Pub Date : 2024-05-28DOI: 10.1007/s12200-024-00117-3
Bo Ren, Hongxiang Chang, Can Li, Tao Wang, Kaikai Jin, Jiayi Zhang, Kun Guo, Rongtao Su, Jinyong Leng, Pu Zhou
In this paper, we report a coherent beam combining (CBC) system that involves two thulium-doped all-polarization maintaining (PM) fiber chirped pulse amplifiers. Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent (SPGD) algorithm, a maximum average power of 265 W is obtained, with a CBC efficiency of 81% and a residual phase error of λ/17. After de-chirping by a pair of diffraction gratings, the duration of the combined laser pulse is compressed to 690 fs. Taking into account the compression efficiency of 90% and the main peak energy proportion of 91%, the corresponding peak power is calculated to be 4 MW. The laser noise characteristics before and after CBC are examined, and the results indicate that the CBC would degrade the low frequency relative intensity noise (RIN), of which the integration is 1.74% in [100 Hz, 2 MHz] at the maximum combined output power. In addition, the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated, showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.
{"title":"Coherent beam combining of two all-PM thulium-doped fiber chirped pulse amplifiers.","authors":"Bo Ren, Hongxiang Chang, Can Li, Tao Wang, Kaikai Jin, Jiayi Zhang, Kun Guo, Rongtao Su, Jinyong Leng, Pu Zhou","doi":"10.1007/s12200-024-00117-3","DOIUrl":"10.1007/s12200-024-00117-3","url":null,"abstract":"<p><p>In this paper, we report a coherent beam combining (CBC) system that involves two thulium-doped all-polarization maintaining (PM) fiber chirped pulse amplifiers. Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent (SPGD) algorithm, a maximum average power of 265 W is obtained, with a CBC efficiency of 81% and a residual phase error of λ/17. After de-chirping by a pair of diffraction gratings, the duration of the combined laser pulse is compressed to 690 fs. Taking into account the compression efficiency of 90% and the main peak energy proportion of 91%, the corresponding peak power is calculated to be 4 MW. The laser noise characteristics before and after CBC are examined, and the results indicate that the CBC would degrade the low frequency relative intensity noise (RIN), of which the integration is 1.74% in [100 Hz, 2 MHz] at the maximum combined output power. In addition, the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated, showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"14"},"PeriodicalIF":4.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1007/s12200-024-00116-4
Zhixiang Huang, Weipeng Wu, Eric Herrmann, Ke Ma, Zizwe A Chase, Thomas A Searles, M Benjamin Jungfleisch, Xi Wang
The non-ionizing and penetrative characteristics of terahertz (THz) radiation have recently led to its adoption across a variety of applications. To effectively utilize THz radiation, modulators with precise control are imperative. While most recent THz modulators manipulate the amplitude, frequency, or phase of incident THz radiation, considerably less progress has been made toward THz polarization modulation. Conventional methods for polarization control suffer from high driving voltages, restricted modulation depth, and narrow band capabilities, which hinder device performance and broader applications. Consequently, an ideal THz modulator that offers high modulation depth along with ease of processing and operation is required. In this paper, we propose and realize a THz metamaterial comprised of microelectromechanical systems (MEMS) actuated by the phase-transition material vanadium dioxide (VO2). Simulation and experimental results of the three-dimensional metamaterials show that by leveraging the unique phase-transition attributes of VO2, our THz polarization modulator offers notable advancements over existing designs, including broad operation spectrum, high modulation depth, ease of fabrication, ease of operation condition, and continuous modulation capabilities. These enhanced features make the system a viable candidate for a range of THz applications, including telecommunications, imaging, and radar systems.
