Pub Date : 2024-01-01Epub Date: 2023-04-08DOI: 10.1080/10408347.2023.2197073
Mohsen A M Alhamami, Jari S Algethami, Sikandar Khan
Thiazole and its derivatives play an important role in biological and non-biological fields due to several structural and electronic behaviors associated with it. Thiazole derivatives act as chemosensors because they formed metal complexes upon interacting with various heavy metal ions like Cd2+, Co2+, Cr3+, Fe3+, Ag+, Al3+, Cu2+, Pd2+, Hg2+, Ni2+, Ga3+, In3+, Sn4+, Pb2+, Zn2+ as well as other cations. These metal ions are of prime importance from the environmental point of view with high. This review article focuses on the thiazole-based colorimetric as well as fluorometric sensor for the recognition of different heavy metal cations in various specimens like agricultural, biological, and environmental. It also summarizes the binding stoichiometry, detection limit, pH, structure, and practical application of the reported thiazole-based chemosensors. Further, the sensing performances, have been discussed and compared with some reported organic sensors.
{"title":"A Review on Thiazole Based Colorimetric and Fluorimetric Chemosensors for the Detection of Heavy Metal Ions.","authors":"Mohsen A M Alhamami, Jari S Algethami, Sikandar Khan","doi":"10.1080/10408347.2023.2197073","DOIUrl":"10.1080/10408347.2023.2197073","url":null,"abstract":"<p><p>Thiazole and its derivatives play an important role in biological and non-biological fields due to several structural and electronic behaviors associated with it. Thiazole derivatives act as chemosensors because they formed metal complexes upon interacting with various heavy metal ions like Cd<sup>2+</sup>, Co<sup>2+</sup>, Cr<sup>3+</sup>, Fe<sup>3+</sup>, Ag<sup>+</sup>, Al<sup>3+</sup>, Cu<sup>2+</sup>, Pd<sup>2+</sup>, Hg<sup>2+</sup>, Ni<sup>2+</sup>, Ga<sup>3+</sup>, In<sup>3+</sup>, Sn<sup>4+</sup>, Pb<sup>2+</sup>, Zn<sup>2+</sup> as well as other cations. These metal ions are of prime importance from the environmental point of view with high. This review article focuses on the thiazole-based colorimetric as well as fluorometric sensor for the recognition of different heavy metal cations in various specimens like agricultural, biological, and environmental. It also summarizes the binding stoichiometry, detection limit, pH, structure, and practical application of the reported thiazole-based chemosensors. Further, the sensing performances, have been discussed and compared with some reported organic sensors.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"2689-2713"},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9629067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-06-10DOI: 10.1080/10408347.2023.2218476
Ana Catarina Sousa, Cláudia Ribeiro, Virgínia M F Gonçalves, Inês Pádua, Sandra Leal
Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.
吡咯里西啶生物碱(PAs)是由某些植物产生的天然毒素,由于其对人类和动物的潜在危害而受到特别关注。在野生植物群、草药和食品中发现的这些物质引起了人们对健康的关注。最近,一些食品中 PAs 的最大浓度水平已经确定;然而,每日最大摄入量经常超过主管当局规定的上限,对健康构成威胁。鉴于许多产品中 PAs 的出现数据很少或根本没有,因此迫切需要测量 PAs 的含量并确定安全摄入量。据报道,已有分析方法可检测和量化不同基质中的 PAs。常用的色谱法可提供准确可靠的结果。分析方法包括提取和样品制备等不同步骤,这些步骤对分析方法的灵敏度和选择性至关重要。人们一直在努力优化提取程序、净化和色谱条件,以提高回收率,减少基质效应,实现低检测限和定量限。因此,本文旨在概述 PAs 在植物区系、中药材和食品中的存在情况,并讨论用于 PAs 分析的不同色谱方法,即提取和样品制备程序以及色谱条件。
{"title":"Chromatographic Methods for Detection and Quantification of Pyrrolizidine Alkaloids in Flora, Herbal Medicines, and Food: An Overview.","authors":"Ana Catarina Sousa, Cláudia Ribeiro, Virgínia M F Gonçalves, Inês Pádua, Sandra Leal","doi":"10.1080/10408347.2023.2218476","DOIUrl":"10.1080/10408347.2023.2218476","url":null,"abstract":"<p><p>Pyrrolizidine alkaloids (PAs) are natural toxins produced by some plants that gained special interest due to their potential hazardous effects in humans and animals. These substances have been found in wild flora, herbal medicines and food products raising health concerns. Recently, maximum concentration levels of PAs were established for some food products; however, maximum daily intake frequently surpasses the upper limit set by the competent authorities posing a health risk. Given the scarcity or absence of occurrence data on PAs in many products, there is an urgent need to measure their levels and establish safety intake levels. Analytical methods have been reported to detect and quantify PAs in different matrices. The commonly used chromatographic methodologies provides accurate and reliable results. Analytical methods include diverse steps as extraction and sample preparation procedures that are critical for sensitivity and selectivity of the analytical method. Great efforts have been directed toward optimization of extraction procedures, clean up and chromatographic conditions to improve recovery, reduce matrix effects, and achieve low limits of detection and quantification. Therefore, this paper aims to give a general overview about the occurrence of PAs in flora, herbal medicines, and foodstuff; and discuss the different chromatographic methodologies used for PAs analysis, namely extraction and sample preparation procedures and chromatographic conditions.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"2915-2939"},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9593023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-07-25DOI: 10.1080/10408347.2023.2238058
