首页 > 最新文献

IEEE Electron Device Letters最新文献

英文 中文
EDS Meetings Calendar EDS 会议日历
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-26 DOI: 10.1109/LED.2024.3440823
{"title":"EDS Meetings Calendar","authors":"","doi":"10.1109/LED.2024.3440823","DOIUrl":"https://doi.org/10.1109/LED.2024.3440823","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 9","pages":"1677-1679"},"PeriodicalIF":4.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Electron Device Letters Information for Authors IEEE Electron Device Letters 为作者提供的信息
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-26 DOI: 10.1109/LED.2024.3440825
{"title":"IEEE Electron Device Letters Information for Authors","authors":"","doi":"10.1109/LED.2024.3440825","DOIUrl":"https://doi.org/10.1109/LED.2024.3440825","url":null,"abstract":"","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 9","pages":"1680-1680"},"PeriodicalIF":4.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648921","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-Situ IGZO/ITON Heterostructure Phototransistor to Enhance Visible Light Detection 原位 IGZO/ITON 异质结构光电晶体管可增强可见光探测能力
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3448508
Kyeongwoo Jang;Yuseong Jang;Soobin An;Soo-Yeon Lee
We present an in-situ IGZO/ITON heterojunction phototransistor with exceptional performance under visible light. By introducing a low bandgap of ITON as a light absorption layer, the responsivity of 30.2 A/W, photosensitivity of $6.3times 10^{{4}}$ , and detectivity of $4.8times 10^{{13}}$ Jones under red light illumination (635nm). Because the ITON was deposited by the sputtering with controlling Ar/N2 gas mixture condition immediately after IGZO deposition without breaking the vacuum, the suggested structure is not only compatible with the conventional large-area manufacturing process but also minimizes the interfacial defects between IGZO and ITON.
我们提出了一种在可见光下具有优异性能的原位 IGZO/ITON 异质结光晶体管。通过引入低带隙的 ITON 作为光吸收层,该器件在红光(635 纳米)照射下的响应率达到了 30.2 A/W,光敏度为 10^{{4}}$ 的 6.3 倍,检测率为 10^{{13}}$ Jones 的 4.8 倍。由于 ITON 是在 IGZO 沉积后立即通过控制 Ar/N2 混合气体条件的溅射沉积的,无需破坏真空,因此所建议的结构不仅与传统的大面积制造工艺兼容,而且还能最大限度地减少 IGZO 和 ITON 之间的界面缺陷。
{"title":"In-Situ IGZO/ITON Heterostructure Phototransistor to Enhance Visible Light Detection","authors":"Kyeongwoo Jang;Yuseong Jang;Soobin An;Soo-Yeon Lee","doi":"10.1109/LED.2024.3448508","DOIUrl":"10.1109/LED.2024.3448508","url":null,"abstract":"We present an in-situ IGZO/ITON heterojunction phototransistor with exceptional performance under visible light. By introducing a low bandgap of ITON as a light absorption layer, the responsivity of 30.2 A/W, photosensitivity of \u0000<inline-formula> <tex-math>$6.3times 10^{{4}}$ </tex-math></inline-formula>\u0000, and detectivity of \u0000<inline-formula> <tex-math>$4.8times 10^{{13}}$ </tex-math></inline-formula>\u0000 Jones under red light illumination (635nm). Because the ITON was deposited by the sputtering with controlling Ar/N\u0000<sub>2</sub>\u0000 gas mixture condition immediately after IGZO deposition without breaking the vacuum, the suggested structure is not only compatible with the conventional large-area manufacturing process but also minimizes the interfacial defects between IGZO and ITON.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1839-1842"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Voltage ITO Depressed Synaptic Transistors for Neuromorphic Application 用于神经形态应用的低压 ITO 凹陷突触晶体管
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3448367
Pengfei Chen;Wei Dou;Yuling Peng;Xiaodong Xu;Yingjie Ai;Weichang Zhou;Dongsheng Tang
Herein, thin-film transistors (TFT) with ITO as the n-channel active layer were prepared on transparent substrates by magnetron sputtering at room temperature. The use of chitosan with an electric-double-layer (EDL) effect as the gate dielectric enabled low power consumption. The relaxation phenomenon induced by ion migration was effectively utilized, enabling ITO synaptic transistors to emulate various synaptic behaviors, including excitatory postsynaptic currents (EPSC) and inhibitory postsynaptic currents (IPSC), paired pulse depression (PPD), long term depression (LTD), and short term memory (STM) to long term memory (LTM) transition, highlight the potential of ITO thin film transistors in emulating complex neural processes. Additionally, the devices display frequency dependent capacitance characteristics, indicating suitability for low-pass filter applications in signal processing. The ITO thin film synaptic transistors with paired pulse depressed behavior represent a promising potential for advancing neuromorphic computing systems, offering avenues for further research and development in synaptic bionics, emulating human learning and memory, and neural chips.
