Fiber nonlinearity is the bottleneck of optical communication systems and is commonly addressed by applying various nonlinearity mitigation and compensation techniques. In general, nonlinearity mitigation techniques offer modest improvements with minimal computational complexity, while nonlinearity compensation techniques provide significant performance gains at the expense of higher computational complexity. This motivates us to propose a joint nonlinearity mitigation and compensation approach in which the nonlinear effects during signal propagation are reduced to compensate for the residual nonlinearity at a lower complexity. Specifically, in this paper, we study the combination of symbol rate optimization (SRO) and perturbation-based nonlinearity compensation (PB-NLC) for a pre-chromatic dispersion compensated (pre-CDC) transmission of polarization multiplexing, digital sub-carrier multiplexing, and wavelength division multiplexing (PM-DSCM-WDM) optical communication system. We highlight the interplay between SRO and PB-NLC and demonstrate that joint SRO and PB-NLC provides considerable performance gain, significant complexity reduction, and an additional degree of freedom to balance performance-complexity trade-offs when compared to applying only PB-NLC in a conventional PM-WDM system. We observe that the pre-CDC transmission manifests a unique property that enables the distribution of PB-NLC computational complexity between transmitter and receiver. Leveraging the distinctive property, we propose a split PB-NLC technique for the PM-DSCM-WDM system. This technique combines the benefits of both pre-PB-NLC and post-PB-NLC, resulting in a modest performance improvement while maintaining the same computational complexity as post-PB-NLC.
{"title":"Joint Fiber Nonlinearity Mitigation and Compensation for Digital Sub-Carrier Multiplexing System","authors":"Selvakumar Tharranetharan;Sunish Kumar Orappanpara Soman;Lutz Lampe","doi":"10.1109/JPHOT.2024.3429381","DOIUrl":"10.1109/JPHOT.2024.3429381","url":null,"abstract":"Fiber nonlinearity is the bottleneck of optical communication systems and is commonly addressed by applying various nonlinearity mitigation and compensation techniques. In general, nonlinearity mitigation techniques offer modest improvements with minimal computational complexity, while nonlinearity compensation techniques provide significant performance gains at the expense of higher computational complexity. This motivates us to propose a joint nonlinearity mitigation and compensation approach in which the nonlinear effects during signal propagation are reduced to compensate for the residual nonlinearity at a lower complexity. Specifically, in this paper, we study the combination of symbol rate optimization (SRO) and perturbation-based nonlinearity compensation (PB-NLC) for a pre-chromatic dispersion compensated (pre-CDC) transmission of polarization multiplexing, digital sub-carrier multiplexing, and wavelength division multiplexing (PM-DSCM-WDM) optical communication system. We highlight the interplay between SRO and PB-NLC and demonstrate that joint SRO and PB-NLC provides considerable performance gain, significant complexity reduction, and an additional degree of freedom to balance performance-complexity trade-offs when compared to applying only PB-NLC in a conventional PM-WDM system. We observe that the pre-CDC transmission manifests a unique property that enables the distribution of PB-NLC computational complexity between transmitter and receiver. Leveraging the distinctive property, we propose a split PB-NLC technique for the PM-DSCM-WDM system. This technique combines the benefits of both pre-PB-NLC and post-PB-NLC, resulting in a modest performance improvement while maintaining the same computational complexity as post-PB-NLC.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-17"},"PeriodicalIF":2.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599783","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1109/JPHOT.2024.3428932
Zihao Wang;Chao Peng;Tong Zhang;Xiang Liu;Qiang Wang;Shunfa Liu;Yuankang Wang;Yongmei Huang;Dong He
Vehicular quantum communication terminals (VQCTs) are crucial for establishing global-scale quantum networks. High-precision line-of-sight (LOS) pointing is essential for fast and reliable acquisition in satellite-based quantum key distribution (QKD). The pointing accuracy of VQCTs is affected by attitude measurement errors, mechanical structure errors, and structural instability errors resulting from platform movement. By mounting attitude sensors on the LOS of VQCTs, we directly measure the LOS attitude. This completely eliminates the impact of mechanical structure errors and structural instability errors on pointing accuracy. Furthermore, we propose a line-of-pointing calibration method and a pointing model for VQCTs based on LOS attitude measurement. The pointing accuracy of this model is primarily reliant on the accuracy of attitude sensors. Two experiments were conducted to validate the effectiveness of our model. One is the star pointing experiment, comparing with the existing pointing model for VQCTs, our model significantly reduces the pointing errors by 93%, from 1296″ to 87.8″. This substantiates that our model eliminates mechanical structure errors and structural instability errors. Another is the successful acquisition of a quantum communication satellite, which demonstrates the feasibility of the proposed model for implementing the satellite-to-motion platform QKD and global-scale quantum networks.
