首页 > 最新文献

IEEE Sensors Letters最新文献

英文 中文
Modeling and Characterizing an Impedance-Type Micro Flow Sensor With Pulse Excitation 脉冲激励阻抗式微型流量传感器的建模与特性分析
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/LSENS.2024.3490983
Wei Xu;Wenlin Xiao;Ke Xiao
This letter presents the modeling and characterization of a pulse-excited micro thermal flow sensor based on electrochemical impedance sensing. The proposed transient model reveals that the sensor output, measured as the impedance slope under pulse excitation, is almost one order of magnitude stronger at the downstream electrodes, as compared to the upstream pair. Consequently, the micro-electromechanical systems (MEMS) flow sensor is designed with an 8-μm-thick flexible structure and a 1.4 mm distance between the microheater and downstream electrodes. Testing results show that the fabricated impedance-type micro flow sensor achieves a maximum sensitivity of 8.9 (mΩ/s)/(μm/s) for the 1X PBS flow, while consuming less than 15.8 mW of heating power with a fluid flow up to 750 μm/s. Furthermore, the proposed theoretical model closely aligns with experimental results, confirming its potential as a valuable tool for optimizing impedance-type flow sensors that utilize pulse heating strategies to detect extremely low fluid flow in the future.
这封信介绍了基于电化学阻抗传感技术的脉冲激励式微热流传感器的建模和特性分析。所提出的瞬态模型表明,在脉冲激励下以阻抗斜率测量的传感器输出与上游电极相比,下游电极的输出几乎强一个数量级。因此,微机电系统(MEMS)流量传感器的设计采用了 8 微米厚的柔性结构,微加热器和下游电极之间的距离为 1.4 毫米。测试结果表明,所制造的阻抗型微流量传感器在 1 倍 PBS 流量下的最大灵敏度为 8.9 (mΩ/s)/(μm/s) ,而在流体流量高达 750 μm/s 时的加热功率消耗不到 15.8 mW。此外,所提出的理论模型与实验结果非常吻合,证实了其作为一种有价值的工具的潜力,可用于优化阻抗型流量传感器,在未来利用脉冲加热策略检测极低的流体流量。
{"title":"Modeling and Characterizing an Impedance-Type Micro Flow Sensor With Pulse Excitation","authors":"Wei Xu;Wenlin Xiao;Ke Xiao","doi":"10.1109/LSENS.2024.3490983","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3490983","url":null,"abstract":"This letter presents the modeling and characterization of a pulse-excited micro thermal flow sensor based on electrochemical impedance sensing. The proposed transient model reveals that the sensor output, measured as the impedance slope under pulse excitation, is almost one order of magnitude stronger at the downstream electrodes, as compared to the upstream pair. Consequently, the micro-electromechanical systems (MEMS) flow sensor is designed with an 8-μm-thick flexible structure and a 1.4 mm distance between the microheater and downstream electrodes. Testing results show that the fabricated impedance-type micro flow sensor achieves a maximum sensitivity of 8.9 (mΩ/s)/(μm/s) for the 1X PBS flow, while consuming less than 15.8 mW of heating power with a fluid flow up to 750 μm/s. Furthermore, the proposed theoretical model closely aligns with experimental results, confirming its potential as a valuable tool for optimizing impedance-type flow sensors that utilize pulse heating strategies to detect extremely low fluid flow in the future.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Surface Affinity and Desorption Kinetics of Mixture of Volatile Organic Compounds on CuO-Based Resistive Gas Sensors 氧化铜电阻式气体传感器表面亲和力和挥发性有机化合物混合物解吸动力学研究
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/LSENS.2024.3490837
Saraswati Kulkarni;Ruma Ghosh
Analysis and understanding of the mixture of volatile organic compound (VOC) sensing are crucial for the development of sensors in conditions closer to real-life applications, such as health care, air quality monitoring, industrial safety, etc. In this study, we investigated the response dynamics of CuO-nanomaterial-based resistive sensors to 25–75 ppm of individual, binary, ternary, and quaternary mixtures of five VOCs—acetone, acetonitrile, isopropanol, methanol, and toluene at 300 °C. The CuO exhibited responses equal to the sum of its steady-state responses to individual VOCs for all the possible combinations of binary and ternary mixtures with 25 ppm of the constituent gases. A systematic study based on the recovery cycle was conducted by retracting the VOCs sequentially from the proximity of CuO surface after recording response cycle. Interestingly, the recovery time constant τrec was found to follow the order—isopropanol (96.93 – 435.45) ≥ methanol (111.82 – 313.21) > toluene (9.9 – 220.49) > acetonitrile (85.96 – 332.32) > acetone (could not be found) in all binary, ternary, and quaternary mixtures of VOCs, irrespective of the sequence of retraction of the VOCs from the mixture. Also, it was found that VOCs with –OH groups have higher adsorption capacity on the sensing layer as compared to –NH2, – C = O, and aromatic VOCs.
