Formation of a single crystalline oxide semiconductor on an insulating film as a channel material capable of three-dimensional (3D) stacking would enable 3D very-large-scale integration circuits. This study presents a technique for forming single-crystalline In2O3 having no grain boundaries in a channel formation region on an insulating film using the (001) plane of c-axis-aligned crystalline indium gallium zinc oxide as a seed. Vertical field-effect transistors using the single-crystalline In2O3 had an off-state current of 10−21 A μm−1 and electrical characteristics were improved compared with those using non-single-crystalline In2O3: the subthreshold slope was improved from 95.7 to 86.7 mV dec.−1, the threshold voltage showing normally-off characteristics (0.10 V) was obtained, the threshold voltage standard deviation was improved from 0.11 to 0.05 V, the on-state current was improved from 22.5 to 28.8 μA, and a 17-digit on/off ratio was obtained at 27 °C. Three-dimensional stacking of single-crystalline oxide semiconductors on insulating films is key to large-scale integration of electronic circuits. Here, a technique is reported for single-crystalline In2O3 formation over an insulting film with no grain boundaries, achieving high processing speed and low power consumption.
在绝缘薄膜上形成单晶氧化物半导体作为能够进行三维(3D)堆叠的沟道材料,可实现三维超大规模集成电路。本研究提出了一种在绝缘薄膜上的沟道形成区域形成没有晶界的单晶 In2O3 的技术,该技术以 c 轴对齐的晶体氧化铟镓锌的 (001) 平面为种子。与使用非单晶 In2O3 的晶体管相比,使用单晶 In2O3 的垂直场效应晶体管的离态电流为 10-21 A μm-1,电气特性也有所改善:阈下斜率从 95.7 mV dec.-阈值电压显示正常关断特性(0.10 V),阈值电压标准偏差从 0.11 V 减小到 0.05 V,导通电流从 22.5 μA 减小到 28.8 μA,并且在 27 °C 时获得了 17 位数的导通/关断比。
{"title":"High-performance single-crystalline In2O3 field effect transistor toward three-dimensional large-scale integration circuits","authors":"Shunpei Yamazaki, Fumito Isaka, Toshikazu Ohno, Yuji Egi, Sachiaki Tezuka, Motomu Kurata, Hiromi Sawai, Ryosuke Motoyoshi, Etsuko Asano, Satoru Saito, Tatsuya Onuki, Takanori Matsuzaki, Michio Tajima","doi":"10.1038/s43246-024-00625-x","DOIUrl":"10.1038/s43246-024-00625-x","url":null,"abstract":"Formation of a single crystalline oxide semiconductor on an insulating film as a channel material capable of three-dimensional (3D) stacking would enable 3D very-large-scale integration circuits. This study presents a technique for forming single-crystalline In2O3 having no grain boundaries in a channel formation region on an insulating film using the (001) plane of c-axis-aligned crystalline indium gallium zinc oxide as a seed. Vertical field-effect transistors using the single-crystalline In2O3 had an off-state current of 10−21 A μm−1 and electrical characteristics were improved compared with those using non-single-crystalline In2O3: the subthreshold slope was improved from 95.7 to 86.7 mV dec.−1, the threshold voltage showing normally-off characteristics (0.10 V) was obtained, the threshold voltage standard deviation was improved from 0.11 to 0.05 V, the on-state current was improved from 22.5 to 28.8 μA, and a 17-digit on/off ratio was obtained at 27 °C. Three-dimensional stacking of single-crystalline oxide semiconductors on insulating films is key to large-scale integration of electronic circuits. Here, a technique is reported for single-crystalline In2O3 formation over an insulting film with no grain boundaries, achieving high processing speed and low power consumption.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00625-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1038/s43246-024-00616-y
Jacob P. Tavenner, Ankit Gupta, Gregory B. Thompson, Edward M. Kober, Garritt J. Tucker
Although continuum-scale segregation is a well-documented behavior in multi-species materials, detailed site-specific behavior remains largely unexplored. This is partially due to the complexity of analyzing materials at the requisite time and length scales for describing segregation with full atomic accuracy. Here, we better evaluate the segregation behavior of disordered grain boundary (GB) atomic environments through leveraging a set of Strain Functional Descriptors (SFDs) to generate an atomic descriptor (i.e., fingerprint). Using this atomic fingerprint, we resolve key relationships between atomic structure and segregation energy. Machine learning (ML) techniques are utilized in concert with this SFD fingerprint to elucidate complex relationships relating segregation potential to changes in specific features of the local Gaussian density captured by the SFDs. Finally, we identify relationships that indicate both individual and joint structure-property correlations. Linking atomic segregation energy to key structural features demonstrates the value of higher-order descriptors for uncovering complex structure-property relationships at an atomic scale. Describing site-specific segregation in multi-species materials is a computationally complex task that typically requires model simplification, at the expense of atomic accuracy, or limitation to small samples. Here, the relationships between local atomic environments at grain boundaries and their segregation energies are investigated by developing suitable machine learning atomic descriptors.