{"title":"MEMS-actuated terahertz metamaterials driven by phase-transition materials.","authors":"Zhixiang Huang, Weipeng Wu, Eric Herrmann, Ke Ma, Zizwe A Chase, Thomas A Searles, M Benjamin Jungfleisch, Xi Wang","doi":"10.1007/s12200-024-00116-4","DOIUrl":"10.1007/s12200-024-00116-4","url":null,"abstract":"<p><p>The non-ionizing and penetrative characteristics of terahertz (THz) radiation have recently led to its adoption across a variety of applications. To effectively utilize THz radiation, modulators with precise control are imperative. While most recent THz modulators manipulate the amplitude, frequency, or phase of incident THz radiation, considerably less progress has been made toward THz polarization modulation. Conventional methods for polarization control suffer from high driving voltages, restricted modulation depth, and narrow band capabilities, which hinder device performance and broader applications. Consequently, an ideal THz modulator that offers high modulation depth along with ease of processing and operation is required. In this paper, we propose and realize a THz metamaterial comprised of microelectromechanical systems (MEMS) actuated by the phase-transition material vanadium dioxide (VO<sub>2</sub>). Simulation and experimental results of the three-dimensional metamaterials show that by leveraging the unique phase-transition attributes of VO<sub>2</sub>, our THz polarization modulator offers notable advancements over existing designs, including broad operation spectrum, high modulation depth, ease of fabrication, ease of operation condition, and continuous modulation capabilities. These enhanced features make the system a viable candidate for a range of THz applications, including telecommunications, imaging, and radar systems.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"13"},"PeriodicalIF":5.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1007/s12200-024-00115-5
Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao
Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as - 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.
{"title":"Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection.","authors":"Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao","doi":"10.1007/s12200-024-00115-5","DOIUrl":"https://doi.org/10.1007/s12200-024-00115-5","url":null,"abstract":"<p><p>Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as - 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"12"},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics. As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su-Schrieffer-Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.
{"title":"Information-entropy enabled identifying topological photonic phase in real space.","authors":"Rui Ma, Qiuchen Yan, Yihao Luo, Yandong Li, Xingyuan Wang, Cuicui Lu, Xiaoyong Hu, Qihuang Gong","doi":"10.1007/s12200-024-00113-7","DOIUrl":"10.1007/s12200-024-00113-7","url":null,"abstract":"<p><p>The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics. As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su-Schrieffer-Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"11"},"PeriodicalIF":4.1,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-28DOI: 10.1007/s12200-024-00111-9
Jian Yin, David Hwang, Hossein Zamani Siboni, Ehsanollah Fathi, Reza Chaji, Dayan Ban
InGaN/GaN micro-light-emitting diodes (micro-LEDs) with a metal-insulator-semiconductor (MIS) structure on the sidewall are proposed to improve efficiency. In this MIS structure, a sidewall electrode is deposited on the insulating layer-coated sidewall of the device mesa between a cathode on the bottom and an anode on the top. Electroluminescence (EL) measurements of fabricated devices with a mesa diameter of 10 μm show that the application of negative biases on the sidewall electrode can increase the device external quantum efficiency (EQE). In contrast, the application of positive biases can decrease the EQE. The band structure analysis reveals that the EQE is impacted because the application of sidewall electric fields manipulates the local surface electron density along the mesa sidewall and thus controls surface Shockley-Read-Hall (SRH) recombination. Two suggested strategies, reducing insulator layer thickness and exploring alternative materials, can be implemented to further improve the EQE of MIS micro-LEDs in future fabrication.
为了提高效率,提出了在侧壁上采用金属-绝缘体-半导体(MIS)结构的 InGaN/GaN 微型发光二极管(micro-LED)。在这种金属-绝缘体-半导体(MIS)结构中,侧壁电极沉积在底部阴极和顶部阳极之间的器件介子的绝缘层涂层侧壁上。对介子直径为 10 μm 的器件进行的电致发光(EL)测量表明,在侧壁电极上施加负偏压可提高器件的外部量子效率(EQE)。相反,施加正偏压则会降低 EQE。带状结构分析表明,影响 EQE 的原因是侧壁电场的应用操纵了沿介子侧壁的局部表面电子密度,从而控制了表面肖克利-雷德-霍尔(SRH)重组。建议采取减少绝缘层厚度和探索替代材料这两种策略,以便在未来的制造过程中进一步提高 MIS 微型 LED 的 EQE。