分析和了解挥发性有机化合物 (VOC) 的混合物传感对于开发更贴近现实生活应用条件的传感器至关重要,如医疗保健、空气质量监测、工业安全等。在这项研究中,我们研究了基于 CuO 纳米材料的电阻式传感器在 300 ℃ 下对 25-75 ppm 的五种挥发性有机化合物(丙酮、乙腈、异丙醇、甲醇和甲苯)的单独、二元、三元和四元混合物的响应动态。在含有 25 ppm 组成气体的二元和三元混合物的所有可能组合中,CuO 的反应等于其对单个 VOC 稳态反应的总和。在记录响应周期后,通过从 CuO 表面附近依次收回挥发性有机化合物,进行了基于恢复周期的系统研究。有趣的是,在所有二元、三元和四元挥发性有机化合物混合物中,无论挥发性有机化合物从混合物中收回的顺序如何,回收时间常数τrec 都遵循以下顺序:异丙醇(96.93 - 435.45)≥ 甲醇(111.82 - 313.21)>甲苯(9.9 - 220.49)>乙腈(85.96 - 332.32)>丙酮(未找到)。此外,研究还发现,与 -NH2、 - C = O 和芳香族挥发性有机化合物相比,带有 -OH 基团的挥发性有机化合物在传感层上具有更高的吸附能力。
{"title":"Investigation of Surface Affinity and Desorption Kinetics of Mixture of Volatile Organic Compounds on CuO-Based Resistive Gas Sensors","authors":"Saraswati Kulkarni;Ruma Ghosh","doi":"10.1109/LSENS.2024.3490837","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3490837","url":null,"abstract":"Analysis and understanding of the mixture of volatile organic compound (VOC) sensing are crucial for the development of sensors in conditions closer to real-life applications, such as health care, air quality monitoring, industrial safety, etc. In this study, we investigated the response dynamics of CuO-nanomaterial-based resistive sensors to 25–75 ppm of individual, binary, ternary, and quaternary mixtures of five VOCs—acetone, acetonitrile, isopropanol, methanol, and toluene at 300 °C. The CuO exhibited responses equal to the sum of its steady-state responses to individual VOCs for all the possible combinations of binary and ternary mixtures with 25 ppm of the constituent gases. A systematic study based on the recovery cycle was conducted by retracting the VOCs sequentially from the proximity of CuO surface after recording response cycle. Interestingly, the recovery time constant τ\u0000<sub>rec</sub>\u0000 was found to follow the order—isopropanol (96.93 – 435.45) ≥ methanol (111.82 – 313.21) > toluene (9.9 – 220.49) > acetonitrile (85.96 – 332.32) > acetone (could not be found) in all binary, ternary, and quaternary mixtures of VOCs, irrespective of the sequence of retraction of the VOCs from the mixture. Also, it was found that VOCs with –OH groups have higher adsorption capacity on the sensing layer as compared to –NH\u0000<sub>2</sub>\u0000, – C = O, and aromatic VOCs.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Study on Synergy Between Energy Harvesting and Pressure Sensing in Piezotronic Heterojunctions 压电陶瓷异质结中能量收集与压力感应协同作用的比较研究
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-04 DOI: 10.1109/LSENS.2024.3491581
Zihao Liang;Emad Iranmanesh;Shuxin Lin;Weipeng Xuan;Hang Zhou
In this letter, a novel fully flexible piezotronic bipolar junction transistor (n-p-n PBJT) is designed and constructed by configuring two ZnO/Poly(3-hexylthiophene) heterojunction diodes back to back. The n-p-n PBJT acts as a signal-mediated device providing both current and voltage as the outputs. The utilization of the n-p-n PBJT in wearable applications is testified where a unique synergy between energy harvesting and sensing is found. Under mechanical stress, the output signal is amplified (with no preamplifier circuitry), which makes it a proper candidate as a high-performance sensor (voltage-based sensitivity is extracted as 0.49 V/kPa, four times higher than piezotronic p-n heterojunction). As a wearable energy harvester, the output signal is rectified (with no signal regulation circuitry), and it generates a peak output power of 2.9 µW, which is ten times higher than that of the piezotronic p-n diode. The outstanding performance of the n-p-n PBJT provides a new strategy to improve device performance for the emerging application in wearable electronics.
