显著影响,准双年性涛动和太平洋十年涛动影响晚冬的聚类,而北极涛动主导早冬的聚类。
{"title":"Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western U.S","authors":"Zhiqi Yang, Michael J. DeFlorio, Agniv Sengupta, Jiabao Wang, Christopher M. Castellano, Alexander Gershunov, Kristen Guirguis, Emily Slinskey, Bin Guan, Luca Delle Monache, F. Martin Ralph","doi":"10.1038/s43247-024-01890-x","DOIUrl":"10.1038/s43247-024-01890-x","url":null,"abstract":"Atmospheric rivers (ARs) are narrow corridors of intense water vapor transport, shaping precipitation, floods, and economies. Temporal clustering of ARs tripled losses compared to isolated events, yet the reasons behind this clustering remain unclear. AR orientation further modulates hydrological impacts through terrain interaction. Here we identify unique ARs over the North Pacific and Western U.S. and utilize Cox regression and composite analysis to examine how six major climate modes influence temporal clustering of unique ARs and orientation during extended boreal winter (November to March). Results show that climate modes condition temporal clustering of unique ARs. The Pacific-North American weather pattern strongly modulates the clustering over the Western U.S. from early to late winter. The quasi-biennial oscillation and Pacific decadal oscillation affect late winter clustering, while the Arctic oscillation dominates early winter. Climate modes also strongly influence AR orientation, with ENSO particularly affecting the orientation of temporally clustered ARs. The Pacific-North American weather pattern significantly influences unique atmospheric river temporal clustering in the Western U.S., with quasi-biennial oscillation and Pacific decadal oscillation affecting late winter clustering and Arctic oscillation dominating early winter, according to analysis of six climate modes’ influence on unique atmospheric river clustering.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01890-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Communications Earth & Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1