{"title":"Efficiency improvement by using metal-insulator-semiconductor structure in InGaN/GaN micro-light-emitting diodes.","authors":"Jian Yin, David Hwang, Hossein Zamani Siboni, Ehsanollah Fathi, Reza Chaji, Dayan Ban","doi":"10.1007/s12200-024-00111-9","DOIUrl":"10.1007/s12200-024-00111-9","url":null,"abstract":"<p><p>InGaN/GaN micro-light-emitting diodes (micro-LEDs) with a metal-insulator-semiconductor (MIS) structure on the sidewall are proposed to improve efficiency. In this MIS structure, a sidewall electrode is deposited on the insulating layer-coated sidewall of the device mesa between a cathode on the bottom and an anode on the top. Electroluminescence (EL) measurements of fabricated devices with a mesa diameter of 10 μm show that the application of negative biases on the sidewall electrode can increase the device external quantum efficiency (EQE). In contrast, the application of positive biases can decrease the EQE. The band structure analysis reveals that the EQE is impacted because the application of sidewall electric fields manipulates the local surface electron density along the mesa sidewall and thus controls surface Shockley-Read-Hall (SRH) recombination. Two suggested strategies, reducing insulator layer thickness and exploring alternative materials, can be implemented to further improve the EQE of MIS micro-LEDs in future fabrication.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"8"},"PeriodicalIF":5.4,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1007/s12200-024-00110-w
Zhuochen Du, Jinze Gao, Qiuchen Yan, Cuicui Lu, Xiaoyong Hu, Qihuang Gong
Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields, and has been realized in Euclidean systems, such as topological photonic crystals, topological metamaterials, and coupled resonator arrays. However, the spin-controlled topological phase transition in non-Euclidean space has not yet been explored. Here, we propose a non-Euclidean configuration based on Möbius rings, and we demonstrate the spin-controlled transition between the topological edge state and the bulk state. The Möbius ring, which is designed to have an 8π period, has a square cross section at the twist beginning and the length/width evolves adiabatically along the loop, accompanied by conversion from transverse electric to transverse magnetic modes resulting from the spin-locked effect. The 8π period Möbius rings are used to construct Su-Schrieffer-Heeger configuration, and the configuration can support the topological edge states excited by circularly polarized light, and meanwhile a transition from the topological edge state to the bulk state can be realized by controlling circular polarization. In addition, the spin-controlled topological phase transition in non-Euclidean space is feasible for both Hermitian and non-Hermitian cases in 2D systems. This work provides a new degree of polarization to control topological photonic states based on the spin of Möbius rings and opens a way to tune the topological phase in non-Euclidean space.
{"title":"Spin-controlled topological phase transition in non-Euclidean space.","authors":"Zhuochen Du, Jinze Gao, Qiuchen Yan, Cuicui Lu, Xiaoyong Hu, Qihuang Gong","doi":"10.1007/s12200-024-00110-w","DOIUrl":"10.1007/s12200-024-00110-w","url":null,"abstract":"<p><p>Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields, and has been realized in Euclidean systems, such as topological photonic crystals, topological metamaterials, and coupled resonator arrays. However, the spin-controlled topological phase transition in non-Euclidean space has not yet been explored. Here, we propose a non-Euclidean configuration based on Möbius rings, and we demonstrate the spin-controlled transition between the topological edge state and the bulk state. The Möbius ring, which is designed to have an 8π period, has a square cross section at the twist beginning and the length/width evolves adiabatically along the loop, accompanied by conversion from transverse electric to transverse magnetic modes resulting from the spin-locked effect. The 8π period Möbius rings are used to construct Su-Schrieffer-Heeger configuration, and the configuration can support the topological edge states excited by circularly polarized light, and meanwhile a transition from the topological edge state to the bulk state can be realized by controlling circular polarization. In addition, the spin-controlled topological phase transition in non-Euclidean space is feasible for both Hermitian and non-Hermitian cases in 2D systems. This work provides a new degree of polarization to control topological photonic states based on the spin of Möbius rings and opens a way to tune the topological phase in non-Euclidean space.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"7"},"PeriodicalIF":5.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951149/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1007/s12200-024-00109-3
Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du
With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic-inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH3)3S]2SnCl6·H2O is synthesized as a host for dopant ions Bi3+ and Sb3+. The Sb3+ doped, or Bi3+/Sb3+ co-doped, [(CH3)3S]2SnCl6·H2O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.