在这封信中,通过背靠背配置两个氧化锌/聚(3-己基噻吩)异质结二极管,设计并构建了一种新型全柔性压电双极结晶体管(n-p-n PBJT)。n-p-n PBJT 作为信号介导器件,同时提供电流和电压输出。n-p-n PBJT 在可穿戴应用中的应用得到了验证,在这种应用中,能量收集和传感之间形成了独特的协同效应。在机械应力作用下,输出信号会被放大(无需前置放大器电路),这使其成为高性能传感器的合适候选器件(电压灵敏度为 0.49 V/kPa,比压电 p-n 异质结高四倍)。作为一种可穿戴的能量收集器,输出信号经过整流(无信号调节电路),可产生 2.9 µW 的峰值输出功率,是压电 p-n 二极管的十倍。n-p-n PBJT 的出色性能为提高器件性能提供了一种新策略,可用于新兴的可穿戴电子产品应用。
{"title":"A Comparative Study on Synergy Between Energy Harvesting and Pressure Sensing in Piezotronic Heterojunctions","authors":"Zihao Liang;Emad Iranmanesh;Shuxin Lin;Weipeng Xuan;Hang Zhou","doi":"10.1109/LSENS.2024.3491581","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3491581","url":null,"abstract":"In this letter, a novel fully flexible piezotronic bipolar junction transistor (n-p-n PBJT) is designed and constructed by configuring two ZnO/Poly(3-hexylthiophene) heterojunction diodes back to back. The n-p-n PBJT acts as a signal-mediated device providing both current and voltage as the outputs. The utilization of the n-p-n PBJT in wearable applications is testified where a unique synergy between energy harvesting and sensing is found. Under mechanical stress, the output signal is amplified (with no preamplifier circuitry), which makes it a proper candidate as a high-performance sensor (voltage-based sensitivity is extracted as 0.49 V/kPa, four times higher than piezotronic p-n heterojunction). As a wearable energy harvester, the output signal is rectified (with no signal regulation circuitry), and it generates a peak output power of 2.9 µW, which is ten times higher than that of the piezotronic p-n diode. The outstanding performance of the n-p-n PBJT provides a new strategy to improve device performance for the emerging application in wearable electronics.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Path Difference Modulation Method Based on the Kerr Effect 基于克尔效应的光路差调制方法
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-11-01 DOI: 10.1109/LSENS.2024.3490658
Qihao Zeng;Mingkun Wang;Yupeng Zhang;Hongyi Lin;Wei Qiao;Dong Sun
Optical path difference is commonly used to adjust the signal of coherent light. Current optical systems typically adjust the transmission distance of the beam or the refractive index of the medium to change the optical path. However, the former approach often involves complex operations, risks of mechanical damage, and difficulties in adjustment, while the latter has a limited adjustment range. This letter proposes a Kerr-fiber-based optical path difference adjustment system. In this system, the Kerr liquid inside the fiber induces a change in birefringence due to the electric field's polarization effect, enabling rapid optical path adjustment. The system adjusts the effective refractive index by applying an external voltage: a 10-V voltage induces a one-cycle change in interference fringes, and increasing the voltage to 50 V results in a 0.1 change in the refractive index, with a minimum adjustment precision of 0.01. Experimental results demonstrate a millisecond-level response rate for the overall system. Comparative tests show that this method is similar to classic adjustment methods but offers simplified operation. In addition, the system exhibits enhanced stability in scenarios requiring rapid and precise adjustments.