Silvia Millán-Martín, Craig Jakes, Sara Carillo, Lizzie Gallagher, Kai Scheffler, Kelly Broster, Jonathan Bones
The rapid growth of biotherapeutic industry, with more and more complex molecules entering the market, forces the need for advanced analytical platforms that can quickly and accurately identify and quantify product quality attributes. Mass spectrometry has the potential to provide more detailed information about the quality attributes of complex products, and MS methods are more sensitive than UV methods for detection of impurities. The multi-attribute method (MAM), a liquid chromatography-mass spectrometry based analytical approach is an emerging platform which supports biotherapeutic characterization and cGMP testing. The main advantage lies in the ability to monitor multiple quality attributes in a single assay, both at the peptide and the intact level, facilitating streamlined biopharmaceutical production, from research and development to the QC environment. This review highlights the current landscape of the MAM approach with special attention given to increased analytical throughput, general requirements for QC in terms of instrumentation and software, regulatory requirements, and industry acceptance of the MAM platform.
随着生物治疗行业的快速发展,越来越多的复杂分子进入市场,这迫使人们需要能够快速、准确地识别和量化产品质量属性的先进分析平台。质谱法有可能提供有关复杂产品的质量属性的更详细信息,而且质谱法在检测杂质方面比紫外法更灵敏。多属性法(MAM)是一种基于液相色谱-质谱联用的分析方法,是支持生物治疗表征和 cGMP 检测的新兴平台。其主要优势在于能够在一次检测中监测多肽和完整水平的多种质量属性,从而促进从研发到质量控制环境的生物制药生产流程的简化。本综述重点介绍了 MAM 方法的现状,特别关注分析通量的提高、质量控制对仪器和软件的一般要求、监管要求以及业界对 MAM 平台的接受程度。
{"title":"Multi-Attribute Method (MAM): An Emerging Analytical Workflow for Biopharmaceutical Characterization, Batch Release and cGMP Purity Testing at the Peptide and Intact Protein Level.","authors":"Silvia Millán-Martín, Craig Jakes, Sara Carillo, Lizzie Gallagher, Kai Scheffler, Kelly Broster, Jonathan Bones","doi":"10.1080/10408347.2023.2238058","DOIUrl":"10.1080/10408347.2023.2238058","url":null,"abstract":"<p><p>The rapid growth of biotherapeutic industry, with more and more complex molecules entering the market, forces the need for advanced analytical platforms that can quickly and accurately identify and quantify product quality attributes. Mass spectrometry has the potential to provide more detailed information about the quality attributes of complex products, and MS methods are more sensitive than UV methods for detection of impurities. The multi-attribute method (MAM), a liquid chromatography-mass spectrometry based analytical approach is an emerging platform which supports biotherapeutic characterization and cGMP testing. The main advantage lies in the ability to monitor multiple quality attributes in a single assay, both at the peptide and the intact level, facilitating streamlined biopharmaceutical production, from research and development to the QC environment. This review highlights the current landscape of the MAM approach with special attention given to increased analytical throughput, general requirements for QC in terms of instrumentation and software, regulatory requirements, and industry acceptance of the MAM platform.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"3234-3251"},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2022-12-23DOI: 10.1080/10408347.2022.2158720
Preeti AshokKumar Chaudhran, Abha Sharma
Different classes of Imidazopyridine i.e., Imidazo[1,2-a]pyridine, Imidazo[1,5-a] pyridine, Imidazo[4,5-b]pyridine, have shown versatile applications in various fields. In this review, we have concisely presented the usefulness of the fluorescent property of imidazopyridine in different fields such as imaging tools, optoelectronics, metal ion detection, etc. Fluorescence mechanisms such as excited state intramolecular proton transfer, photoinduced electron transfer, fluorescence resonance energy transfer, intramolecular charge transfer, etc. are incorporated in the designed fluorophore to make it for fluorescent applications. It has been widely employed for metal ion detection, where selective metal ion detection is possible with triazole-attached imidazopyridine, β-carboline imidazopyridine hybrid, quinoline conjugated imidazopyridine, and many more. Also, other popular applications involve organic light emitting diodes and cell imaging. This review shed a light on recent development in this area especially focusing on the optical properties of the molecules with their usage which would be helpful in designing application-based new imidazopyridine derivatives.