在此,通过磁控溅射法在室温下在透明衬底上制备了以 ITO 为 n 沟道活性层的薄膜晶体管 (TFT)。使用具有双电层效应(EDL)的壳聚糖作为栅极电介质可实现低功耗。离子迁移引起的弛豫现象得到了有效利用,从而使 ITO 突触晶体管能够模拟各种突触行为,包括兴奋性突触后电流(EPSC)和抑制性突触后电流(IPSC)、成对脉冲抑制(PPD)、长期抑制(LTD)以及从短期记忆(STM)到长期记忆(LTM)的转变,凸显了 ITO 薄膜晶体管在模拟复杂神经过程方面的潜力。此外,这些器件还显示出与频率相关的电容特性,表明其适用于信号处理中的低通滤波器应用。具有成对脉冲抑制行为的 ITO 薄膜突触晶体管代表了推进神经形态计算系统的巨大潜力,为突触仿生学、模拟人类学习和记忆以及神经芯片的进一步研究和开发提供了途径。
{"title":"Low-Voltage ITO Depressed Synaptic Transistors for Neuromorphic Application","authors":"Pengfei Chen;Wei Dou;Yuling Peng;Xiaodong Xu;Yingjie Ai;Weichang Zhou;Dongsheng Tang","doi":"10.1109/LED.2024.3448367","DOIUrl":"10.1109/LED.2024.3448367","url":null,"abstract":"Herein, thin-film transistors (TFT) with ITO as the n-channel active layer were prepared on transparent substrates by magnetron sputtering at room temperature. The use of chitosan with an electric-double-layer (EDL) effect as the gate dielectric enabled low power consumption. The relaxation phenomenon induced by ion migration was effectively utilized, enabling ITO synaptic transistors to emulate various synaptic behaviors, including excitatory postsynaptic currents (EPSC) and inhibitory postsynaptic currents (IPSC), paired pulse depression (PPD), long term depression (LTD), and short term memory (STM) to long term memory (LTM) transition, highlight the potential of ITO thin film transistors in emulating complex neural processes. Additionally, the devices display frequency dependent capacitance characteristics, indicating suitability for low-pass filter applications in signal processing. The ITO thin film synaptic transistors with paired pulse depressed behavior represent a promising potential for advancing neuromorphic computing systems, offering avenues for further research and development in synaptic bionics, emulating human learning and memory, and neural chips.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1863-1866"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3-D Self-Aligned Stacked Ge Nanowires Complementary FET Featuring Single Gate Simple Process 采用单栅极 S imple 工艺的三维自对齐叠层 Ge 纳米线互补场效应晶体管
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3448477
Yi-Wen Lin;Bo-An Chen;Kai-Wei Huang;Bo-Xu Chen;Guang-Li Luo;Yung-Chun Wu;Fu-Ju Hou
In this study, we experimentally demonstrated a state-of-the-art three-dimensional (3-D) self-aligned stacked hetero-oriented p-type Ge rectangle nanowire (NW) gate-all-around field-effect transistor (GAAFET) on n-type Ge diamond NW GAAFET of single-gate complementary FET (CFET). Anisotropic and isotropic dry etching processes are used to form the stacked NWs. Using Ge as the channel material with its optimal surface orientations of (111) for diamond NW nFET and (110) for rectangle NW pFET can enhance the device performance. The 3-D TCAD simulation indicates outperformance of the CFET device for 1-nm node applications. The proposed CFET structure can simplify the manufacturing technology and be fully compatible with current CMOS technology platform.