光路差通常用于调整相干光的信号。目前的光学系统通常通过调整光束的传输距离或介质的折射率来改变光路。然而,前一种方法往往涉及复杂的操作、机械损坏风险和调整困难,而后一种方法的调整范围有限。本文提出了一种基于克尔光纤的光路差调整系统。在该系统中,光纤内部的克尔液体会因电场的偏振效应而引起双折射变化,从而实现快速光路调整。该系统通过施加外部电压来调整有效折射率:10 V 的电压会引起干涉条纹一个周期的变化,而将电压提高到 50 V 则会导致折射率发生 0.1 的变化,最低调整精度为 0.01。实验结果表明,整个系统的响应速度达到毫秒级。对比测试表明,这种方法与传统的调节方法相似,但操作更简便。此外,在需要快速精确调节的情况下,该系统也表现出更高的稳定性。
{"title":"Optical Path Difference Modulation Method Based on the Kerr Effect","authors":"Qihao Zeng;Mingkun Wang;Yupeng Zhang;Hongyi Lin;Wei Qiao;Dong Sun","doi":"10.1109/LSENS.2024.3490658","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3490658","url":null,"abstract":"Optical path difference is commonly used to adjust the signal of coherent light. Current optical systems typically adjust the transmission distance of the beam or the refractive index of the medium to change the optical path. However, the former approach often involves complex operations, risks of mechanical damage, and difficulties in adjustment, while the latter has a limited adjustment range. This letter proposes a Kerr-fiber-based optical path difference adjustment system. In this system, the Kerr liquid inside the fiber induces a change in birefringence due to the electric field's polarization effect, enabling rapid optical path adjustment. The system adjusts the effective refractive index by applying an external voltage: a 10-V voltage induces a one-cycle change in interference fringes, and increasing the voltage to 50 V results in a 0.1 change in the refractive index, with a minimum adjustment precision of 0.01. Experimental results demonstrate a millisecond-level response rate for the overall system. Comparative tests show that this method is similar to classic adjustment methods but offers simplified operation. In addition, the system exhibits enhanced stability in scenarios requiring rapid and precise adjustments.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the Power Consumption of Thread Mesh Networks Through Genetic Algorithm Optimization 通过遗传算法优化改善线程网格网络的功耗
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-30 DOI: 10.1109/LSENS.2024.3488652
Jair A.Lima Silva;Wesley Costa;Khan Md Mazedul Islam;Jan Kleine Deters;Ewout Bergsma;Helder R. Oliveira Rocha;Patrick Noordhoek;Heinrich Wörtche
Reliability is a constraint of low-power wireless connectivity, commonly addressed by the deployment of mesh topology. Accordingly, power consumption becomes a major concern during the design and implementation of such networks. Thus, a mono-objective optimization was implemented in this work to decrease the total amount of power consumed by a low-power wireless mesh network based on Thread protocol. Using a genetic algorithm, the optimization procedure takes into account a predefined connectivity matrix, in which the possible distances between all network devices are considered. The experimental proof-of-concept shows that a mean gain of 26.45 dB is achievable in a specific scenario. Through our experimental results, we conclude that the Thread mesh protocol has much leeway to meet the low-power consumption requirement of wireless sensor networks.
