首页 > 最新文献

IEEE Transactions on Haptics最新文献

英文 中文
Spatiotemporal Modulation for Ultrasonic Mid-Air Haptics: Sensation's Specification and Validation 用于空气中超声波触觉的时空调制:Sensation's Specification and Validation.
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-17 DOI: 10.1109/TOH.2024.3355187
Eduardo Mendes;Paulo Santos;João Carvalho;Jorge Cabral
Spatiotemporal modulation (STM) is used in Ultrasonic Mid-Air Haptics to create compelling tactile sensations. The STM can create perceptually distinct sensations. We specified the sensations of a palm-size pattern by varying the focal point's speed and pattern sampling rate. Three sensations were specified, named as Dynamic, Vibratory and Uniform. A selective identification study was conducted to evaluate if the sensations were recognizable to the perception when presented individually and simultaneously (combined stimuli). The results support the STM's specification and the selective recognition of the sensations was possible for some combinations.
时空调制(STM)用于超声波中空触觉技术,以产生令人信服的触觉感受。时空调制可产生不同的感觉。我们通过改变焦点速度和图案采样率来指定手掌大小图案的感觉。我们指定了三种感觉,分别为动态、振动和均匀。我们进行了一项选择性识别研究,以评估这些感觉在单独和同时出现(组合刺激)时是否能被感知者识别。研究结果支持 STM 的说明,并且对某些组合的感觉可以进行选择性识别。
{"title":"Spatiotemporal Modulation for Ultrasonic Mid-Air Haptics: Sensation's Specification and Validation","authors":"Eduardo Mendes;Paulo Santos;João Carvalho;Jorge Cabral","doi":"10.1109/TOH.2024.3355187","DOIUrl":"10.1109/TOH.2024.3355187","url":null,"abstract":"Spatiotemporal modulation (STM) is used in Ultrasonic Mid-Air Haptics to create compelling tactile sensations. The STM can create perceptually distinct sensations. We specified the sensations of a palm-size pattern by varying the focal point's speed and pattern sampling rate. Three sensations were specified, named as Dynamic, Vibratory and Uniform. A selective identification study was conducted to evaluate if the sensations were recognizable to the perception when presented individually and simultaneously (combined stimuli). The results support the STM's specification and the selective recognition of the sensations was possible for some combinations.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"429-440"},"PeriodicalIF":2.4,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Horizontal Plane Haptic Redirection: Realizing Haptic Feedback for the Virtual Inclined Plane in VR 水平面触觉重定向:在 VR 中实现虚拟倾斜平面的触觉反馈。
IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-16 DOI: 10.1109/TOH.2024.3354514
Dexin Liu;Hengxin Chen
Some interactions in virtual environments need to be operated on inclined planes. If a real inclined plane can be found in the real environment that corresponds exactly to the angle of the virtual inclined plane to provide haptic feedback, the user's immersion can be enhanced. However, it is not easy to find such a real inclined plane in the real environment. We proposed a horizontal plane haptic redirection scheme, where users interacting with virtual inclined planes in virtual environments can obtain haptic feelings by using real horizontal planes that are easily available in the real world for redirection mapping. We also designed an integrated solution to locate the real horizontal plane and for haptic redirection based on the Vive Pro headset. Then we measured the angle and size thresholds for horizontal plane haptic redirection as 20° and 88%, respectively, through a user study. Through experiments, we also found that when the degree of redirection exceeded the threshold, the user's operation efficiency would be significantly reduced. In addition, we compared the horizontal plane haptic redirection scheme with the scheme without redirection and the scheme without haptic feedback to demonstrate the validity and necessity of the redirection scheme proposed in this paper.