{"title":"Progress in the Development of Imidazopyridine-Based Fluorescent Probes for Diverse Applications.","authors":"Preeti AshokKumar Chaudhran, Abha Sharma","doi":"10.1080/10408347.2022.2158720","DOIUrl":"10.1080/10408347.2022.2158720","url":null,"abstract":"<p><p>Different classes of Imidazopyridine i.e., Imidazo[1,2-<i>a</i>]pyridine, Imidazo[1,5-<i>a</i>] pyridine, Imidazo[4,5-<i>b</i>]pyridine, have shown versatile applications in various fields. In this review, we have concisely presented the usefulness of the fluorescent property of imidazopyridine in different fields such as imaging tools, optoelectronics, metal ion detection, etc. Fluorescence mechanisms such as excited state intramolecular proton transfer, photoinduced electron transfer, fluorescence resonance energy transfer, intramolecular charge transfer, etc. are incorporated in the designed fluorophore to make it for fluorescent applications. It has been widely employed for metal ion detection, where selective metal ion detection is possible with triazole-attached imidazopyridine, β-carboline imidazopyridine hybrid, quinoline conjugated imidazopyridine, and many more. Also, other popular applications involve organic light emitting diodes and cell imaging. This review shed a light on recent development in this area especially focusing on the optical properties of the molecules with their usage which would be helpful in designing application-based new imidazopyridine derivatives.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"2148-2165"},"PeriodicalIF":4.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10500765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-06-16DOI: 10.1080/10408347.2023.2219748
Bogusław Buszewski, Dominika Błońska, Ewa Kłodzińska, Marek Konop, Anna Kubesová, Jiří Šalplachta
In modern medical diagnostics, where analytical chemistry plays a key role, fast and accurate identification of pathogens is becoming increasingly important. Infectious diseases pose a growing threat to public health due to population growth, international air travel, bacterial resistance to antibiotics, and other factors. For instance, the detection of SARS-CoV-2 in patient samples is a key tool to monitor the spread of the disease. While there are several techniques for identifying pathogens by their genetic code, most of these methods are too expensive or slow to effectively analyze clinical and environmental samples that may contain hundreds or even thousands of different microbes. Standard approaches (e.g., culture media and biochemical assays) are known to be very time- and labor-intensive. The purpose of this review paper is to highlight the problems associated with the analysis and identification of pathogens that cause many serious infections. Special attention was paid to the description of mechanisms and the explanation of the phenomena and processes occurring on the surface of pathogens as biocolloids (charge distribution). This review also highlights the importance of electromigration techniques and demonstrates their potential for pathogen pre-separation and fractionation and demonstrates the use of spectrometric methods, such as MALDI-TOF MS, for their detection and identification.