可靠性是低功耗无线连接的一个制约因素,通常通过部署网状拓扑结构来解决。因此,在此类网络的设计和实施过程中,功耗成为一个主要问题。因此,本研究采用了单目标优化方法,以降低基于 Thread 协议的低功耗无线网状网络的总功耗。优化程序采用遗传算法,考虑了预定义的连接矩阵,其中考虑了所有网络设备之间的可能距离。概念验证实验表明,在特定场景下可实现 26.45 dB 的平均增益。通过实验结果,我们得出结论:Thread 网状协议在满足无线传感器网络的低功耗要求方面有很大的余地。
{"title":"Improving the Power Consumption of Thread Mesh Networks Through Genetic Algorithm Optimization","authors":"Jair A.Lima Silva;Wesley Costa;Khan Md Mazedul Islam;Jan Kleine Deters;Ewout Bergsma;Helder R. Oliveira Rocha;Patrick Noordhoek;Heinrich Wörtche","doi":"10.1109/LSENS.2024.3488652","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3488652","url":null,"abstract":"Reliability is a constraint of low-power wireless connectivity, commonly addressed by the deployment of mesh topology. Accordingly, power consumption becomes a major concern during the design and implementation of such networks. Thus, a mono-objective optimization was implemented in this work to decrease the total amount of power consumed by a low-power wireless mesh network based on Thread protocol. Using a genetic algorithm, the optimization procedure takes into account a predefined connectivity matrix, in which the possible distances between all network devices are considered. The experimental proof-of-concept shows that a mean gain of 26.45 dB is achievable in a specific scenario. Through our experimental results, we conclude that the Thread mesh protocol has much leeway to meet the low-power consumption requirement of wireless sensor networks.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Tensor Completion for Missing Data Estimation in Wind Farms 探索用于风电场缺失数据估算的张量完成方法
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-30 DOI: 10.1109/LSENS.2024.3488560
Hao Jia;Pere Marti-Puig;Cesar F Caiafa;Moises Serra-Serra;Zhe Sun;Jordi Solé-Casals
The large number of greenhouse gas emissions caused by human activities, and their harmful effect on the earth’s climate, have reached a point where actions are needed. Wind energy is one of the available green energies that can be used to mitigate this problem. Predictive maintenance is of vital importance to ensure continuous wind power generation and is typically based on the use of sensor data from all wind turbine systems. But in some cases, data contain outliers or are not available at all due to sensor or system failures. In this letter, we explore the use of tensor completion methods to estimate missing data in this field. Experimental results demonstrate the usefulness of the proposed tensor completion algorithms, especially the high-accuracy low-rank tensor completion (HaLRTC) method, which outperforms the interpolation method used as a reference.
人类活动造成的大量温室气体排放及其对地球气候的有害影响已经到了需要采取行动的地步。风能是可用来缓解这一问题的绿色能源之一。预测性维护对于确保风力发电的连续性至关重要,通常以使用所有风力涡轮机系统的传感器数据为基础。但在某些情况下,由于传感器或系统故障,数据包含异常值或根本不可用。在这封信中,我们探讨了如何使用张量补全方法来估算该领域的缺失数据。实验结果证明了所提出的张量补全算法的实用性,尤其是高精度低秩张量补全(HaLRTC)方法,其性能优于作为参考的插值法。
{"title":"Exploring Tensor Completion for Missing Data Estimation in Wind Farms","authors":"Hao Jia;Pere Marti-Puig;Cesar F Caiafa;Moises Serra-Serra;Zhe Sun;Jordi Solé-Casals","doi":"10.1109/LSENS.2024.3488560","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3488560","url":null,"abstract":"The large number of greenhouse gas emissions caused by human activities, and their harmful effect on the earth’s climate, have reached a point where actions are needed. Wind energy is one of the available green energies that can be used to mitigate this problem. Predictive maintenance is of vital importance to ensure continuous wind power generation and is typically based on the use of sensor data from all wind turbine systems. But in some cases, data contain outliers or are not available at all due to sensor or system failures. In this letter, we explore the use of tensor completion methods to estimate missing data in this field. Experimental results demonstrate the usefulness of the proposed tensor completion algorithms, especially the high-accuracy low-rank tensor completion (HaLRTC) method, which outperforms the interpolation method used as a reference.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Sensitivity of Wireless LC Sensors Using Time Modulation 利用时间调制提高无线 LC 传感器的灵敏度
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-29 DOI: 10.1109/LSENS.2024.3487777
Nanshu Wu;Yichong Ren;Pai-Yen Chen
We present an exceptional point (EP)-based temporally modulated wireless passive sensor, surpassing partly the shortcomings of traditional sensor structures, such as energy-consuming, low sensitivity, and hard-to-integrate. For traditional sensors, those factors mentioned above restrict the scope of applications. To address these limitations, temporally modulated EPs are introduced into LC tank sensing topologies. Originating from quantum mechanics, EPs are characterized by the coalescence of a system's complex eigenvalues, leading to considerable frequency splitting in response to minor perturbations. In this letter, comprehensive simulation results validate the feasibility and enhanced performance of this approach, confirming its superiority over existing sensor technologies. The introduction of EP-based wireless sensors equipped with time modulation marks a significant advancement in the field, promising substantial improvements in the sensitivity and accuracy of wireless sensors for a variety of applications.