在这项研究中,我们通过实验展示了一种最先进的三维(3-D)自对准堆叠异取向 p 型 Ge 矩形纳米线(NW)栅全包围场效应晶体管(GAAFET),它位于单栅互补场效应晶体管(CFET)的 n 型 Ge 金刚石 NW GAAFET 上。采用各向异性和各向同性的干法蚀刻工艺来形成叠层 NW。使用 Ge 作为沟道材料,其最佳表面取向为金刚石 NW nFET 的 (111) 和矩形 NW pFET 的 (110),可以提高器件性能。三维 TCAD 仿真表明,1 纳米节点应用中的 CFET 器件性能更优。所提出的 CFET 结构可以简化制造技术,并与当前的 CMOS 技术平台完全兼容。
{"title":"3-D Self-Aligned Stacked Ge Nanowires Complementary FET Featuring Single Gate Simple Process","authors":"Yi-Wen Lin;Bo-An Chen;Kai-Wei Huang;Bo-Xu Chen;Guang-Li Luo;Yung-Chun Wu;Fu-Ju Hou","doi":"10.1109/LED.2024.3448477","DOIUrl":"10.1109/LED.2024.3448477","url":null,"abstract":"In this study, we experimentally demonstrated a state-of-the-art three-dimensional (3-D) self-aligned stacked hetero-oriented p-type Ge rectangle nanowire (NW) gate-all-around field-effect transistor (GAAFET) on n-type Ge diamond NW GAAFET of single-gate complementary FET (CFET). Anisotropic and isotropic dry etching processes are used to form the stacked NWs. Using Ge as the channel material with its optimal surface orientations of (111) for diamond NW nFET and (110) for rectangle NW pFET can enhance the device performance. The 3-D TCAD simulation indicates outperformance of the CFET device for 1-nm node applications. The proposed CFET structure can simplify the manufacturing technology and be fully compatible with current CMOS technology platform.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"2013-2016"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing a Controlled Interfacial Layer to Enhance the Template Effect of ZrO₂ in the ZrO₂/HfO₂/ZrO₂ Structure 在 ZrO2/HfO2/ZrO2 结构中引入可控界面层以增强 ZrO2 的模板效应
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3449150
Woo Young Park;In Gyu Lee;Young Uk Ryu;Woojin Jeon
A novel approach using a controlled interfacial layer (CIL) to modulate HfO2 thin film crystallization in ZrO2/HfO2/ZrO2 (ZHZ) structures was investigated. Through X-ray diffraction and high-resolution transmission electron microscopy, the CIL suppresses undesired monoclinic phases in HfO2, favoring the desired tetragonal phase for high dielectric constants. Precise control of HfO2 thickness via CIL maintains constant dielectric constants across ZHZ structures, addressing challenges of fluctuating constants. This study highlights CIL’s potential in tailored ZrO2/HfO2 engineering for electronics, providing insights into crystallization behavior and paving the way for advanced device applications.