{"title":"Learning grain boundary segregation behavior through fingerprinting complex atomic environments","authors":"Jacob P. Tavenner, Ankit Gupta, Gregory B. Thompson, Edward M. Kober, Garritt J. Tucker","doi":"10.1038/s43246-024-00616-y","DOIUrl":"10.1038/s43246-024-00616-y","url":null,"abstract":"Although continuum-scale segregation is a well-documented behavior in multi-species materials, detailed site-specific behavior remains largely unexplored. This is partially due to the complexity of analyzing materials at the requisite time and length scales for describing segregation with full atomic accuracy. Here, we better evaluate the segregation behavior of disordered grain boundary (GB) atomic environments through leveraging a set of Strain Functional Descriptors (SFDs) to generate an atomic descriptor (i.e., fingerprint). Using this atomic fingerprint, we resolve key relationships between atomic structure and segregation energy. Machine learning (ML) techniques are utilized in concert with this SFD fingerprint to elucidate complex relationships relating segregation potential to changes in specific features of the local Gaussian density captured by the SFDs. Finally, we identify relationships that indicate both individual and joint structure-property correlations. Linking atomic segregation energy to key structural features demonstrates the value of higher-order descriptors for uncovering complex structure-property relationships at an atomic scale. Describing site-specific segregation in multi-species materials is a computationally complex task that typically requires model simplification, at the expense of atomic accuracy, or limitation to small samples. Here, the relationships between local atomic environments at grain boundaries and their segregation energies are investigated by developing suitable machine learning atomic descriptors.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00616-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stimuli-responsive materials constructed via the self-assembly of small biomolecules are attracting increasing attention because of their biocompatibility, sustainability, and variety of (bio)applications. Nevertheless, the research on oligosaccharide-based molecular designs for such stimuli-responsive materials (or stimuli-responsive glyco-materials) is limited, partly due to the intrinsic structural diversity of oligosaccharides and the difficulty associated with their selective chemical syntheses. Herein, we report the construction of photodegradable glyco-microfibers by the self-assembly of cellobiose derivatives bearing nitrobenzyl groups. The atomic-scale, self-assembled architecture of the photodegradable glyco-microfibers is unveiled and compared with those of pristine cellobiose and cellulose polymorphs in previous reports. Stimuli-responsive oligosaccharide-based molecular designs are limited due to their intrinsic structural diversity and difficulties in selective synthesis. Here, photodegradable glyco-microfibers are synthesized by the selfassembly of cellobiose derivatives bearing nitrobenzyl groups.