车载量子通信终端(VQCT)对于建立全球规模的量子网络至关重要。在基于卫星的量子密钥分发(QKD)中,高精度的视线(LOS)指向对于快速可靠地获取信息至关重要。VQCT 的指向精度受到姿态测量误差、机械结构误差以及平台移动导致的结构不稳定性误差的影响。通过在 VQCT 的 LOS 上安装姿态传感器,我们可以直接测量 LOS 的姿态。这就完全消除了机械结构误差和结构不稳定性误差对指向精度的影响。此外,我们还提出了一种指向线校准方法和基于 LOS 姿态测量的 VQCT 指向模型。该模型的指向精度主要取决于姿态传感器的精度。为了验证模型的有效性,我们进行了两项实验。其一是恒星指向实验,与现有的 VQCT 指向模型相比,我们的模型显著降低了 93% 的指向误差,从 1296″ 降至 87.8″。这证明我们的模型消除了机械结构误差和结构不稳定性误差。另一个例子是成功获取了一颗量子通信卫星,这证明了所提出的模型在实现卫星对运动平台 QKD 和全球尺度量子网络方面的可行性。
{"title":"Pointing Model for Vehicular Quantum Communication Terminals Based on Line-of-Sight Attitude Measurement","authors":"Zihao Wang;Chao Peng;Tong Zhang;Xiang Liu;Qiang Wang;Shunfa Liu;Yuankang Wang;Yongmei Huang;Dong He","doi":"10.1109/JPHOT.2024.3428932","DOIUrl":"10.1109/JPHOT.2024.3428932","url":null,"abstract":"Vehicular quantum communication terminals (VQCTs) are crucial for establishing global-scale quantum networks. High-precision line-of-sight (LOS) pointing is essential for fast and reliable acquisition in satellite-based quantum key distribution (QKD). The pointing accuracy of VQCTs is affected by attitude measurement errors, mechanical structure errors, and structural instability errors resulting from platform movement. By mounting attitude sensors on the LOS of VQCTs, we directly measure the LOS attitude. This completely eliminates the impact of mechanical structure errors and structural instability errors on pointing accuracy. Furthermore, we propose a line-of-pointing calibration method and a pointing model for VQCTs based on LOS attitude measurement. The pointing accuracy of this model is primarily reliant on the accuracy of attitude sensors. Two experiments were conducted to validate the effectiveness of our model. One is the star pointing experiment, comparing with the existing pointing model for VQCTs, our model significantly reduces the pointing errors by 93%, from 1296″ to 87.8″. This substantiates that our model eliminates mechanical structure errors and structural instability errors. Another is the successful acquisition of a quantum communication satellite, which demonstrates the feasibility of the proposed model for implementing the satellite-to-motion platform QKD and global-scale quantum networks.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599795","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1109/JPHOT.2024.3429187
Xin-Yu Zhang;Jian Zhang;Qi Wu
The application of liquid crystal (LC)-based reconfigurable intelligent surface (RIS)-assisted transmitters in visible light communication (VLC) systems can guide and amplify the light emitted by light emitting diodes (LEDs). In this paper, we investigate the VLC system employing the RIS-assisted transmitter, where user fairness is maximized by optimizing the refractive index of the RIS module. To address the non-convex problem, we adopt the particle swarm optimization (PSO) algorithm. Simulation results illustrate that equipping the RIS-assisted transmitter in the system and using the proposed algorithm can significantly improve user fairness.
{"title":"Fairness Optimization for VLC Systems With Liquid Crystal-Based RIS-Enabled Transmitters","authors":"Xin-Yu Zhang;Jian Zhang;Qi Wu","doi":"10.1109/JPHOT.2024.3429187","DOIUrl":"10.1109/JPHOT.2024.3429187","url":null,"abstract":"The application of liquid crystal (LC)-based reconfigurable intelligent surface (RIS)-assisted transmitters in visible light communication (VLC) systems can guide and amplify the light emitted by light emitting diodes (LEDs). In this paper, we investigate the VLC system employing the RIS-assisted transmitter, where user fairness is maximized by optimizing the refractive index of the RIS module. To address the non-convex problem, we adopt the particle swarm optimization (PSO) algorithm. Simulation results illustrate that equipping the RIS-assisted transmitter in the system and using the proposed algorithm can significantly improve user fairness.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599796","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The t-rail electrode is an effective method to enhance the silicon optoelectronic modulator's performance. To design and optimize T-rail electrodes, engineers often rely on finite-element numerical simulations that require complex device modeling and enormous computing resources. In this paper, we present an equivalent circuit model for carrier-depletion-based push-pull silicon modulators with T-rail electrodes. The analytical solution for the bandwidth of the modulator can be derived from the equivalent circuit. The utilization of the analytical solution offers advantages in terms of memory conservation and flexibility. The values calculated by the equivalent circuit model are in excellent agreement with the numerical full-wave HFSS simulations. Hence, the proposed model can accurately and efficiently develop silicon optical modulators.
T 型轨道电极是提高硅光电调制器性能的有效方法。为了设计和优化 T 型轨电极,工程师通常依赖有限元数值模拟,这需要复杂的器件建模和巨大的计算资源。本文介绍了基于载流子耗尽的推挽式硅调制器的等效电路模型。从等效电路中可以得出调制器带宽的解析解。利用该分析解法在节省内存和灵活性方面具有优势。等效电路模型计算出的值与全波 HFSS 数值模拟结果非常吻合。因此,所提出的模型可以准确、高效地开发硅光学调制器。
{"title":"Equivalent Circuit Model of the Carrier-Depletion-Based Push-Pull Silicon Optical Modulators With T-Rail Slow Wave Electrodes","authors":"Dongwei Zhuang;Quanxin Na;Qijie Xie;Nan Zhang;Lanxuan Zhang;Xin Li;Guomeng Zuo;Hao Zhang;Lei Wang;Li Qin;Junfeng Song","doi":"10.1109/JPHOT.2024.3427830","DOIUrl":"10.1109/JPHOT.2024.3427830","url":null,"abstract":"The t-rail electrode is an effective method to enhance the silicon optoelectronic modulator's performance. To design and optimize T-rail electrodes, engineers often rely on finite-element numerical simulations that require complex device modeling and enormous computing resources. In this paper, we present an equivalent circuit model for carrier-depletion-based push-pull silicon modulators with T-rail electrodes. The analytical solution for the bandwidth of the modulator can be derived from the equivalent circuit. The utilization of the analytical solution offers advantages in terms of memory conservation and flexibility. The values calculated by the equivalent circuit model are in excellent agreement with the numerical full-wave HFSS simulations. Hence, the proposed model can accurately and efficiently develop silicon optical modulators.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}