研究人员采用一种新方法,利用可控界面层(CIL)调节 ZrO2/HfO2/ZrO2 (ZHZ) 结构中的 HfO2 薄膜结晶。通过 X 射线衍射和高分辨率透射电子显微镜观察,CIL 可抑制 HfO2 中不希望出现的单斜相,有利于实现高介电常数所需的四方相。通过 CIL 对 HfO2 厚度的精确控制,可以在整个 ZHZ 结构中保持恒定的介电常数,从而解决介电常数波动的难题。这项研究凸显了 CIL 在电子器件用 ZrO2/HfO2 定制工程方面的潜力,提供了对结晶行为的深入了解,并为先进的器件应用铺平了道路。
{"title":"Introducing a Controlled Interfacial Layer to Enhance the Template Effect of ZrO₂ in the ZrO₂/HfO₂/ZrO₂ Structure","authors":"Woo Young Park;In Gyu Lee;Young Uk Ryu;Woojin Jeon","doi":"10.1109/LED.2024.3449150","DOIUrl":"10.1109/LED.2024.3449150","url":null,"abstract":"A novel approach using a controlled interfacial layer (CIL) to modulate HfO\u0000<sub>2</sub>\u0000 thin film crystallization in ZrO\u0000<sub>2</sub>\u0000/HfO\u0000<sub>2</sub>\u0000/ZrO\u0000<sub>2</sub>\u0000 (ZHZ) structures was investigated. Through X-ray diffraction and high-resolution transmission electron microscopy, the CIL suppresses undesired monoclinic phases in HfO\u0000<sub>2</sub>\u0000, favoring the desired tetragonal phase for high dielectric constants. Precise control of HfO\u0000<sub>2</sub>\u0000 thickness via CIL maintains constant dielectric constants across ZHZ structures, addressing challenges of fluctuating constants. This study highlights CIL’s potential in tailored ZrO\u0000<sub>2</sub>\u0000/HfO\u0000<sub>2</sub>\u0000 engineering for electronics, providing insights into crystallization behavior and paving the way for advanced device applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1808-1810"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the Influence of Source/Drain Growth Height and Lateral Growth Depth in FinFETs Through XGBoost and SHAP 通过 XGBoost 和 SHAP 分析 FinFET 中源极/漏极生长高度和侧向生长深度的影响
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3449243
Seung Won Lee;Hak Jun Ban;Jong Kyung Park;Dong Jin Ji;Seul Ki Hong
In FinFETs, the shape of the source/drain is crucial for performance, as it supplies charge and induces stress in the channel. Due to the 3D structure and numerous components of FinFETs, experimentally analyzing the performance impact of source/drain shapes is time-consuming and costly. This study employs machine learning and the SHAP method to analyze the influence of source/drain shapes on FinFET performance, focusing on growth height and lateral growth depth. These factors’ effects on key performance indicators such as on-current and threshold voltage are confirmed. SHAP analysis further substantiates the results’ reliability and significance. Our findings contribute to understanding and improving the performance of increasingly complex and miniaturized semiconductor device structures.
在鳍式场效应晶体管中,源极/漏极的形状对性能至关重要,因为它提供电荷并在沟道中产生应力。由于 FinFET 的三维结构和众多元件,通过实验分析源极/漏极形状对性能的影响既费时又费钱。本研究采用机器学习和 SHAP 方法分析源极/漏极形状对 FinFET 性能的影响,重点关注生长高度和横向生长深度。这些因素对导通电流和阈值电压等关键性能指标的影响得到了证实。SHAP 分析进一步证实了结果的可靠性和重要性。我们的研究结果有助于理解和提高日益复杂和微型化的半导体器件结构的性能。
{"title":"Analyzing the Influence of Source/Drain Growth Height and Lateral Growth Depth in FinFETs Through XGBoost and SHAP","authors":"Seung Won Lee;Hak Jun Ban;Jong Kyung Park;Dong Jin Ji;Seul Ki Hong","doi":"10.1109/LED.2024.3449243","DOIUrl":"10.1109/LED.2024.3449243","url":null,"abstract":"In FinFETs, the shape of the source/drain is crucial for performance, as it supplies charge and induces stress in the channel. Due to the 3D structure and numerous components of FinFETs, experimentally analyzing the performance impact of source/drain shapes is time-consuming and costly. This study employs machine learning and the SHAP method to analyze the influence of source/drain shapes on FinFET performance, focusing on growth height and lateral growth depth. These factors’ effects on key performance indicators such as on-current and threshold voltage are confirmed. SHAP analysis further substantiates the results’ reliability and significance. Our findings contribute to understanding and improving the performance of increasingly complex and miniaturized semiconductor device structures.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1714-1716"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Stretchable Circuit Based on Metal-Elastomer Composite 基于金属弹性体复合材料的高拉伸电路