{"title":"Photodegradable glyco-microfibers fabricated by the self-assembly of cellobiose derivatives bearing nitrobenzyl groups","authors":"Bioru Okumura, Eriko Yamaguchi, Naoko Komura, Taku Ohtomi, Shin-ichiro Kawano, Hiroyasu Sato, Hiroshi Katagiri, Hiromune Ando, Masato Ikeda","doi":"10.1038/s43246-024-00622-0","DOIUrl":"10.1038/s43246-024-00622-0","url":null,"abstract":"Stimuli-responsive materials constructed via the self-assembly of small biomolecules are attracting increasing attention because of their biocompatibility, sustainability, and variety of (bio)applications. Nevertheless, the research on oligosaccharide-based molecular designs for such stimuli-responsive materials (or stimuli-responsive glyco-materials) is limited, partly due to the intrinsic structural diversity of oligosaccharides and the difficulty associated with their selective chemical syntheses. Herein, we report the construction of photodegradable glyco-microfibers by the self-assembly of cellobiose derivatives bearing nitrobenzyl groups. The atomic-scale, self-assembled architecture of the photodegradable glyco-microfibers is unveiled and compared with those of pristine cellobiose and cellulose polymorphs in previous reports. Stimuli-responsive oligosaccharide-based molecular designs are limited due to their intrinsic structural diversity and difficulties in selective synthesis. Here, photodegradable glyco-microfibers are synthesized by the selfassembly of cellobiose derivatives bearing nitrobenzyl groups.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00622-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
At present, adhesives widely used in various industries are mainly synthesized from organic chemical raw materials, and research on replacing traditional chemical raw materials with renewable biomass resources to synthesize adhesives is urgently needed. Adhesives possessing colloidal properties are highly favored due to their distinctive self-assembly capability, and robust reinforcement effects. Here, using cellulose as the sole raw material and following a simple and inexpensive strategy, we prepare a high-performance all-cellulose colloidal adhesive that is resistant to boiling water. We achieve a dry-shear strength of 1.97 MPa with this adhesive and a bonding strength of 0.81 MPa after a cycle of boiling-drying-boiling. The curing mechanism of the adhesive are verified using molecular dynamics simulations. These all-cellulose colloidal adhesives demonstrate great potential to replace traditional adhesives in the near future. Adhesives are commonly made from chemically synthesized raw materials. Here, a colloidal adhesive made entirely from cellulose shows strong mechanical properties and resistance to boiling water.
{"title":"All-cellulose colloidal adhesive","authors":"Xin Zhao, Zeyu Zhang, Tian Ju, Yuyan Jiang, Ming Wei, Jian Li, Yanjun Xie, Shaoliang Xiao","doi":"10.1038/s43246-024-00630-0","DOIUrl":"10.1038/s43246-024-00630-0","url":null,"abstract":"At present, adhesives widely used in various industries are mainly synthesized from organic chemical raw materials, and research on replacing traditional chemical raw materials with renewable biomass resources to synthesize adhesives is urgently needed. Adhesives possessing colloidal properties are highly favored due to their distinctive self-assembly capability, and robust reinforcement effects. Here, using cellulose as the sole raw material and following a simple and inexpensive strategy, we prepare a high-performance all-cellulose colloidal adhesive that is resistant to boiling water. We achieve a dry-shear strength of 1.97 MPa with this adhesive and a bonding strength of 0.81 MPa after a cycle of boiling-drying-boiling. The curing mechanism of the adhesive are verified using molecular dynamics simulations. These all-cellulose colloidal adhesives demonstrate great potential to replace traditional adhesives in the near future. Adhesives are commonly made from chemically synthesized raw materials. Here, a colloidal adhesive made entirely from cellulose shows strong mechanical properties and resistance to boiling water.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00630-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s43246-024-00600-6
Yuki Kamikawa, Koji Amezawa, Kenjiro Terada