我们提出了一种基于特殊点(EP)的时间调制无线无源传感器,它在一定程度上克服了传统传感器结构的缺点,如耗能、灵敏度低、难以集成等。对于传统传感器而言,上述因素限制了其应用范围。为了解决这些局限性,我们在液晶槽传感拓扑中引入了时间调制 EP。时间调制 EP 源自量子力学,其特点是系统复特征值的凝聚,从而在响应微小扰动时产生相当大的频率分裂。在这封信中,全面的模拟结果验证了这种方法的可行性和增强性能,证实了它优于现有的传感器技术。基于 EP 的配备时间调制功能的无线传感器的推出标志着该领域的重大进步,有望大幅提高无线传感器的灵敏度和精确度,适用于各种应用。
{"title":"Enhancing the Sensitivity of Wireless LC Sensors Using Time Modulation","authors":"Nanshu Wu;Yichong Ren;Pai-Yen Chen","doi":"10.1109/LSENS.2024.3487777","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3487777","url":null,"abstract":"We present an exceptional point (EP)-based temporally modulated wireless passive sensor, surpassing partly the shortcomings of traditional sensor structures, such as energy-consuming, low sensitivity, and hard-to-integrate. For traditional sensors, those factors mentioned above restrict the scope of applications. To address these limitations, temporally modulated EPs are introduced into \u0000<italic>LC</i>\u0000 tank sensing topologies. Originating from quantum mechanics, EPs are characterized by the coalescence of a system's complex eigenvalues, leading to considerable frequency splitting in response to minor perturbations. In this letter, comprehensive simulation results validate the feasibility and enhanced performance of this approach, confirming its superiority over existing sensor technologies. The introduction of EP-based wireless sensors equipped with time modulation marks a significant advancement in the field, promising substantial improvements in the sensitivity and accuracy of wireless sensors for a variety of applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Clustering and 3-D UAV Deployment for Delay-Aware UAV-Enabled MTC Data Collection Networks 为支持延迟感知的无人机 MTC 数据采集网络提供联合集群和三维无人机部署功能
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-28 DOI: 10.1109/LSENS.2024.3487009
Lingfeng Shen;Huanran Zhang;Ning Wang;Ying Cui;Xiang Cheng;Xiaomin Mu
The design of timely data collection for a machine-type communication (MTC) network by unmanned-aerial-vehicle (UAV) platform is investigated. The ground-based MTC devices are clustered for efficient service, and the UAV station's deployment in the 3-D space is optimized. The corresponding mission time minimization problem is formulated as a coupled mixed-integer nonlinear program. For tractability, the original problem is decomposed into two subproblems respectively dealing with clustering-hovering optimization and intercluster UAV traveling path minimization. An alternating clustering-hovering optimization (ACH) and ant colony optimization (ACO) solution approach is proposed accordingly. Simulations are conducted to validate the superiority of the proposed ACH–ACO scheme over the scheme based on $k$-means clustering.