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3449153
Fankai Kong;Hu Tang;Peng Liu;Xiao Liu;Jiwei Zhao;Junjian Li;Jue Peng
We develop a highly stretchable circuit by utilizing serpentine interconnects made of high-elasticity Cu-Be alloy. An elastic equivalent model of serpentine interconnect is used to optimize the geometric parameters, thereby enhancing its mechanical compatibility with the soft substrate. Furthermore, we propose a rapid fabrication method of highly stretchable circuits through the laser cutting and film transfer techniques. The results indicate that the elastic strain limit of the Cu-Be alloy serpentine interconnect is 4 times that of the Cu interconnect. The Cu-Be alloy serpentine circuit with optimized geometric parameters exhibits an excellent resistance stability under 1000 cycles of tensile testing at 90% strain without local delamination or failure. The light emitting diode (LED) array demonstrates an ultrahigh tensile strain limit of up to 200%. The proposed method can provide a novel and promising way for the fabrication of highly stretchable circuits for future wearable electronic devices.
我们利用由高弹性铜铍合金制成的蛇形互连器件,开发出了一种高度可拉伸的电路。我们利用蛇形互连的弹性等效模型来优化几何参数,从而提高其与软基板的机械兼容性。此外,我们还提出了一种通过激光切割和薄膜转移技术快速制造高拉伸电路的方法。结果表明,铜铍合金蛇形互连的弹性应变极限是铜互连的 4 倍。具有优化几何参数的铜铍合金蛇形电路在 90% 应变的 1000 次拉伸测试中表现出极佳的电阻稳定性,不会出现局部分层或失效。发光二极管 (LED) 阵列显示出高达 200% 的超高拉伸应变极限。所提出的方法为未来可穿戴电子设备高拉伸电路的制造提供了一种新颖而有前景的途径。
{"title":"A Highly Stretchable Circuit Based on Metal-Elastomer Composite","authors":"Fankai Kong;Hu Tang;Peng Liu;Xiao Liu;Jiwei Zhao;Junjian Li;Jue Peng","doi":"10.1109/LED.2024.3449153","DOIUrl":"10.1109/LED.2024.3449153","url":null,"abstract":"We develop a highly stretchable circuit by utilizing serpentine interconnects made of high-elasticity Cu-Be alloy. An elastic equivalent model of serpentine interconnect is used to optimize the geometric parameters, thereby enhancing its mechanical compatibility with the soft substrate. Furthermore, we propose a rapid fabrication method of highly stretchable circuits through the laser cutting and film transfer techniques. The results indicate that the elastic strain limit of the Cu-Be alloy serpentine interconnect is 4 times that of the Cu interconnect. The Cu-Be alloy serpentine circuit with optimized geometric parameters exhibits an excellent resistance stability under 1000 cycles of tensile testing at 90% strain without local delamination or failure. The light emitting diode (LED) array demonstrates an ultrahigh tensile strain limit of up to 200%. The proposed method can provide a novel and promising way for the fabrication of highly stretchable circuits for future wearable electronic devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1937-1940"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Directly Coupled Hydrogenated Diamond FET Logic Circuit With High Voltage Gain 具有高电压增益的直接耦合氢化金刚石场效应晶体管逻辑电路
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3448363
Yuesong Liang;Wei Wang;Fang Lin;Tianlin Niu;Genqiang Chen;Fei Wang;Qi Li;Shi He;Minghui Zhang;Yanfeng Wang;Feng Wen;Hong-Xing Wang
The directly coupled hydrogen-terminated diamond FET logic (DCHDFL) circuit is fabricated. The E-mode and D-mode FETs are assigned as driver and load devices of the DCHDFL circuit to achieve inversion characteristics. The E-mode FET showcases high IDSmax of 53.3mA/mm, VTH of -0.8 V, low SS of 98 mV/dec and on/off ratio of 109, which enable input/output logic level matching with a low drive/load ratio of 1.0. The peak gain of circuit increases from 12.57 to 36.3 V/V with VDD ranging from -5 V to -25 V, which is the highest gain achieved of diamond inverters, due to the high on/off ratio and low SS of E-mode FET. This circuit exhibits proper functions up to 200 °C, demonstrating a good thermal stability. These results indicate the great potential and possibilities for diamond smart power integrated circuit application.