Solid electrolytes encompass various types of nanodefects, including grain boundaries and nanovoids at the Li-metal/solid electrolyte interface, where lithium dendrite penetration has been extensively observed. Despite the importance of ion transport near grain boundaries with different anisotropy and the combinatorial effects with interfacial nanovoids, a comprehensive understanding of these phenomena has remains elusive. Here, we develop a chemo-electro-mechanical phase-field model to elucidate how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids. The investigation unveils a grain-boundary-anisotropy-dependent behavior for Li-ion transport correlated with the presence of interfacial nanovoids. Notably, the Σ1 grain boundary exhibits faster Li dendrite growth, particularly in the co-presence of interfacial nanovoids. The model quantitatively reveals whether interfacial electronic properties dominate Li dendrite morphology and penetration, providing a strategy for designing stable Li/solid electrolyte interfaces. These findings help prioritize approaches for optimally tailoring nanodefects and exploiting synergetic effects at the interface to prevent dendrite formation. Grain boundary nanodefects exist in solid electrolytes but detailed factors affecting ion transport are still limited. Here, a chemo-electro-mechanical phase-field model shows how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids
{"title":"Chemo-electro-mechanical phase-field simulation of interfacial nanodefects and nanovoids in solid-state batteries","authors":"Yuki Kamikawa, Koji Amezawa, Kenjiro Terada","doi":"10.1038/s43246-024-00600-6","DOIUrl":"10.1038/s43246-024-00600-6","url":null,"abstract":"Solid electrolytes encompass various types of nanodefects, including grain boundaries and nanovoids at the Li-metal/solid electrolyte interface, where lithium dendrite penetration has been extensively observed. Despite the importance of ion transport near grain boundaries with different anisotropy and the combinatorial effects with interfacial nanovoids, a comprehensive understanding of these phenomena has remains elusive. Here, we develop a chemo-electro-mechanical phase-field model to elucidate how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids. The investigation unveils a grain-boundary-anisotropy-dependent behavior for Li-ion transport correlated with the presence of interfacial nanovoids. Notably, the Σ1 grain boundary exhibits faster Li dendrite growth, particularly in the co-presence of interfacial nanovoids. The model quantitatively reveals whether interfacial electronic properties dominate Li dendrite morphology and penetration, providing a strategy for designing stable Li/solid electrolyte interfaces. These findings help prioritize approaches for optimally tailoring nanodefects and exploiting synergetic effects at the interface to prevent dendrite formation. Grain boundary nanodefects exist in solid electrolytes but detailed factors affecting ion transport are still limited. Here, a chemo-electro-mechanical phase-field model shows how Li penetrates Li7La3Zr2O12 in the co-presence of grain boundaries and interfacial nanovoids","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00600-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s43246-024-00619-9
Nicolas Rospars, Mohammed Srout, Chengyin Fu, Gaël Mourouga, Mounir Mensi, Andrea Ingenito
The passivation layer that naturally forms on the lithium metal surface contributes to dendrite formation in lithium metal batteries by affecting lithium nucleation uniformity during charging. Herein, we propose using vacuum thermal evaporation to produce a high-performance ultra-thin lithium metal anode (≤25 µm) with a native layer much thinner than that of extruded lithium. The evaporated lithium metal shows significantly reduced charge-transfer resistance, resulting in uniform and dense lithium plating in both carbonate and ether electrolytes. This study reveals that the evaporated lithium metal outperforms the extruded version in ether electrolyte and with LiFePO4 cathodes, showing a 30% increase in cycle life. Additionally, when paired with LiNi0.6Mn0.2Co0.2O2 cathodes in carbonate electrolyte, the evaporated anode’s cycle life is tripled compared to the extruded lithium metal. This demonstrates that vacuum thermal evaporation is a viable method for producing ultra-thin lithium metal anodes that prevent dendrite growth due to their excellent surface condition. The passivation layer that forms on the surface of lithium metal contributes to lithium nucleation uniformity during battery charging. Here, vacuum thermal evaporation produces an ultra-thin lithium metal anode with reduced charge-transfer resistance that results in a more homogeneous and denser lithium plating.