虚拟环境中的某些互动需要在倾斜平面上进行操作。如果能在真实环境中找到一个与虚拟斜面角度完全一致的真实斜面来提供触觉反馈,就能增强用户的沉浸感。然而,要在真实环境中找到这样一个真实的倾斜平面并不容易。我们提出了一种水平面触觉重定向方案,用户在虚拟环境中与虚拟倾斜面进行交互时,可以利用现实世界中容易找到的真实水平面进行重定向映射,从而获得触觉感受。我们还设计了一个基于 Vive Pro 头显的集成解决方案,用于定位真实水平面和触觉重定向。然后,我们通过用户研究测得水平面触觉重定向的角度和尺寸阈值分别为 20° 和 88%。通过实验,我们还发现当重定向程度超过阈值时,用户的操作效率会明显降低。此外,我们还将水平面触觉重定向方案与无重定向方案和无触觉反馈方案进行了比较,以证明本文提出的重定向方案的有效性和必要性。
{"title":"Horizontal Plane Haptic Redirection: Realizing Haptic Feedback for the Virtual Inclined Plane in VR","authors":"Dexin Liu;Hengxin Chen","doi":"10.1109/TOH.2024.3354514","DOIUrl":"10.1109/TOH.2024.3354514","url":null,"abstract":"Some interactions in virtual environments need to be operated on inclined planes. If a real inclined plane can be found in the real environment that corresponds exactly to the angle of the virtual inclined plane to provide haptic feedback, the user's immersion can be enhanced. However, it is not easy to find such a real inclined plane in the real environment. We proposed a horizontal plane haptic redirection scheme, where users interacting with virtual inclined planes in virtual environments can obtain haptic feelings by using real horizontal planes that are easily available in the real world for redirection mapping. We also designed an integrated solution to locate the real horizontal plane and for haptic redirection based on the Vive Pro headset. Then we measured the angle and size thresholds for horizontal plane haptic redirection as 20° and 88%, respectively, through a user study. Through experiments, we also found that when the degree of redirection exceeded the threshold, the user's operation efficiency would be significantly reduced. In addition, we compared the horizontal plane haptic redirection scheme with the scheme without redirection and the scheme without haptic feedback to demonstrate the validity and necessity of the redirection scheme proposed in this paper.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"26-32"},"PeriodicalIF":2.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Haptic Feedback for Virtual Collisions Combining Vibrotactile and Electrical Muscle Stimulation 结合振动触觉和肌肉电刺激的虚拟碰撞多模式触觉反馈。
IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-16 DOI: 10.1109/TOH.2024.3354268
Jungeun Lee;Seungmoon Choi
In this paper, we explore the effects of multimodal haptic feedback combining vibrotactile and electrical muscle stimulation (EMS) on expressing virtual collisions. We first present a wearable multimodal haptic device capable of generating both mechanical vibration and EMS stimuli. The two types of haptic stimulus are combined into a haptic rendering method that conveys improved virtual collision sensations. This multimodal rendering method highlights the strengths of each modality while compensating for mutual weaknesses. The multimodal rendering method is compared in subjective quality with two unimodal methods (vibration only and EMS only) by a user study. Experimental results demonstrate that our multimodal feedback method can elicit more realistic, enjoyable, expressive, and preferable user experiences.
在本文中,我们探讨了结合振动触觉和肌肉电刺激(EMS)的多模态触觉反馈对表达虚拟碰撞的影响。我们首先介绍了一种可穿戴的多模态触觉设备,它能够产生机械振动和 EMS 刺激。这两种触觉刺激被结合到一种触觉渲染方法中,以传达更好的虚拟碰撞感觉。这种多模态渲染方法既能突出每种模态的优势,又能弥补相互之间的不足。通过一项用户研究,将多模态渲染方法与两种单模态方法(仅振动和仅 EMS)的主观质量进行了比较。实验结果表明,我们的多模态反馈方法能带来更真实、更愉快、更有表现力和更可取的用户体验。
{"title":"Multimodal Haptic Feedback for Virtual Collisions Combining Vibrotactile and Electrical Muscle Stimulation","authors":"Jungeun Lee;Seungmoon Choi","doi":"10.1109/TOH.2024.3354268","DOIUrl":"10.1109/TOH.2024.3354268","url":null,"abstract":"In this paper, we explore the effects of multimodal haptic feedback combining vibrotactile and electrical muscle stimulation (EMS) on expressing virtual collisions. We first present a wearable multimodal haptic device capable of generating both mechanical vibration and EMS stimuli. The two types of haptic stimulus are combined into a haptic rendering method that conveys improved virtual collision sensations. This multimodal rendering method highlights the strengths of each modality while compensating for mutual weaknesses. The multimodal rendering method is compared in subjective quality with two unimodal methods (vibration only and EMS only) by a user study. Experimental results demonstrate that our multimodal feedback method can elicit more realistic, enjoyable, expressive, and preferable user experiences.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"33-38"},"PeriodicalIF":2.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lever Mechanism for Diaphragm-Type Vibrators to Enhance Vibrotactile Intensity 用于膜片式振动器的杠杆机制,以增强振动触觉强度。
IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-16 DOI: 10.1109/TOH.2024.3354253
Taku Hachisu;Masayuki Kajiura;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Masashi Konyo
Thin and light vibrators that leverage the inverse piezoelectric effect with a diaphragm mechanism are promising vibrotactile actuators owing to their form factors and high temporal and frequency response. However, generating perceptually sufficient displacement in the low-frequency domain is challenging. This study presents a lever mechanism mounted on a diaphragm vibrator to enhance the vibrotactile intensity of low-frequency vibrotactile stimuli. The lever mechanism is inspired by the tactile contact lens consisting of an array of cylinders held against the skin on a sheet that enhances micro-bump tactile detection. We built an experimental apparatus including our previously developed thin-film diaphragm-type vibrator, which reproduced the common characteristic of piezoelectric vibrators: near-threshold displacement (10 to 20 μm) at low frequency. Experiments demonstrated enhanced vibrotactile intensity at frequencies less than 100 Hz with the lever mechanism. Although the arrangement and material of the mechanism can be improved, our findings can help improve the expressiveness of diaphragm-type vibrators.