制作了直接耦合氢端金刚石场效应晶体管逻辑(DCHDFL)电路。E 模式和 D 模式场效应晶体管分别用作 DCHDFL 电路的驱动器和负载器件,以实现反相特性。E 模式场效应晶体管具有 53.3mA/mm 的高 IDSmax、-0.8 V 的 VTH、98 mV/dec 的低 SS 和 109 的导通/关断比,从而能以 1.0 的低驱动/负载比实现输入/输出逻辑电平匹配。在 VDD 为 -5 V 至 -25 V 时,电路的峰值增益从 12.57 V/V 增至 36.3 V/V,这是菱形逆变器中实现的最高增益,原因是 E 模式场效应晶体管具有高导通/关断比和低 SS。该电路在高达 200 °C 的温度下仍能正常工作,显示出良好的热稳定性。这些结果表明了金刚石智能功率集成电路应用的巨大潜力和可能性。
{"title":"Directly Coupled Hydrogenated Diamond FET Logic Circuit With High Voltage Gain","authors":"Yuesong Liang;Wei Wang;Fang Lin;Tianlin Niu;Genqiang Chen;Fei Wang;Qi Li;Shi He;Minghui Zhang;Yanfeng Wang;Feng Wen;Hong-Xing Wang","doi":"10.1109/LED.2024.3448363","DOIUrl":"10.1109/LED.2024.3448363","url":null,"abstract":"The directly coupled hydrogen-terminated diamond FET logic (DCHDFL) circuit is fabricated. The E-mode and D-mode FETs are assigned as driver and load devices of the DCHDFL circuit to achieve inversion characteristics. The E-mode FET showcases high I\u0000<sub>DSmax</sub>\u0000 of 53.3mA/mm, V\u0000<sub>TH</sub>\u0000 of -0.8 V, low SS of 98 mV/dec and on/off ratio of 10\u0000<sup>9</sup>\u0000, which enable input/output logic level matching with a low drive/load ratio of 1.0. The peak gain of circuit increases from 12.57 to 36.3 V/V with V\u0000<sub>DD</sub>\u0000 ranging from -5 V to -25 V, which is the highest gain achieved of diamond inverters, due to the high on/off ratio and low SS of E-mode FET. This circuit exhibits proper functions up to 200 °C, demonstrating a good thermal stability. These results indicate the great potential and possibilities for diamond smart power integrated circuit application.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1698-1701"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the Effects of Assembly Gaps in the Resonant Cavity of Klystrons 关于 Klystrons 谐振腔中装配间隙影响的研究
IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/LED.2024.3448452
Z. X. Su;J. C. Cai;P. C. Yin;D. C. Chen;J. Zhang;X. K. Zhang;C. Zhang;L. Zeng;J. Xu;L. N. Yue;H. R. Yin;Y. Xu;G. Q. Zhao;W. X. Wang;Y. Y. Wei
During the test of an S-band multibeam klystron (MBK) resonant cavity, an interesting experimental phenomenon was observed: the measured ohmic quality factor ( ${Q}_{{0}}$ ) of the cavity was surprisingly low (around 200, design value of 5090). This prompted an in-depth investigation, revealing that the low ${Q}_{{0}}$ was due to the presence of a small gap on the perimeter of the resonant cavity, which resulted from an inadvertent mechanical design. The topology of this assembly gap was similar to an extremely thin coaxial line. To further investigate the impact of such assembly gap, theoretical and numerical models were developed to quantitatively analyze the effect of concentric/eccentric assembly gap on the cavity ${Q}_{{0}}$ , field asymmetry, the shunt impedance, mode competition, etc. The analysis indicates that the primary factor affecting ${Q}_{{0}}$ is the length of the small gap. The concentricity and width mainly influence the symmetry and shunt impedance, respectively. The analysis showed good agreement with the experimental results. Based on the above findings, a new approach was proposed to conveniently reduce the ${Q}_{{0}}$ of the resonant cavity via employing an appropriately long, relatively narrow gap (1/1000 of its radii, to ensure concentricity even in the worst scenario), thereby facilitating the development of broadband klystrons.