研究了无人机(UAV)平台为机器型通信(MTC)网络及时收集数据的设计。为了提供高效服务,对地面 MTC 设备进行了集群,并优化了无人机站在三维空间中的部署。相应的任务时间最小化问题被表述为一个耦合混合整数非线性程序。为了便于理解,原问题被分解成两个子问题,分别处理集群徘徊优化和集群间无人机飞行路径最小化。相应地,提出了一种交替聚类徘徊优化(ACH)和蚁群优化(ACO)的解决方法。通过仿真验证了所提出的 ACH-ACO 方案优于基于 $k$-means 聚类的方案。
{"title":"Joint Clustering and 3-D UAV Deployment for Delay-Aware UAV-Enabled MTC Data Collection Networks","authors":"Lingfeng Shen;Huanran Zhang;Ning Wang;Ying Cui;Xiang Cheng;Xiaomin Mu","doi":"10.1109/LSENS.2024.3487009","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3487009","url":null,"abstract":"The design of timely data collection for a machine-type communication (MTC) network by unmanned-aerial-vehicle (UAV) platform is investigated. The ground-based MTC devices are clustered for efficient service, and the UAV station's deployment in the 3-D space is optimized. The corresponding mission time minimization problem is formulated as a coupled mixed-integer nonlinear program. For tractability, the original problem is decomposed into two subproblems respectively dealing with clustering-hovering optimization and intercluster UAV traveling path minimization. An alternating clustering-hovering optimization (ACH) and ant colony optimization (ACO) solution approach is proposed accordingly. Simulations are conducted to validate the superiority of the proposed ACH–ACO scheme over the scheme based on \u0000<inline-formula><tex-math>$k$</tex-math></inline-formula>\u0000-means clustering.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Sensors Letters Subject Categories for Article Numbering Information 用于文章编号信息的 IEEE 传感器快报主题类别
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-25 DOI: 10.1109/LSENS.2024.3481975
{"title":"IEEE Sensors Letters Subject Categories for Article Numbering Information","authors":"","doi":"10.1109/LSENS.2024.3481975","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3481975","url":null,"abstract":"","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-1"},"PeriodicalIF":2.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736357","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Human Emotion Recognition System Using TQWT-Based EEG Subbands 使用基于 TQWT 的脑电图子带的人类情绪自动识别系统
IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-10-25 DOI: 10.1109/LSENS.2024.3486708
Dhanhanjay Pachori;Tapan Kumar Gandhi
This letter presents a new framework for the identification of human emotion states, namely, positive, neutral, and negative, by using the electroencephalogram (EEG) signals. The methodology comprises advanced signal processing techniques and machine learning algorithms. The EEG signals were decomposed to various subbands by using the tunable-Q wavelet transform (TQWT). Further, from each subband, features, such as TQWT energy, total Shannon energy, Rényi entropy, Tsallis entropy, and fractal dimension, were extracted. The obtained features were combined and tested on various machine learning classifiers. The proposed method has been validated on the publicly available SJTU Emotion EEG Dataset. The accuracy obtained for human emotion recognition was 86.67% for subject-independent analysis and 88.87% for subject-dependent analysis. Also, we concluded that human emotions could be recognized more efficiently by both audio and visual stimuli as compared to individual audio or visual stimuli based on the channels selection method.
这封信提出了一个利用脑电图(EEG)信号识别人类情绪状态(即积极、中性和消极)的新框架。该方法包括先进的信号处理技术和机器学习算法。利用可调 Q 小波变换(TQWT)将脑电信号分解为不同的子带。然后,从每个子带中提取特征,如 TQWT 能量、香农总能量、Rényi 熵、Tsallis 熵和分形维度。将获得的特征进行组合,并在各种机器学习分类器上进行测试。所提出的方法已在公开的上海交通大学情感脑电图数据集上得到验证。在与主体无关的分析中,人类情绪识别的准确率为 86.67%,在与主体相关的分析中,准确率为 88.87%。此外,我们还得出结论,与基于通道选择方法的单独音频或视觉刺激相比,通过音频和视觉刺激可以更有效地识别人类情绪。
{"title":"Automated Human Emotion Recognition System Using TQWT-Based EEG Subbands","authors":"Dhanhanjay Pachori;Tapan Kumar Gandhi","doi":"10.1109/LSENS.2024.3486708","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3486708","url":null,"abstract":"This letter presents a new framework for the identification of human emotion states, namely, positive, neutral, and negative, by using the electroencephalogram (EEG) signals. The methodology comprises advanced signal processing techniques and machine learning algorithms. The EEG signals were decomposed to various subbands by using the tunable-Q wavelet transform (TQWT). Further, from each subband, features, such as TQWT energy, total Shannon energy, Rényi entropy, Tsallis entropy, and fractal dimension, were extracted. The obtained features were combined and tested on various machine learning classifiers. The proposed method has been validated on the publicly available SJTU Emotion EEG Dataset. The accuracy obtained for human emotion recognition was 86.67% for subject-independent analysis and 88.87% for subject-dependent analysis. Also, we concluded that human emotions could be recognized more efficiently by both audio and visual stimuli as compared to individual audio or visual stimuli based on the channels selection method.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Sensors Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1