{"title":"High performance ultra-thin lithium metal anode enabled by vacuum thermal evaporation","authors":"Nicolas Rospars, Mohammed Srout, Chengyin Fu, Gaël Mourouga, Mounir Mensi, Andrea Ingenito","doi":"10.1038/s43246-024-00619-9","DOIUrl":"10.1038/s43246-024-00619-9","url":null,"abstract":"The passivation layer that naturally forms on the lithium metal surface contributes to dendrite formation in lithium metal batteries by affecting lithium nucleation uniformity during charging. Herein, we propose using vacuum thermal evaporation to produce a high-performance ultra-thin lithium metal anode (≤25 µm) with a native layer much thinner than that of extruded lithium. The evaporated lithium metal shows significantly reduced charge-transfer resistance, resulting in uniform and dense lithium plating in both carbonate and ether electrolytes. This study reveals that the evaporated lithium metal outperforms the extruded version in ether electrolyte and with LiFePO4 cathodes, showing a 30% increase in cycle life. Additionally, when paired with LiNi0.6Mn0.2Co0.2O2 cathodes in carbonate electrolyte, the evaporated anode’s cycle life is tripled compared to the extruded lithium metal. This demonstrates that vacuum thermal evaporation is a viable method for producing ultra-thin lithium metal anodes that prevent dendrite growth due to their excellent surface condition. The passivation layer that forms on the surface of lithium metal contributes to lithium nucleation uniformity during battery charging. Here, vacuum thermal evaporation produces an ultra-thin lithium metal anode with reduced charge-transfer resistance that results in a more homogeneous and denser lithium plating.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00619-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1038/s43246-024-00623-z
Natalia Jirát-Ziółkowska, Kateřina Sulková, Lucie Kracíková, Ladislav Androvič, Dominik Havliček, Richard Laga, Daniel Jirák
Biocompatible metal-free agents are emerging as a promising alternative to commercial magnetic resonance (MR) contrast agents, but there is an additional need for novel probes with enhanced responsiveness in preclinical MR testing to effectively target diverse pathological conditions. To address this, we develop hydrophilic phospho-/fluoropolymers as dual MR probes. Incorporating thiophosphoester groups (P = S) into the polymer structure produces a distinct chemical shift (~59 ppm) in phosphorus MR (31P-MR), reducing biological signals interference. Reactive oxygen species (ROS) oxidize the P = S groups, causing a detectable shift in 31P-MR, enabling precise localization of ROS, abundant in inflammation and cancer. To enhance this capability, bioinert trifluoromethyl groups (CF3) are added, creating a “hotspot” for fluorine MR (19F-MR), aiding in vivo localization. Both in vitro and in vivo testing demonstrate the probe’s high specificity and responsiveness, underscoring its potential as a sensitive ROS sensor and dual MR-traceable tool in cancer research. Magnetic resonance imaging lack biocompatible metal-free contrast agents with specific functionality. Here, hydrophilic phospho-/fluoropolymers are developed as 31P/ 19 F-MR probes for in vivo detection of reactive oxygen species.
生物相容的无金属制剂正在成为商用磁共振(MR)造影剂的一种前景广阔的替代品,但临床前磁共振测试中还需要响应性更强的新型探针,以有效针对不同的病理状况。为此,我们开发了亲水性磷/氟聚合物作为双重磁共振探针。在聚合物结构中加入硫代磷酸酯基团(P = S)可在磷磁共振(31P-MR)中产生明显的化学位移(约 59 ppm),从而减少生物信号干扰。活性氧(ROS)会氧化 P = S 基团,导致 31P-MR 发生可检测到的位移,从而实现对在炎症和癌症中大量存在的 ROS 的精确定位。为了增强这种能力,添加了生物惰性的三氟甲基(CF3),形成氟磁共振(19F-MR)的 "热点",有助于体内定位。体外和体内测试都证明了该探针的高特异性和高响应性,凸显了它作为灵敏的 ROS 传感器和双重磁共振可追踪癌症研究工具的潜力。磁共振成像缺乏具有特定功能的生物相容性无金属造影剂。在此,我们开发了亲水性磷/氟聚合物作为 31P/ 19 F-MR 探针,用于体内检测活性氧。
{"title":"Bio-responsive polymers for dual 31P/19F-magnetic resonance to detect reactive oxygen species in vivo","authors":"Natalia Jirát-Ziółkowska, Kateřina Sulková, Lucie Kracíková, Ladislav Androvič, Dominik Havliček, Richard Laga, Daniel Jirák","doi":"10.1038/s43246-024-00623-z","DOIUrl":"10.1038/s43246-024-00623-z","url":null,"abstract":"Biocompatible metal-free agents are emerging as a promising alternative to commercial magnetic resonance (MR) contrast agents, but there is an additional need for novel probes with enhanced responsiveness in preclinical MR testing to effectively target diverse pathological conditions. To address this, we develop hydrophilic phospho-/fluoropolymers as dual MR probes. Incorporating thiophosphoester groups (P = S) into the polymer structure produces a distinct chemical shift (~59 ppm) in phosphorus MR (31P-MR), reducing biological signals interference. Reactive oxygen species (ROS) oxidize the P = S groups, causing a detectable shift in 31P-MR, enabling precise localization of ROS, abundant in inflammation and cancer. To enhance this capability, bioinert trifluoromethyl groups (CF3) are added, creating a “hotspot” for fluorine MR (19F-MR), aiding in vivo localization. Both in vitro and in vivo testing demonstrate the probe’s high specificity and responsiveness, underscoring its potential as a sensitive ROS sensor and dual MR-traceable tool in cancer research. Magnetic resonance imaging lack biocompatible metal-free contrast agents with specific functionality. Here, hydrophilic phospho-/fluoropolymers are developed as 31P/ 19 F-MR probes for in vivo detection of reactive oxygen species.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00623-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1038/s43246-024-00590-5
