The point-by point 3D scanning strategy adopted in Stimulated Emission Depletion Microscopy (STED) is time-consuming. The 3D scanning can be replaced with a 2D scanning in the non-diffracting Bessel-Bessel STED (BB-STED). In order to extract the excited emitters’ axial information in BB-STED, we propose to encode axial information by using a detection optical path with single-helix PSF, and then predict the depths of the emitters with deep learning. Simulation demonstrated that, for dense emitters in a depth range of 4 µm, an axial precision of ∼35 nm can be achieved. Our method also works for experimental data, and an axial precision of ∼63 nm can be achieved.
{"title":"Localizing Axial Dense Emitters Based on Single-Helix Point Spread Function and Deep Learning","authors":"Yihong Ji;Danni Chen;Hanzhe Wu;Gan Xiang;Heng Li;Bin Yu;Junle Qu","doi":"10.1109/JPHOT.2024.3476514","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3476514","url":null,"abstract":"The point-by point 3D scanning strategy adopted in Stimulated Emission Depletion Microscopy (STED) is time-consuming. The 3D scanning can be replaced with a 2D scanning in the non-diffracting Bessel-Bessel STED (BB-STED). In order to extract the excited emitters’ axial information in BB-STED, we propose to encode axial information by using a detection optical path with single-helix PSF, and then predict the depths of the emitters with deep learning. Simulation demonstrated that, for dense emitters in a depth range of 4 µm, an axial precision of ∼35 nm can be achieved. Our method also works for experimental data, and an axial precision of ∼63 nm can be achieved.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10709644","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1109/JPHOT.2024.3476199
Jinjin Peng;Bo Qi;Yun Zhang;ZhenChuang Li;Yao Mao
The adaptive single-mode fiber (SMF) coupling technique is normally adopted since the coupling efficiency (CE) significantly determines the performance of the free-space optical communication (FSOC) systems. The stochastic parallel gradient descent (SPGD) algorithm is the most commonly used control algorithm in adaptive SMF fiber coupling system. This paper proposes an improved SPGD algorithm named estimation-based stochastic parallel gradient descent (ESPGD) algorithm to accelerate the sytem convergence when applied to a practical adaptive SMF coupling system based on fast steering mirror (FSM). Applying the perturbed voltages, FSM dynamic response and then recording the performance metrics is the basic and most time-consuming process in actual adaptive SMF coupling system control. The ESPGD algorithm uses a different gradient estimation method based on adaptive parameter estimation method. The algorithm only needs to perform this process once in one iteration while the original SPGD algorithm needs to perform it twice to obtain the estimated gradient. This greatly reduce the time consumed by one iteration of the algorithm, thereby reducing the convergence time. The simulation and experimental results show that the ESPGD algorithm reduces the system convergence time by nearly half when correcting static angular errors and more than doubles the control bandwidth when correcting sinusoidal angular jitters.
{"title":"ESPGD Algorithm to Improve the Convergence Speed for Adaptive Single-Mode Fiber Coupling","authors":"Jinjin Peng;Bo Qi;Yun Zhang;ZhenChuang Li;Yao Mao","doi":"10.1109/JPHOT.2024.3476199","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3476199","url":null,"abstract":"The adaptive single-mode fiber (SMF) coupling technique is normally adopted since the coupling efficiency (CE) significantly determines the performance of the free-space optical communication (FSOC) systems. The stochastic parallel gradient descent (SPGD) algorithm is the most commonly used control algorithm in adaptive SMF fiber coupling system. This paper proposes an improved SPGD algorithm named estimation-based stochastic parallel gradient descent (ESPGD) algorithm to accelerate the sytem convergence when applied to a practical adaptive SMF coupling system based on fast steering mirror (FSM). Applying the perturbed voltages, FSM dynamic response and