Millimeter-wave (MMW) radar imaging technology has advanced significantly, providing high-resolution images crucial for various self-driving applications. This letter presents a novel approach for extracting road surfaces within a vehicle's lane using MMW radar imagery. First, the zonal connected area detection algorithm with sliding windows effectively detects feature points in the radar images. Second, the feature point classification algorithm, utilizing horizontal offset values, preliminarily identifies the feature points for the vehicle's lane boundary. Finally, the feature points are refined based on horizontal density, followed by boundary fitting to extract the road surface accurately. Experiments were conducted on three different scenarios and three distinct datasets to verify the effectiveness and generalization ability of the algorithm.
{"title":"Vehicle Road Lane Extraction Using Millimeter-Wave Radar Imagery for Self-Driving Applications","authors":"Weixue Liu;Yuexia Wang;Jiajia Shi;Quan Shi;Zhihuo Xu","doi":"10.1109/LSENS.2024.3456120","DOIUrl":"https://doi.org/10.1109/LSENS.2024.3456120","url":null,"abstract":"Millimeter-wave (MMW) radar imaging technology has advanced significantly, providing high-resolution images crucial for various self-driving applications. This letter presents a novel approach for extracting road surfaces within a vehicle's lane using MMW radar imagery. First, the zonal connected area detection algorithm with sliding windows effectively detects feature points in the radar images. Second, the feature point classification algorithm, utilizing horizontal offset values, preliminarily identifies the feature points for the vehicle's lane boundary. Finally, the feature points are refined based on horizontal density, followed by boundary fitting to extract the road surface accurately. Experiments were conducted on three different scenarios and three distinct datasets to verify the effectiveness and generalization ability of the algorithm.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a $text{90}{%}$