利用反压电效应和膜片机制的轻薄振动器因其外形尺寸、高时间和频率响应而成为前景广阔的振动触觉致动器。然而,要在低频域产生足够的感知位移是一项挑战。本研究提出了一种安装在膜片振动器上的杠杆机构,以增强低频振动触觉刺激的振动触觉强度。杠杆机制的灵感来自触觉接触透镜,该透镜由贴在皮肤上的圆柱阵列组成,可增强微凹凸触觉检测。我们建立了一个实验装置,其中包括我们之前开发的薄膜隔膜型振动器,它再现了压电振动器的共同特征:低频下接近阈值的位移(10 至 20 μm)。实验表明,杠杆机构在频率低于 100 Hz 时可增强振动触觉强度。虽然机构的布置和材料还可以改进,但我们的发现有助于提高膜片型振动器的表现力。
{"title":"Lever Mechanism for Diaphragm-Type Vibrators to Enhance Vibrotactile Intensity","authors":"Taku Hachisu;Masayuki Kajiura;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Masashi Konyo","doi":"10.1109/TOH.2024.3354253","DOIUrl":"10.1109/TOH.2024.3354253","url":null,"abstract":"Thin and light vibrators that leverage the inverse piezoelectric effect with a diaphragm mechanism are promising vibrotactile actuators owing to their form factors and high temporal and frequency response. However, generating perceptually sufficient displacement in the low-frequency domain is challenging. This study presents a lever mechanism mounted on a diaphragm vibrator to enhance the vibrotactile intensity of low-frequency vibrotactile stimuli. The lever mechanism is inspired by the tactile contact lens consisting of an array of cylinders held against the skin on a sheet that enhances micro-bump tactile detection. We built an experimental apparatus including our previously developed thin-film diaphragm-type vibrator, which reproduced the common characteristic of piezoelectric vibrators: near-threshold displacement (10 to 20 μm) at low frequency. Experiments demonstrated enhanced vibrotactile intensity at frequencies less than 100 Hz with the lever mechanism. Although the arrangement and material of the mechanism can be improved, our findings can help improve the expressiveness of diaphragm-type vibrators.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"20-25"},"PeriodicalIF":2.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Contact Force on Vibrotactile Perceived Intensity Across the Upper Body 接触力对上半身振动触觉强度的影响
IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-15 DOI: 10.1109/TOH.2024.3353761
Dajin Lee;Gyeore Yun;Seungmoon Choi
Full-body haptic suits, which can provide tactile sensations across the entire body, have been gaining popularity recently. The tightness of a suit to the user's body determines the contact force between the tactile actuators and the body. The contact force is likely to alter the intended perceptual effects, but relatively little is known about the extent of the alteration. Under this context, we present the effects of contact force on vibrotactile perceived intensity on three body parts: dorsal hand, upper arm, and lower back. To this end, we conducted three perceptual magnitude estimation experiments while controlling vibration amplitude, frequency, and contact force. The results show that increasing the contact force generally made the vibration stimuli feel stronger, while the specific behaviors were dependent on the body part and the experimental variables. Finally, we summarize the major findings and provide guidelines regarding contact force adjustment for effective full-body haptic rendering.