Olivia Pabois, Yihui Dong, Nir Kampf, Christian D. Lorenz, James Doutch, Alejandro Avila-Sierra, Marco Ramaioli, Mingduo Mu, Yasmin Message, Evangelos Liamas, Arwen I. I. Tyler, Jacob Klein, Anwesha Sarkar
Designing plant protein-based aqueous lubricants can be of great potential to achieve sustainability objectives by capitalising on inherent functional groups without using synthetic chemicals; however, such a concept remains in its infancy. Here, we engineer a class of self-assembled sustainable materials by using plant-based protofilaments and their assembly within a biopolymeric hydrogel giving rise to a distinct patchy architecture. By leveraging physical interactions, this material offers superlubricity with friction coefficients of 0.004-to-0.00007 achieved under moderate-to-high (102-to-103 kPa) contact pressures. Multiscale experimental measurements combined with molecular dynamics simulations reveal an intriguing synergistic mechanism behind such ultra-low friction - where the uncoated areas of the protofilaments glue to the surface by hydrophobic interactions, whilst the hydrogel offers the hydration lubrication. The current approach establishes a robust platform towards unlocking an untapped potential of using plant protein-based building blocks across diverse applications where achieving superlubricity and environmental sustainability are key performance indicators. Superlubricity is important for energy and biomedical applications but typical building blocks are limited to synthetically-sourced polymeric materials. Here, self-assembly of plant-based protofilaments in biopolymeric hydrogels were engineered offering superlubricity performance.
{"title":"Self-assembly of sustainable plant protein protofilaments into a hydrogel for ultra-low friction across length scales","authors":"Olivia Pabois, Yihui Dong, Nir Kampf, Christian D. Lorenz, James Doutch, Alejandro Avila-Sierra, Marco Ramaioli, Mingduo Mu, Yasmin Message, Evangelos Liamas, Arwen I. I. Tyler, Jacob Klein, Anwesha Sarkar","doi":"10.1038/s43246-024-00590-5","DOIUrl":"10.1038/s43246-024-00590-5","url":null,"abstract":"Designing plant protein-based aqueous lubricants can be of great potential to achieve sustainability objectives by capitalising on inherent functional groups without using synthetic chemicals; however, such a concept remains in its infancy. Here, we engineer a class of self-assembled sustainable materials by using plant-based protofilaments and their assembly within a biopolymeric hydrogel giving rise to a distinct patchy architecture. By leveraging physical interactions, this material offers superlubricity with friction coefficients of 0.004-to-0.00007 achieved under moderate-to-high (102-to-103 kPa) contact pressures. Multiscale experimental measurements combined with molecular dynamics simulations reveal an intriguing synergistic mechanism behind such ultra-low friction - where the uncoated areas of the protofilaments glue to the surface by hydrophobic interactions, whilst the hydrogel offers the hydration lubrication. The current approach establishes a robust platform towards unlocking an untapped potential of using plant protein-based building blocks across diverse applications where achieving superlubricity and environmental sustainability are key performance indicators. Superlubricity is important for energy and biomedical applications but typical building blocks are limited to synthetically-sourced polymeric materials. Here, self-assembly of plant-based protofilaments in biopolymeric hydrogels were engineered offering superlubricity performance.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00590-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reactions of the ternary components of Co2+ ion, 4,4′-bipyridine, and NO3− give several coordination polymers, which are often obtained in mixed phases. Herein, we explore the condition for the selective formation of Co-1D chain and Co-tongue-and-groove coordination polymers and find reversible interconversion pathways between them. The crystal structures of Co-tongue-and-groove in desolvated and two different CO2-adsorbed states show a one-dimensional corrugated channel with small windows through which CO2 is unlikely to pass. Nevertheless, a sufficient amount of CO2 is adsorbed at 195 K. The CO2 molecules are accommodated in the swollen cavity, forcing their way through the seemingly impermeable window of the channel, which we have named squeezing adsorption. The local motion of the ligand of the window frame plays an essential role in the guest permeation, which proves that the tongue-and-groove coordination polymers are essentially locally flexible porous frameworks. Mixed-phase coordination polymers are often formed when using ternary components. Here, conditions for the selective formation of [Co2(4,4′-bpy)3(NO3)4] are deduced, which shows unique gas adsorption squeezing through seemingly impassable narrow windows due to local structural flexibility.