随着白光 LED 的快速发展,新型高效白光发光材料的研究日益受到关注。具有优异发光性能的零维(0D)有机-无机杂化金属卤化物过氧化物因其丰富且可定制的结构而成为 LED 应用的理想候选材料。本文合成了[(CH3)3S]2SnCl6-H2O,作为掺杂离子 Bi3+ 和 Sb3+ 的宿主。通过改变掺杂比例和激发波长,掺杂 Sb3+ 或 Bi3+/Sb3+ 共掺杂的 [(CH3)3S]2SnCl6-H2O 具有可调的光学发射光谱。因此,我们可以获得适用于从冷白光到暖白光发射的单相材料。这项工作对其内在机理进行了研究,以阐明掺杂剂对光学特性的影响。标题晶体材料对水、氧和热的高稳定性使其具有进一步应用的前景。
{"title":"White light emission in 0D halide perovskite [(CH<sub>3</sub>)<sub>3</sub>S]<sub>2</sub>SnCl<sub>6</sub>·H<sub>2</sub>O crystals through variation of doping ns<sup>2</sup> ions.","authors":"Yitong Lin, Yu Zhong, Yangpeng Lin, Jiawei Lin, Lei Pang, Zhilong Zhang, Yi Zhao, Xiao-Ying Huang, Ke-Zhao Du","doi":"10.1007/s12200-024-00109-3","DOIUrl":"10.1007/s12200-024-00109-3","url":null,"abstract":"<p><p>With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic-inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH<sub>3</sub>)<sub>3</sub>S]<sub>2</sub>SnCl<sub>6</sub>·H<sub>2</sub>O is synthesized as a host for dopant ions Bi<sup>3+</sup> and Sb<sup>3+</sup>. The Sb<sup>3+</sup> doped, or Bi<sup>3+</sup>/Sb<sup>3+</sup> co-doped, [(CH<sub>3</sub>)<sub>3</sub>S]<sub>2</sub>SnCl<sub>6</sub>·H<sub>2</sub>O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"6"},"PeriodicalIF":4.1,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139905530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1007/s12200-024-00108-4
Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao
A highly sensitive temperature sensing array is prepared by all laser direct writing (LDW) method, using laser induced silver (LIS) as electrodes and laser induced graphene (LIG) as temperature sensing layer. A finite element analysis (FEA) photothermal model incorporating a phase transition mechanism is developed to investigate the relationship between laser parameters and LIG properties, providing guidance for laser processing parameters selection with laser power of 1-5 W and laser scanning speed (greater than 50 mm/s). The deviation of simulation and experimental data for widths and thickness of LIG are less than 5% and 9%, respectively. The electrical properties and temperature responsiveness of LIG are also studied. By changing the laser process parameters, the thickness of the LIG ablation grooves can be in the range of 30-120 μm and the resistivity of LIG can be regulated within the range of 0.031-67.2 Ω·m. The percentage temperature coefficient of resistance (TCR) is calculated as - 0.58%/°C. Furthermore, the FEA photothermal model is studied through experiments and simulations data regarding LIS, and the average deviation between experiment and simulation is less than 5%. The LIS sensing samples have a thickness of about 14 μm, an electrical resistivity of 0.0001-100 Ω·m is insensitive to temperature and pressure stimuli. Moreover, for a LIS-LIG based temperature sensing array, a correction factor is introduced to compensate for the LIG temperature sensing being disturbed by pressure stimuli, the temperature measurement difference is decreased from 11.2 to 2.6 °C, indicating good accuracy for temperature measurement.
{"title":"All laser direct writing process for temperature sensor based on graphene and silver.","authors":"Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao","doi":"10.1007/s12200-024-00108-4","DOIUrl":"10.1007/s12200-024-00108-4","url":null,"abstract":"<p><p>A highly sensitive temperature sensing array is prepared by all laser direct writing (LDW) method, using laser induced silver (LIS) as electrodes and laser induced graphene (LIG) as temperature sensing layer. A finite element analysis (FEA) photothermal model incorporating a phase transition mechanism is developed to investigate the relationship between laser parameters and LIG properties, providing guidance for laser processing parameters selection with laser power of 1-5 W and laser scanning speed (greater than 50 mm/s). The deviation of simulation and experimental data for widths and thickness of LIG are less than 5% and 9%, respectively. The electrical properties and temperature responsiveness of LIG are also studied. By changing the laser process parameters, the thickness of the LIG ablation grooves can be in the range of 30-120 μm and the resistivity of LIG can be regulated within the range of 0.031-67.2 Ω·m. The percentage temperature coefficient of resistance (TCR) is calculated as - 0.58%/°C. Furthermore, the FEA photothermal model is studied through experiments and simulations data regarding LIS, and the average deviation between experiment and simulation is less than 5%. The LIS sensing samples have a thickness of about 14 μm, an electrical resistivity of 0.0001-100 Ω·m is insensitive to temperature and pressure stimuli. Moreover, for a LIS-LIG based temperature sensing array, a correction factor is introduced to compensate for the LIG temperature sensing being disturbed by pressure stimuli, the temperature measurement difference is decreased from 11.2 to 2.6 °C, indicating good accuracy for temperature measurement.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"5"},"PeriodicalIF":5.4,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1007/s12200-023-00104-0
Yuxiang Su, Xi Liang, Danhua Cao, Zhenyu Yang, Yuanlong Peng, Ming Zhao
Traditional inspection cameras determine targets and detect defects by capturing images of their light intensity, but in complex environments, the accuracy of inspection may decrease. Information based on polarization of light can characterize various features of a material, such as the roughness, texture, and refractive index, thus improving classification and recognition of targets. This paper uses a method based on noise template threshold matching to denoise and preprocess polarized images. It also reports on design of an image fusion algorithm, based on NSCT transform, to fuse light intensity images and polarized images. The results show that the fused image improves both subjective and objective evaluation indicators, relative to the source image, and can better preserve edge information and help to improve the accuracy of target recognition. This study provides a reference for the comprehensive application of multi-dimensional optical information in power inspection.