能够提供全身触觉的全身触觉服最近越来越受欢迎。衣服与使用者身体的紧密度决定了触觉致动器与身体之间的接触力。接触力很可能会改变预期的感知效果,但人们对这种改变的程度知之甚少。在此背景下,我们介绍了接触力对手背、上臂和腰部这三个身体部位的振动触觉感知强度的影响。为此,我们在控制振动幅度、频率和接触力的同时,进行了三次感知幅度估计实验。结果表明,增加接触力通常会使振动刺激感觉更强烈,而具体表现则取决于身体部位和实验变量。最后,我们总结了主要研究结果,并就如何调整接触力以实现有效的全身触觉渲染提供了指导。
{"title":"Effects of Contact Force on Vibrotactile Perceived Intensity Across the Upper Body","authors":"Dajin Lee;Gyeore Yun;Seungmoon Choi","doi":"10.1109/TOH.2024.3353761","DOIUrl":"10.1109/TOH.2024.3353761","url":null,"abstract":"Full-body haptic suits, which can provide tactile sensations across the entire body, have been gaining popularity recently. The tightness of a suit to the user's body determines the contact force between the tactile actuators and the body. The contact force is likely to alter the intended perceptual effects, but relatively little is known about the extent of the alteration. Under this context, we present the effects of contact force on vibrotactile perceived intensity on three body parts: dorsal hand, upper arm, and lower back. To this end, we conducted three perceptual magnitude estimation experiments while controlling vibration amplitude, frequency, and contact force. The results show that increasing the contact force generally made the vibration stimuli feel stronger, while the specific behaviors were dependent on the body part and the experimental variables. Finally, we summarize the major findings and provide guidelines regarding contact force adjustment for effective full-body haptic rendering.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"14-19"},"PeriodicalIF":2.9,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origami-Based Haptic Syringe for Local Anesthesia Simulator 基于折纸的局部麻醉模拟器触觉注射器。
IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-15 DOI: 10.1109/TOH.2024.3353924
Ken Iiyoshi;Shadi Khazaaleh;Ahmed S. Dalaq;Mohammed F. Daqaq;Georgios Korres;Mohamad Eid
Although medical simulators have benefited from the use of haptics and virtual reality (VR) for decades, the former has become the bottleneck in producing a low-cost, compact, and accurate training experience. This is particularly the case for the inferior alveolar nerve block (IANB) procedure in dentistry, which is one of the most difficult motor skills to acquire. As existing works are still oversimplified or overcomplicated for practical deployment, we introduce an origami-based haptic syringe interface for IANB local anesthesia training. By harnessing the versatile mechanical tunability of the Kresling origami pattern, our interface simulated the tactile experience of the plunger while injecting the anesthetic solution. We present the design, development, and characterization process, as well as a preliminary usability study. The force profile generated by the syringe interface is perceptually similar with that of the Carpule syringe. The usability study suggests that the haptic syringe significantly improves the IANB training simulation and its potential to be utilized in several other medical training/simulation applications.
尽管数十年来医疗模拟器一直受益于触觉和虚拟现实(VR)技术的应用,但前者已成为制作低成本、紧凑型和精确培训体验的瓶颈。对于牙科中最难掌握的运动技能之一--下牙槽神经阻滞术(IANB)来说,情况尤其如此。鉴于现有作品在实际应用中仍然过于简化或过于复杂,我们引入了一种基于折纸的触觉注射器界面,用于 IANB 局部麻醉培训。通过利用克瑞斯林折纸图案的多功能机械可调性,我们的界面模拟了注射麻醉溶液时活塞的触觉体验。我们介绍了设计、开发和表征过程,以及初步的可用性研究。注射器界面产生的力曲线与 Carpule 注射器的力曲线在感知上非常相似。可用性研究表明,触觉注射器极大地改进了 IANB 培训模拟,并有可能用于其他一些医疗培训/模拟应用。
{"title":"Origami-Based Haptic Syringe for Local Anesthesia Simulator","authors":"Ken Iiyoshi;Shadi Khazaaleh;Ahmed S. Dalaq;Mohammed F. Daqaq;Georgios Korres;Mohamad Eid","doi":"10.1109/TOH.2024.3353924","DOIUrl":"10.1109/TOH.2024.3353924","url":null,"abstract":"Although medical simulators have benefited from the use of haptics and virtual reality (VR) for decades, the former has become the bottleneck in producing a low-cost, compact, and accurate training experience. This is particularly the case for the inferior alveolar nerve block (IANB) procedure in dentistry, which is one of the most difficult motor skills to acquire. As existing works are still oversimplified or overcomplicated for practical deployment, we introduce an origami-based haptic syringe interface for IANB local anesthesia training. By harnessing the versatile mechanical tunability of the Kresling origami pattern, our interface simulated the tactile experience of the plunger while injecting the anesthetic solution. We present the design, development, and characterization process, as well as a preliminary usability study. The force profile generated by the syringe interface is perceptually similar with that of the Carpule syringe. The usability study suggests that the haptic syringe significantly improves the IANB training simulation and its potential to be utilized in several other medical training/simulation applications.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"39-44"},"PeriodicalIF":2.9,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Normal Force Intensity on Tactile Motion Speed Perception Based on Spatiotemporal Cue. 基于时空线索的正常力强度对触觉运动速度感知的影响
IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-10 DOI: 10.1109/TOH.2024.3352042
Yusuke Ujitoko, Yuko Takenaka, Koichi Hirota

While the relative motion between the skin and objects in contact with it is essential to everyday tactile experiences, our understanding of how tactile motion is perceived via human tactile function is limited. Previous studies have explored the effect of normal force on speed perception under conditions where multiple motion cues on the skin (spatiotemporal cue, tangential skin deformation cue, and slip-induced vibration cue) were integrated. However, the effect of the normal force on speed perception in terms of each motion cue remains unclear since the multiple motion cues have not been adequately separated in the previously reported experiments. In this study, we aim to elucidate the effect of normal force in situations where the speed perception of tactile motion is based solely on a spatiotemporal cue. We developed a pin-array display which allowed us to vary the intensity of the normal force without causing tangential forces or slip-induced vibrations. Using the display, we conducted two psychophysical experiments. In Experiment 1, we found that the speed of the object was perceived to be 1.12-1.14 times faster when the intensity of the normal force was doubled. In Experiment 2, we did not observe significant differences in the discriminability of tactile speed caused by differences in normal force intensity. Our experimental results are of scientific significance and offer insights for engineering applications when using haptic displays that can only provide spatiotemporal cues represented by normal forces.

虽然皮肤和与其接触的物体之间的相对运动对日常触觉体验至关重要,但我们对人类触觉功能如何感知触觉运动的了解却很有限。以往的研究探讨了在综合皮肤上的多种运动线索(时空线索、切向皮肤变形线索和滑动引起的振动线索)的条件下,正常力对速度感知的影响。然而,由于在之前报道的实验中没有将多种运动线索充分分离,因此法向力对每种运动线索的速度感知的影响仍不清楚。在本研究中,我们旨在阐明在触觉运动的速度感知仅基于时空线索的情况下,法向力的影响。我们开发了一种针阵列显示器,可以在不引起切向力或滑动引起的振动的情况下改变法向力的强度。利用该显示屏,我们进行了两项心理物理实验。在实验 1 中,我们发现当法向力的强度增加一倍时,物体的速度被认为快了 1.12-1.14 倍。在实验 2 中,我们没有观察到由于法向力强度的不同而导致的触觉速度可分辨性的显著差异。我们的实验结果具有重要的科学意义,并为工程应用中使用只能提供法向力时空线索的触觉显示器提供了启示。
{"title":"Effect of Normal Force Intensity on Tactile Motion Speed Perception Based on Spatiotemporal Cue.","authors":"Yusuke Ujitoko, Yuko Takenaka, Koichi Hirota","doi":"10.1109/TOH.2024.3352042","DOIUrl":"https://doi.org/10.1109/TOH.2024.3352042","url":null,"abstract":"<p><p>While the relative motion between the skin and objects in contact with it is essential to everyday tactile experiences, our understanding of how tactile motion is perceived via human tactile function is limited. Previous studies have explored the effect of normal force on speed perception under conditions where multiple motion cues on the skin (spatiotemporal cue, tangential skin deformation cue, and slip-induced vibration cue) were integrated. However, the effect of the normal force on speed perception in terms of each motion cue remains unclear since the multiple motion cues have not been adequately separated in the previously reported experiments. In this study, we aim to elucidate the effect of normal force in situations where the speed perception of tactile motion is based solely on a spatiotemporal cue. We developed a pin-array display which allowed us to vary the intensity of the normal force without causing tangential forces or slip-induced vibrations. Using the display, we conducted two psychophysical experiments. In Experiment 1, we found that the speed of the object was perceived to be 1.12-1.14 times faster when the intensity of the normal force was doubled. In Experiment 2, we did not observe significant differences in the discriminability of tactile speed caused by differences in normal force intensity. Our experimental results are of scientific significance and offer insights for engineering applications when using haptic displays that can only provide spatiotemporal cues represented by normal forces.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Effects of Intensity and Frequency on Vibrotactile Spatial Acuity 研究强度和频率对振动触觉空间敏锐度的影响
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-08 DOI: 10.1109/TOH.2024.3350929
Bingjian Huang;Paul H. Dietz;Daniel Wigdor
Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.