{"title":"Progressive gas adsorption squeezing through the narrow channel of a soft porous crystal of [Co2(4,4′-bipyridine)3(NO3)4]","authors":"Hirotoshi Sakamoto, Ken-ichi Otake, Susumu Kitagawa","doi":"10.1038/s43246-024-00609-x","DOIUrl":"10.1038/s43246-024-00609-x","url":null,"abstract":"Reactions of the ternary components of Co2+ ion, 4,4′-bipyridine, and NO3− give several coordination polymers, which are often obtained in mixed phases. Herein, we explore the condition for the selective formation of Co-1D chain and Co-tongue-and-groove coordination polymers and find reversible interconversion pathways between them. The crystal structures of Co-tongue-and-groove in desolvated and two different CO2-adsorbed states show a one-dimensional corrugated channel with small windows through which CO2 is unlikely to pass. Nevertheless, a sufficient amount of CO2 is adsorbed at 195 K. The CO2 molecules are accommodated in the swollen cavity, forcing their way through the seemingly impermeable window of the channel, which we have named squeezing adsorption. The local motion of the ligand of the window frame plays an essential role in the guest permeation, which proves that the tongue-and-groove coordination polymers are essentially locally flexible porous frameworks. Mixed-phase coordination polymers are often formed when using ternary components. Here, conditions for the selective formation of [Co2(4,4′-bpy)3(NO3)4] are deduced, which shows unique gas adsorption squeezing through seemingly impassable narrow windows due to local structural flexibility.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00609-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy-band gradient halide perovskites are highly desired candidates for fabricating high performance optoelectronic devices. Here, we demonstrate that a mixed halide perovskite single crystal undergoes phase segregation in the longitudinal direction under above-bandgap light illumination. As a result, a micron thick layer with vertically gradient halide composition and thus graded valence band edge is generated at the crystal surface. The resultant gradient structure can facilitate the hole extraction at its interface with a hole transport layer. The longitudinal phase segregation of mixed halide perovskite single crystal is likely driven by abundant defects at the surface. Moreover, the segregation rate is increased in air compared to nitrogen probably due to the combined effect of oxygen and moisture. These findings not only deepen the understanding of phase segregation mechanism in mixed halide perovskite, but also indicate a promising avenue of fabricating vertically energy-band gradient perovskite and enhancing the perovskite-based optoelectronic device performance. Energy-band gradient halide perovskites are highly desired candidates for fabricating high performance optoelectronic devices. Here, it is shown that a mixed halide perovskite single crystal undergoes phase segregation in the longitudinal direction under abovebandgap light illumination, generating a micron-thick layer with vertically gradient halide composition and thus graded valence band edge at the crystal surface.
{"title":"Energy-band gradient structure originated from longitudinal phase segregation of mixed halide perovskite single crystal","authors":"Zelong Chen, Zhiya Dang, Yuqing Luo, Feng Li, Tongtong Lu, Zihao Li, Xiaobin Rao, Qi Sun, Pingqi Gao","doi":"10.1038/s43246-024-00588-z","DOIUrl":"10.1038/s43246-024-00588-z","url":null,"abstract":"Energy-band gradient halide perovskites are highly desired candidates for fabricating high performance optoelectronic devices. Here, we demonstrate that a mixed halide perovskite single crystal undergoes phase segregation in the longitudinal direction under above-bandgap light illumination. As a result, a micron thick layer with vertically gradient halide composition and thus graded valence band edge is generated at the crystal surface. The resultant gradient structure can facilitate the hole extraction at its interface with a hole transport layer. The longitudinal phase segregation of mixed halide perovskite single crystal is likely driven by abundant defects at the surface. Moreover, the segregation rate is increased in air compared to nitrogen probably due to the combined effect of oxygen and moisture. These findings not only deepen the understanding of phase segregation mechanism in mixed halide perovskite, but also indicate a promising avenue of fabricating vertically energy-band gradient perovskite and enhancing the perovskite-based optoelectronic device performance. Energy-band gradient halide perovskites are highly desired candidates for fabricating high performance optoelectronic devices. Here, it is shown that a mixed halide perovskite single crystal undergoes phase segregation in the longitudinal direction under abovebandgap light illumination, generating a micron-thick layer with vertically gradient halide composition and thus graded valence band edge at the crystal surface.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00588-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}