then recording the performance metrics is the basic and most time-consuming process in actual adaptive SMF coupling system control. The ESPGD algorithm uses a different gradient estimation method based on adaptive parameter estimation method. The algorithm only needs to perform this process once in one iteration while the original SPGD algorithm needs to perform it twice to obtain the estimated gradient. This greatly reduce the time consumed by one iteration of the algorithm, thereby reducing the convergence time. The simulation and experimental results show that the ESPGD algorithm reduces the system convergence time by nearly half when correcting static angular errors and more than doubles the control bandwidth when correcting sinusoidal angular jitters.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10707185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1109/JPHOT.2024.3474422
Yuhan Geng;Shengnan Wu;Sailing He
The integrated Fabry-Perot (FP) interferometers structure based on four core fiber (FCF) and a helical phase-modulation microdisk (HPMD) structure is proposed. The HPMD is designed to generate π/2 phase difference between adjacent fiber cores at the end face of the FCF. Four extrinsic FP cavities are formed by the HPMD and another reflected mirror perpendicular to the fiber. The quadrature phase demodulation theory is derived and the FP cavities length can be directly calculated by the reflected intensity of the FCF. The crosstalk effect between the four cores is analyzed. In addition, the simulation results also show that the structure has strong anti-interference ability to temperature fluctuations, the sensitivity of phase difference and temperature is only 0.009 °/K. The results of phase demodulation show that the demodulation effect is better when the thickness of the phase disk is 765 nm, and the mean relative error is 0.58%. The influence of machining error of FCF on demodulation results is also analyzed. The phase demodulation relative error is 0.65% when the alignment mismatch is reach 100 μm.
{"title":"Numerical Analysis of Integrated Fabry–Perot Interferometers Based on Four Core Fiber With a Helical Phase Microdisk","authors":"Yuhan Geng;Shengnan Wu;Sailing He","doi":"10.1109/JPHOT.2024.3474422","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3474422","url":null,"abstract":"The integrated Fabry-Perot (FP) interferometers structure based on four core fiber (FCF) and a helical phase-modulation microdisk (HPMD) structure is proposed. The HPMD is designed to generate π/2 phase difference between adjacent fiber cores at the end face of the FCF. Four extrinsic FP cavities are formed by the HPMD and another reflected mirror perpendicular to the fiber. The quadrature phase demodulation theory is derived and the FP cavities length can be directly calculated by the reflected intensity of the FCF. The crosstalk effect between the four cores is analyzed. In addition, the simulation results also show that the structure has strong anti-interference ability to temperature fluctuations, the sensitivity of phase difference and temperature is only 0.009 °/K. The results of phase demodulation show that the demodulation effect is better when the thickness of the phase disk is 765 nm, and the mean relative error is 0.58%. The influence of machining error of FCF on demodulation results is also analyzed. The phase demodulation relative error is 0.65% when the alignment mismatch is reach 100 μm.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1109/JPHOT.2024.3473309
Zitong Zhu;Zehua Gao;Ke Bi;Chuwen Lan
Terahertz electromagnetic waves are widely used in various fields, but their practical application often suffers from significant interfacial losses. In this paper, we present a terahertz antireflection film based on an all-dielectric metasurface consisting of a zirconia microsphere array assembled using a template-assisted method. Simulations and experiments show that the film has a broadband, outstanding transmission-enhancing effect. Because the antireflection film has the advantages of ultralow cost, high compatibility, flexibility, and easy industrialization, it may have potential applications in various fields.