振动触觉设备通常用于感官替代或在虚拟现实中提供反馈。振动触觉感知的一个重要方面是空间敏锐度,它决定了皮肤上振动触觉显示器的分辨率。然而,振动触觉致动器复杂的振动特性使得研究人员在参考和比较以前的研究结果时面临挑战。这是因为对典型特性(如强度和频率)的影响还不甚了解。在本研究中,我们研究了强度和频率对振动触觉空间敏锐度的影响。我们使用线性谐振致动器(LRA)进行了相对点定位实验,以测量不同条件下的空间敏锐度。在第一个实验中,我们发现强度对空间敏锐度有显著影响,强度越高,敏锐度越高。在第二个实验中,我们使用了精心设计的强度校准程序,结果发现频率对空间敏锐度没有显著影响。这些发现让我们对振动触觉的空间敏锐度有了更好的了解,可以与之前的研究进行比较,并为未来触觉设备的设计提供启示。
{"title":"Investigating the Effects of Intensity and Frequency on Vibrotactile Spatial Acuity","authors":"Bingjian Huang;Paul H. Dietz;Daniel Wigdor","doi":"10.1109/TOH.2024.3350929","DOIUrl":"10.1109/TOH.2024.3350929","url":null,"abstract":"Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"405-416"},"PeriodicalIF":2.4,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment 虚拟机器人手术培训环境中的触觉引导和触觉误差放大。
IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-05 DOI: 10.1109/TOH.2024.3350128
Yousi A. Oquendo;Margaret M. Coad;Sherry M. Wren;Thomas S. Lendvay;Ilana Nisky;Anthony M. Jarc;Allison M. Okamura;Zonghe Chua
Teleoperated robotic systems have introduced more intuitive control for minimally invasive surgery, but the optimal method for training remains unknown. Recent motor learning studies have demonstrated that exaggeration of errors helps trainees learn to perform tasks with greater speed and accuracy. We hypothesized that training in a force field that pushes the user away from a desired path would improve their performance on a virtual reality ring-on-wire task. Thirty-eight surgical novices trained under a no-force, guidance, or error-amplifying force field over five days. Completion time, translational and rotational path error, and combined error-time were evaluated under no force field on the final day. The groups significantly differed in combined error-time, with the guidance group performing the worst. Error-amplifying field participants did not plateau in their performance during training, suggesting that learning was still ongoing. Guidance field participants had the worst performance on the final day, confirming the guidance hypothesis. Observed trends also suggested that participants who had high initial path error benefited more from guidance. Error-amplifying and error-reducing haptic training for robot-assisted telesurgery benefits trainees of different abilities differently, with our results indicating that participants with high initial combined error-time benefited more from guidance and error-amplifying force field training.