{"title":"Determination of Pathogens by Electrophoretic and Spectrometric Techniques.","authors":"Bogusław Buszewski, Dominika Błońska, Ewa Kłodzińska, Marek Konop, Anna Kubesová, Jiří Šalplachta","doi":"10.1080/10408347.2023.2219748","DOIUrl":"10.1080/10408347.2023.2219748","url":null,"abstract":"<p><p>In modern medical diagnostics, where analytical chemistry plays a key role, fast and accurate identification of pathogens is becoming increasingly important. Infectious diseases pose a growing threat to public health due to population growth, international air travel, bacterial resistance to antibiotics, and other factors. For instance, the detection of SARS-CoV-2 in patient samples is a key tool to monitor the spread of the disease. While there are several techniques for identifying pathogens by their genetic code, most of these methods are too expensive or slow to effectively analyze clinical and environmental samples that may contain hundreds or even thousands of different microbes. Standard approaches (e.g., culture media and biochemical assays) are known to be very time- and labor-intensive. The purpose of this review paper is to highlight the problems associated with the analysis and identification of pathogens that cause many serious infections. Special attention was paid to the description of mechanisms and the explanation of the phenomena and processes occurring on the surface of pathogens as biocolloids (charge distribution). This review also highlights the importance of electromigration techniques and demonstrates their potential for pathogen pre-separation and fractionation and demonstrates the use of spectrometric methods, such as MALDI-TOF MS, for their detection and identification.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"2960-2983"},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9631302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-07-19DOI: 10.1080/10408347.2023.2236215
Irshad Mohiuddin, Raghubir Singh, Varinder Kaur
Molecularly imprinted fluorescent carbon dots (MI-FCDs) find numerous applications in analytical chemistry due to their outstanding photoluminescent properties and having specific pockets for the recognition of target molecules. Despite significant advances, practical applications of MI-FCDs-based fluorescent sensors are still in their initial stages. Therefore, the topical developments in the synthesis, working, and application of MI-FCDs for sensing various target species (e.g., pharmaceuticals, biomolecules, pesticides, food additives, and miscellaneous species) in food and biological media have been highlighted. Moreover, a careful evaluation has been made to select the best methods based on their performance in terms of analytical parameters. To expand the horizons of this field, important challenges and future directions for developing MI-FCDs for practical use are also presented. This review will highlight important aspects of MI-FCDs-based fluorescent sensors for their applicability in food science, material science, environmental science, nanoscience, and biotechnology.
{"title":"A Review of Sensing Applications of Molecularly Imprinted Fluorescent Carbon Dots for Food and Biological Sample Analysis.","authors":"Irshad Mohiuddin, Raghubir Singh, Varinder Kaur","doi":"10.1080/10408347.2023.2236215","DOIUrl":"10.1080/10408347.2023.2236215","url":null,"abstract":"<p><p>Molecularly imprinted fluorescent carbon dots (MI-FCDs) find numerous applications in analytical chemistry due to their outstanding photoluminescent properties and having specific pockets for the recognition of target molecules. Despite significant advances, practical applications of MI-FCDs-based fluorescent sensors are still in their initial stages. Therefore, the topical developments in the synthesis, working, and application of MI-FCDs for sensing various target species (<i>e.g.,</i> pharmaceuticals, biomolecules, pesticides, food additives, and miscellaneous species) in food and biological media have been highlighted. Moreover, a careful evaluation has been made to select the best methods based on their performance in terms of analytical parameters. To expand the horizons of this field, important challenges and future directions for developing MI-FCDs for practical use are also presented. This review will highlight important aspects of MI-FCDs-based fluorescent sensors for their applicability in food science, material science, environmental science, nanoscience, and biotechnology.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"3212-3233"},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9840341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traditional Chinese medicine (TCM) is the treasure of China, and the quality control of TCM is of crucial importance. In recent years, with the quick rise of artificial intelligence (AI) and the rapid development of hyperspectral imaging (HSI) technology, the combination of the two has been widely used in the quality evaluation of TCM. Machine learning (ML) is the core wisdom of AI, and its progress in rapid analysis and higher accuracy improves the potential of applying HSI to the field of TCM. This article reviewed five aspects of ML applied to hyperspectral data analysis of TCM: partition of data set, data preprocessing, data dimension reduction, qualitative or quantitative models, and model performance measurement. The different algorithms proposed by researchers for quality assessment of TCM were also compared. Finally, the challenges in the analysis of hyperspectral images for TCM were summarized, and the future works were prospected.