{"title":"Large-Area, Broadband, and Flexible Terahertz Antireflection Thin Film Based on an All-Dielectric Metasurface","authors":"Zitong Zhu;Zehua Gao;Ke Bi;Chuwen Lan","doi":"10.1109/JPHOT.2024.3473309","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3473309","url":null,"abstract":"Terahertz electromagnetic waves are widely used in various fields, but their practical application often suffers from significant interfacial losses. In this paper, we present a terahertz antireflection film based on an all-dielectric metasurface consisting of a zirconia microsphere array assembled using a template-assisted method. Simulations and experiments show that the film has a broadband, outstanding transmission-enhancing effect. Because the antireflection film has the advantages of ultralow cost, high compatibility, flexibility, and easy industrialization, it may have potential applications in various fields.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704956","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1109/JPHOT.2024.3472896
Samuel M. Hörmann;Gandolf Feigl;Jakob W. Hinum-Wagner;Alexander Bergmann
Integrated photonic sensors have gained significant attention for biosensing applications. An especially potent design is the polarimetric waveguide interferometer, which utilizes polarization diversity for effective self-referencing. However, its implementations are held back by the need for bulky free-space optics or unreliable waveguide junctions for polarization handling. To overcome these limitations, we propose a novel concept for a compact photonic system that employs edge couplers to excite both polarizations from an optical fiber and an in-line polarizer to obtain the phase information in the fiber-based readout. Additionally, we improve the waveguide design methodology to minimize the limit of detection through balancing sensitivity with optical loss. To this end, we create a unified perturbative approach based on atomic force microscopy and ellipsometry data to model sensitivity, surface-roughness-induced scattering, absorption, and radiation. We then incorporate the coupling efficiency into a figure of merit for the combined system. Thus, we optimize the geometry of a strip waveguide on a CMOS-foundry-sourced silicon nitride platform for biosensing. Through exhaustive screening of the design space, we discover that polarization diversity simultaneously leverages high sensitivity and low overlap with sidewall roughness. Further, we present designs that eliminate the phase signal from two major noise sources: thermal and bulk refractive index fluctuations. Finally, we provide design recommendations and achieve a 5.2-fold improvement over a comparable bimodal waveguide interferometer. Thus, our aim is to design a robust, compact, sensitive, and cost-effective polarimetric waveguide interferometer through an efficient concept and an optimized design.
{"title":"Rigorous Design Optimization of a Fiber-Enabled Polarimetric Waveguide Interferometer for Biosensing","authors":"Samuel M. Hörmann;Gandolf Feigl;Jakob W. Hinum-Wagner;Alexander Bergmann","doi":"10.1109/JPHOT.2024.3472896","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3472896","url":null,"abstract":"Integrated photonic sensors have gained significant attention for biosensing applications. An especially potent design is the polarimetric waveguide interferometer, which utilizes polarization diversity for effective self-referencing. However, its implementations are held back by the need for bulky free-space optics or unreliable waveguide junctions for polarization handling. To overcome these limitations, we propose a novel concept for a compact photonic system that employs edge couplers to excite both polarizations from an optical fiber and an in-line polarizer to obtain the phase information in the fiber-based readout. Additionally, we improve the waveguide design methodology to minimize the limit of detection through balancing sensitivity with optical loss. To this end, we create a unified perturbative approach based on atomic force microscopy and ellipsometry data to model sensitivity, surface-roughness-induced scattering, absorption, and radiation. We then incorporate the coupling efficiency into a figure of merit for the combined system. Thus, we optimize the geometry of a strip waveguide on a CMOS-foundry-sourced silicon nitride platform for biosensing. Through exhaustive screening of the design space, we discover that polarization diversity simultaneously leverages high sensitivity and low overlap with sidewall roughness. Further, we present designs that eliminate the phase signal from two major noise sources: thermal and bulk refractive index fluctuations. Finally, we provide design recommendations and achieve a 5.2-fold improvement over a comparable bimodal waveguide interferometer. Thus, our aim is to design a robust, compact, sensitive, and cost-effective polarimetric waveguide interferometer through an efficient concept and an optimized design.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1109/JPHOT.2024.3471070
Xianmin Zheng;Tailin Li;Ke Ding;Yihan Luo
Here we propose a non-line-of-sight (NLOS) tracking scheme using only one single-pixel single-photon channel. It is demonstrated that sending multiple beams with proper time delay enables multiplexing of multi-echoes of the hidden object in the single channel. Based on the multiplexed temporal histograms, we achieve a retrieval of the object's position with centimeter precision. The experiment of following the target's linear motion is also performed, proving that our technique can reliably track the moving object. This time multiplexing-based NLOS tracking scheme provides a simple way to reduce the numbers of the detecting channels, which may contribute to low-cost NLOS applications.