远程操作机器人系统为微创手术带来了更直观的控制,但最佳的训练方法仍是未知数。最近的运动学习研究表明,夸大错误有助于受训者更快、更准确地完成任务。我们假设,在力场中进行训练,将用户推离所需路径,将提高他们在虚拟现实环形钢丝任务中的表现。38 名外科新手在无力场、引导力场或误差放大力场下进行了为期五天的训练。最后一天,对无力场下的完成时间、平移和旋转路径误差以及综合误差时间进行了评估。各组在综合误差时间上有明显差异,引导组表现最差。在训练过程中,误差增强力场参与者的表现并没有趋于稳定,这表明学习仍在继续。指导组学员在最后一天的表现最差,这证实了指导假设。观察到的趋势还表明,初始路径误差大的学员从指导中获益更多。针对机器人辅助远程手术的误差放大和误差缩小触觉训练对不同能力的学员有不同的益处,我们的结果表明,初始综合误差时间高的学员从引导和误差放大力场训练中获益更多。
{"title":"Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment","authors":"Yousi A. Oquendo;Margaret M. Coad;Sherry M. Wren;Thomas S. Lendvay;Ilana Nisky;Anthony M. Jarc;Allison M. Okamura;Zonghe Chua","doi":"10.1109/TOH.2024.3350128","DOIUrl":"10.1109/TOH.2024.3350128","url":null,"abstract":"Teleoperated robotic systems have introduced more intuitive control for minimally invasive surgery, but the optimal method for training remains unknown. Recent motor learning studies have demonstrated that exaggeration of errors helps trainees learn to perform tasks with greater speed and accuracy. We hypothesized that training in a force field that pushes the user away from a desired path would improve their performance on a virtual reality ring-on-wire task. Thirty-eight surgical novices trained under a no-force, guidance, or error-amplifying force field over five days. Completion time, translational and rotational path error, and combined error-time were evaluated under no force field on the final day. The groups significantly differed in combined error-time, with the guidance group performing the worst. Error-amplifying field participants did not plateau in their performance during training, suggesting that learning was still ongoing. Guidance field participants had the worst performance on the final day, confirming the guidance hypothesis. Observed trends also suggested that participants who had high initial path error benefited more from guidance. Error-amplifying and error-reducing haptic training for robot-assisted telesurgery benefits trainees of different abilities differently, with our results indicating that participants with high initial combined error-time benefited more from guidance and error-amplifying force field training.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"417-428"},"PeriodicalIF":2.4,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representing Fine Texture of Pencil Hardness by High-Frequency Vibrotactile Equivalence Conversion Using Ultra-Thin PZT-MEMS Vibrators 利用超薄 PZT-MEMS 振动器进行高频振动触觉等效转换,表现铅笔硬度的细微纹理。
IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2024-01-05 DOI: 10.1109/TOH.2023.3349307
Masamune Waga;Toru Matsubara;Masashi Konyo;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Satoshi Tadokoro
This study aims to represent fine texture differences in pencil hardness using intensity segment modulation (ISM), a sensory equivalent conversion method of vibration from high to low frequencies. This method enables the presentation of delicate tactile sensations even with small transducers. We integrated this approach in the world's thinnest ultra-thin PZT-MEMS vibrator with a stylus-type device. The vibration waveforms of four types of pencil hardness were captured under the same conditions, and the differences in the frequency components were confirmed. We compared the fine texture feelings under raw signal, ISM, and ISM below 1 kHz conditions by conducting discrimination tests and subjective similarity evaluations. The results showed that ISM could reproduce similar feelings of the pencil hardness.
这项研究旨在利用强度分段调制(ISM)来表现铅笔硬度的细微纹理差异,这是一种从高频到低频振动的感官等效转换方法。这种方法即使使用小型传感器也能呈现细腻的触感。我们将这种方法集成到了世界上最薄的超薄 PZT-MEMS 振动器中,该振动器带有一个触针型装置。我们在相同条件下捕捉了四种铅笔硬度的振动波形,并确认了频率成分的差异。我们通过进行辨别测试和主观相似性评价,比较了原始信号、ISM 和低于 1 kHz 的 ISM 条件下的精细纹理感觉。结果表明,ISM 可以再现类似的铅笔硬度感觉。
{"title":"Representing Fine Texture of Pencil Hardness by High-Frequency Vibrotactile Equivalence Conversion Using Ultra-Thin PZT-MEMS Vibrators","authors":"Masamune Waga;Toru Matsubara;Masashi Konyo;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Satoshi Tadokoro","doi":"10.1109/TOH.2023.3349307","DOIUrl":"10.1109/TOH.2023.3349307","url":null,"abstract":"This study aims to represent fine texture differences in pencil hardness using intensity segment modulation (ISM), a sensory equivalent conversion method of vibration from high to low frequencies. This method enables the presentation of delicate tactile sensations even with small transducers. We integrated this approach in the world's thinnest ultra-thin PZT-MEMS vibrator with a stylus-type device. The vibration waveforms of four types of pencil hardness were captured under the same conditions, and the differences in the frequency components were confirmed. We compared the fine texture feelings under raw signal, ISM, and ISM below 1 kHz conditions by conducting discrimination tests and subjective similarity evaluations. The results showed that ISM could reproduce similar feelings of the pencil hardness.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"8-13"},"PeriodicalIF":2.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Haptics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1