在对 S 波段多波束速调管(MBK)谐振腔进行测试期间,观察到一个有趣的实验现象:谐振腔的测量欧姆品质因数({Q}_{0}}$ )出奇地低(约 200,设计值为 5090)。这促使我们进行了深入研究,发现低{Q}_{0}}$是由于谐振腔周边存在一个小间隙,这是机械设计不慎造成的。该装配间隙的拓扑结构类似于极细的同轴线。为了进一步研究这种装配间隙的影响,我们建立了理论和数值模型,定量分析同心/异心装配间隙对腔${Q}_{{0}}$、场不对称、分流阻抗、模式竞争等的影响。分析表明,影响 ${Q}_{0}}$ 的主要因素是小间隙的长度。同心度和宽度分别主要影响对称性和并联阻抗。分析结果与实验结果吻合。基于上述发现,我们提出了一种新方法,通过采用适当长、相对窄的间隙(其半径的 1/1000,即使在最坏的情况下也能确保同心度)来方便地降低谐振腔的 ${Q}_{0}}$,从而促进宽带 klystrons 的发展。
{"title":"Investigation on the Effects of Assembly Gaps in the Resonant Cavity of Klystrons","authors":"Z. X. Su;J. C. Cai;P. C. Yin;D. C. Chen;J. Zhang;X. K. Zhang;C. Zhang;L. Zeng;J. Xu;L. N. Yue;H. R. Yin;Y. Xu;G. Q. Zhao;W. X. Wang;Y. Y. Wei","doi":"10.1109/LED.2024.3448452","DOIUrl":"10.1109/LED.2024.3448452","url":null,"abstract":"During the test of an S-band multibeam klystron (MBK) resonant cavity, an interesting experimental phenomenon was observed: the measured ohmic quality factor (\u0000<inline-formula> <tex-math>${Q}_{{0}}$ </tex-math></inline-formula>\u0000) of the cavity was surprisingly low (around 200, design value of 5090). This prompted an in-depth investigation, revealing that the low \u0000<inline-formula> <tex-math>${Q}_{{0}}$ </tex-math></inline-formula>\u0000 was due to the presence of a small gap on the perimeter of the resonant cavity, which resulted from an inadvertent mechanical design. The topology of this assembly gap was similar to an extremely thin coaxial line. To further investigate the impact of such assembly gap, theoretical and numerical models were developed to quantitatively analyze the effect of concentric/eccentric assembly gap on the cavity \u0000<inline-formula> <tex-math>${Q}_{{0}}$ </tex-math></inline-formula>\u0000, field asymmetry, the shunt impedance, mode competition, etc. The analysis indicates that the primary factor affecting \u0000<inline-formula> <tex-math>${Q}_{{0}}$ </tex-math></inline-formula>\u0000 is the length of the small gap. The concentricity and width mainly influence the symmetry and shunt impedance, respectively. The analysis showed good agreement with the experimental results. Based on the above findings, a new approach was proposed to conveniently reduce the \u0000<inline-formula> <tex-math>${Q}_{{0}}$ </tex-math></inline-formula>\u0000 of the resonant cavity via employing an appropriately long, relatively narrow gap (1/1000 of its radii, to ensure concentricity even in the worst scenario), thereby facilitating the development of broadband klystrons.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1985-1988"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Electron Device Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1