{"title":"Applications of Hyperspectral Imaging Technology Combined with Machine Learning in Quality Control of Traditional Chinese Medicine from the Perspective of Artificial Intelligence: A Review.","authors":"Yixia Pan, Hongxu Zhang, Yuan Chen, Xingchu Gong, Jizhong Yan, Hui Zhang","doi":"10.1080/10408347.2023.2207652","DOIUrl":"10.1080/10408347.2023.2207652","url":null,"abstract":"<p><p>Traditional Chinese medicine (TCM) is the treasure of China, and the quality control of TCM is of crucial importance. In recent years, with the quick rise of artificial intelligence (AI) and the rapid development of hyperspectral imaging (HSI) technology, the combination of the two has been widely used in the quality evaluation of TCM. Machine learning (ML) is the core wisdom of AI, and its progress in rapid analysis and higher accuracy improves the potential of applying HSI to the field of TCM. This article reviewed five aspects of ML applied to hyperspectral data analysis of TCM: partition of data set, data preprocessing, data dimension reduction, qualitative or quantitative models, and model performance measurement. The different algorithms proposed by researchers for quality assessment of TCM were also compared. Finally, the challenges in the analysis of hyperspectral images for TCM were summarized, and the future works were prospected.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"2850-2864"},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9888545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-06-19DOI: 10.1080/10408347.2023.2221731
Sílvia Rocha, Ana T Rufino, Marisa Freitas, Artur M S Silva, Félix Carvalho, Eduarda Fernandes
Obesity is a disease of epidemic proportions with a concerning increasing trend. Regarded as one of the main sources of energy, lipids can also represent a big part of an unnecessary intake of calories and be, therefore, directly related to the problem of obesity. Pancreatic lipase is an enzyme that is essential in the absorption and digestion of dietary fats and has been explored as an alternative for the reduction of fat absorption and consequent weigh loss. Literature describes a great variability of methodologies and experimental conditions used in research to evaluate the in vitro inhibitory activity of compounds against pancreatic lipase. However, in an attempt to choose the best approach, it is necessary to know all the reaction conditions and understand how these can affect the enzymatic assay. The objective of this review is to understand and summarize the methodologies and respective experimental conditions that are mainly used to evaluate pancreatic lipase catalytic activity. 156 studies were included in this work and a detailed description of the most commonly used UV/Vis spectrophotometric and fluorimetric instrumental techniques are presented, including a discussion regarding the differences found in the parameters used in both techniques, namely enzyme, substrate, buffer solutions, kinetics conditions, temperature and pH. This works shows that both UV/Vis spectrophotometry and fluorimetry are useful instrumental techniques for the evaluation of pancreatic lipase catalytic activity, presenting several advantages and limitations, which make the choice of parameters and experimental conditions a crucial decision to obtain the most reliable results.
{"title":"Methodologies for Assessing Pancreatic Lipase Catalytic Activity: A Review.","authors":"Sílvia Rocha, Ana T Rufino, Marisa Freitas, Artur M S Silva, Félix Carvalho, Eduarda Fernandes","doi":"10.1080/10408347.2023.2221731","DOIUrl":"10.1080/10408347.2023.2221731","url":null,"abstract":"<p><p>Obesity is a disease of epidemic proportions with a concerning increasing trend. Regarded as one of the main sources of energy, lipids can also represent a big part of an unnecessary intake of calories and be, therefore, directly related to the problem of obesity. Pancreatic lipase is an enzyme that is essential in the absorption and digestion of dietary fats and has been explored as an alternative for the reduction of fat absorption and consequent weigh loss. Literature describes a great variability of methodologies and experimental conditions used in research to evaluate the <i>in vitro</i> inhibitory activity of compounds against pancreatic lipase. However, in an attempt to choose the best approach, it is necessary to know all the reaction conditions and understand how these can affect the enzymatic assay. The objective of this review is to understand and summarize the methodologies and respective experimental conditions that are mainly used to evaluate pancreatic lipase catalytic activity. 156 studies were included in this work and a detailed description of the most commonly used UV/Vis spectrophotometric and fluorimetric instrumental techniques are presented, including a discussion regarding the differences found in the parameters used in both techniques, namely enzyme, substrate, buffer solutions, kinetics conditions, temperature and pH. This works shows that both UV/Vis spectrophotometry and fluorimetry are useful instrumental techniques for the evaluation of pancreatic lipase catalytic activity, presenting several advantages and limitations, which make the choice of parameters and experimental conditions a crucial decision to obtain the most reliable results.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"3038-3065"},"PeriodicalIF":5.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9654919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2022-05-09DOI: 10.1080/10408347.2022.2073433
Fengjiao Li, Jinyu Zhang, Yuanzhong Wang
Many foods have both edible and medical importance and are appreciated as functional foods, preventing diseases. However, due to unscrupulous vendors and imperfect market supervision mechanisms, curative foods are prone to adulteration or some other events that harm the interests of consumers. However, traditional analytical methods are unsuitable and expensive for a broad and complex application. Therefore, people urgently need a fast, efficient, and accurate detection method to protect self-interests. Recently, the study of target samples by vibration spectrum shows strong qualitative and quantitative ability. The model established by platform technology combined with the stoichiometric analysis method can obtain better parameters, which it has good robustness and can detect functional food efficiently, quickly and nondestructive. The review compared and prospect five different vibrational spectroscopic techniques (near-infrared, Fourier transform infrared, Raman, hyperspectral imaging spectroscopy and Terahertz spectroscopy). In order to better solve some of the actual situations faced by certification, we explore and through relevant research and investigation to appropriately highlight the applicability and importance of technology combined with chemometrics in functional food authentication. There are four categories of authentication discussed: functional food authenticated in source, processing method, fraud and ingredient ratio. This paper provides an innovative process for the authentication of functional food, which has a meaningful reference value for future review or scientific research of relevant departments.