{"title":"Non-Line-of-Sight Target Tracking With a Single Time Multiplexed Channel","authors":"Xianmin Zheng;Tailin Li;Ke Ding;Yihan Luo","doi":"10.1109/JPHOT.2024.3471070","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3471070","url":null,"abstract":"Here we propose a non-line-of-sight (NLOS) tracking scheme using only one single-pixel single-photon channel. It is demonstrated that sending multiple beams with proper time delay enables multiplexing of multi-echoes of the hidden object in the single channel. Based on the multiplexed temporal histograms, we achieve a retrieval of the object's position with centimeter precision. The experiment of following the target's linear motion is also performed, proving that our technique can reliably track the moving object. This time multiplexing-based NLOS tracking scheme provides a simple way to reduce the numbers of the detecting channels, which may contribute to low-cost NLOS applications.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1109/JPHOT.2024.3471827
Sicheng Guo;Tao Cheng;Kangjian Yang;Lingxi Kong;Chunxuan Su;Shuai Wang;Ping Yang
Stabilization of optical beams has always been a key factor affecting the performance of many optical systems. The Adaptive optics (AO) beam stabilization system requires further development to cope with increasingly complex application scenarios and challenges. Motivated by this, a new filter-based off-policy policy iteration (FB-OPPI) control scheme is proposed and experimentally verified in this paper to provide AO systems with a flexible beam stabilization method. The FB-OPPI is based on the policy iteration, a model-free controller design principle. To address the challenges such as convergence speed, data requirements and control stability that it faces in practice, we have proposed an implicit state reconstruction method based on the Kalman filter and introduced the adaptive transverse filter technology. Additionally, the off-policy learning mechanism is deployed to simplify the optimization process. An AO beam stabilization system was constructed to verify the effectiveness of the proposed method. Experimental results show that the FB-OPPI method features simple design and fast training, releases the requirement for additional sensors or model recognition. The FB-OPPI method is superior to traditional integral controllers, effectively handling high-frequency narrowband and complex beam jitters. Despite not requiring model identification, it is on par with the advanced Linear Quadratic Gaussian (LQG) control.
{"title":"Design and Experimental Validation of a Model-Free Controller for Beam Stabilization in Adaptive Optics Systems","authors":"Sicheng Guo;Tao Cheng;Kangjian Yang;Lingxi Kong;Chunxuan Su;Shuai Wang;Ping Yang","doi":"10.1109/JPHOT.2024.3471827","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3471827","url":null,"abstract":"Stabilization of optical beams has always been a key factor affecting the performance of many optical systems. The Adaptive optics (AO) beam stabilization system requires further development to cope with increasingly complex application scenarios and challenges. Motivated by this, a new filter-based off-policy policy iteration (FB-OPPI) control scheme is proposed and experimentally verified in this paper to provide AO systems with a flexible beam stabilization method. The FB-OPPI is based on the policy iteration, a model-free controller design principle. To address the challenges such as convergence speed, data requirements and control stability that it faces in practice, we have proposed an implicit state reconstruction method based on the Kalman filter and introduced the adaptive transverse filter technology. Additionally, the off-policy learning mechanism is deployed to simplify the optimization process. An AO beam stabilization system was constructed to verify the effectiveness of the proposed method. Experimental results show that the FB-OPPI method features simple design and fast training, releases the requirement for additional sensors or model recognition. The FB-OPPI method is superior to traditional integral controllers, effectively handling high-frequency narrowband and complex beam jitters. Despite not requiring model identification, it is on par with the advanced Linear Quadratic Gaussian (LQG) control.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-12"},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700988","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, HgCdTe detectors are advancing towards very long wavelengths and room temperature operation. However, as operating temperatures and illumination intensity increase, the performance of these detectors deteriorates, evidenced by increased dark current, reduced responsivity and detectivity, and enhanced saturation effects. These limitations significantly hinder the application of detectors for strong illumination scenarios at room temperature. In this study, we utilize compositional gradients and array electrode designs to make better trade-offs among dark current, responsivity, and saturation characteristics of HgCdTe photovoltaic detectors under mid-wave and long-wave infrared conditions. We elucidate the underlying mechanisms from the perspectives of the responsive region and the non-photosensitive area, as well as carrier motion and recombination processes. The results indicate that increasing compositional gradients are beneficial for reducing dark current, while decreasing compositional gradients are advantageous for improving responsivity. Moreover, detectors with array electrodes design achieve a peak responsivity of 1.5 A/W under 200 W/cm 2