{"title":"Research on a multi-dimensional image information fusion algorithm based on NSCT transform.","authors":"Yuxiang Su, Xi Liang, Danhua Cao, Zhenyu Yang, Yuanlong Peng, Ming Zhao","doi":"10.1007/s12200-023-00104-0","DOIUrl":"10.1007/s12200-023-00104-0","url":null,"abstract":"<p><p>Traditional inspection cameras determine targets and detect defects by capturing images of their light intensity, but in complex environments, the accuracy of inspection may decrease. Information based on polarization of light can characterize various features of a material, such as the roughness, texture, and refractive index, thus improving classification and recognition of targets. This paper uses a method based on noise template threshold matching to denoise and preprocess polarized images. It also reports on design of an image fusion algorithm, based on NSCT transform, to fuse light intensity images and polarized images. The results show that the fused image improves both subjective and objective evaluation indicators, relative to the source image, and can better preserve edge information and help to improve the accuracy of target recognition. This study provides a reference for the comprehensive application of multi-dimensional optical information in power inspection.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"4"},"PeriodicalIF":4.1,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported. Within this system, each channel incorporates a rod-type fiber power amplifier, with individual operations reaching approximately 233 W. The active-locking of these coherently combined channels, followed by compression using gratings, yields an output with a pulse energy of 504 μJ and an average power of 403 W. Exceptional stability is maintained, with a 0.3% root mean square (RMS) deviation and a beam quality factor M2 < 1.2. Notably, precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages. This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam, reducing it from 488 to 260 fs after the gratings compressor, while concurrently enhancing the energy of the primary peak from 65% to 92%.
本报告介绍了一种由两个相干组合放大器通道组成的超快光纤激光系统。在该系统中,每个通道都集成了一个棒状光纤功率放大器,单个功率可达约 233 W。这些相干组合通道的主动锁定以及随后使用光栅的压缩产生了一个脉冲能量为 504 μJ 和平均功率为 403 W 的输出。
{"title":"260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management.","authors":"Shuangxi Peng, Zhihao Wang, Feilong Hu, Zhengyan Li, Qingbin Zhang, Peixiang Lu","doi":"10.1007/s12200-024-00107-5","DOIUrl":"10.1007/s12200-024-00107-5","url":null,"abstract":"<p><p>An ultrafast fiber laser system comprising two coherently combined amplifier channels is reported. Within this system, each channel incorporates a rod-type fiber power amplifier, with individual operations reaching approximately 233 W. The active-locking of these coherently combined channels, followed by compression using gratings, yields an output with a pulse energy of 504 μJ and an average power of 403 W. Exceptional stability is maintained, with a 0.3% root mean square (RMS) deviation and a beam quality factor M<sup>2</sup> < 1.2. Notably, precise dispersion management of the front-end seed light effectively compensates for the accumulated high-order dispersion in subsequent amplification stages. This strategic approach results in a significant reduction in the final output pulse duration for the coherently combined laser beam, reducing it from 488 to 260 fs after the gratings compressor, while concurrently enhancing the energy of the primary peak from 65% to 92%.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"3"},"PeriodicalIF":4.1,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}