{"title":"Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods.","authors":"Fengjiao Li, Jinyu Zhang, Yuanzhong Wang","doi":"10.1080/10408347.2022.2073433","DOIUrl":"10.1080/10408347.2022.2073433","url":null,"abstract":"<p><p>Many foods have both edible and medical importance and are appreciated as functional foods, preventing diseases. However, due to unscrupulous vendors and imperfect market supervision mechanisms, curative foods are prone to adulteration or some other events that harm the interests of consumers. However, traditional analytical methods are unsuitable and expensive for a broad and complex application. Therefore, people urgently need a fast, efficient, and accurate detection method to protect self-interests. Recently, the study of target samples by vibration spectrum shows strong qualitative and quantitative ability. The model established by platform technology combined with the stoichiometric analysis method can obtain better parameters, which it has good robustness and can detect functional food efficiently, quickly and nondestructive. The review compared and prospect five different vibrational spectroscopic techniques (near-infrared, Fourier transform infrared, Raman, hyperspectral imaging spectroscopy and Terahertz spectroscopy). In order to better solve some of the actual situations faced by certification, we explore and through relevant research and investigation to appropriately highlight the applicability and importance of technology combined with chemometrics in functional food authentication. There are four categories of authentication discussed: functional food authenticated in source, processing method, fraud and ingredient ratio. This paper provides an innovative process for the authentication of functional food, which has a meaningful reference value for future review or scientific research of relevant departments.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":"1 1","pages":"333-354"},"PeriodicalIF":5.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47166350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bacterial and viruses pathogens are a significant hazard to human safety and health. In the imaging and detection of pathogenic microorganisms, the application of fluorescent nanoparticles is very useful. Carbon dots and quantum dots are preferred in this regard as labels, amplifiers, and/or electrode modifiers because of their outstanding features. However, precise diagnostics to identify numerous harmful bacteria simultaneously still face considerable hurdles, yet it is an inevitable issue. With the growing development of biosensors, nanoproduct-based bio-sensing has recently become one of the most promising methods for accurately identifying and quantifying various pathogens at low cost, high sensitivity, and selectivity, with time savings. The most recent applications of carbon dots in optical and electrochemical-based sensors are discussed in this review, along with some examples of pathogen sensors.HighlightsSimultaneous and early detection of pathogens is a critical issue in the management of readily spread to prevent epidemics.Carbon dots-based biosensors are more preferred in detection of pathogens due to high selectivity and sensitivity, as well as quick and cheap point-of-care platform.Summary of recent advances in the design of optical and electrochemical biosensors for the detection of pathogens.
{"title":"Carbon Dots in the Detection of Pathogenic Bacteria and Viruses.","authors":"Erhan Zor, Fariba Mollarasouli, Leyla Karadurmus, Goksu Ozcelikay, Sibel A Ozkan","doi":"10.1080/10408347.2022.2072168","DOIUrl":"10.1080/10408347.2022.2072168","url":null,"abstract":"<p><p>Bacterial and viruses pathogens are a significant hazard to human safety and health. In the imaging and detection of pathogenic microorganisms, the application of fluorescent nanoparticles is very useful. Carbon dots and quantum dots are preferred in this regard as labels, amplifiers, and/or electrode modifiers because of their outstanding features. However, precise diagnostics to identify numerous harmful bacteria simultaneously still face considerable hurdles, yet it is an inevitable issue. With the growing development of biosensors, nanoproduct-based bio-sensing has recently become one of the most promising methods for accurately identifying and quantifying various pathogens at low cost, high sensitivity, and selectivity, with time savings. The most recent applications of carbon dots in optical and electrochemical-based sensors are discussed in this review, along with some examples of pathogen sensors.HighlightsSimultaneous and early detection of pathogens is a critical issue in the management of readily spread to prevent epidemics.Carbon dots-based biosensors are more preferred in detection of pathogens due to high selectivity and sensitivity, as well as quick and cheap point-of-care platform.Summary of recent advances in the design of optical and electrochemical biosensors for the detection of pathogens.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":"1 1","pages":"219-246"},"PeriodicalIF":5.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46482592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}