Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0528
Takahide Hayashida, Ryutaro Tanaka, K. Sekiya, Keiji Yamada
In this study, the effect of cutting fluid on tool wear in finished surface formation area was investigated when turning alloy 304 with a TiN coated carbide tool under different lubricant conditions and the transition of surface roughness caused by tool wear was investigated. In the case of water-soluble cutting fluid, the higher concentration emulsion caused a smaller wear width VB and larger VB’”. In the case of oily cutting fluid, the lower co-efficient of friction oil caused a smaller wear width VB and larger VB’”. In both cases of water soluble and oily cutting fluid, the cutting fluid of lower coefficient of friction caused a larger wear width VB in milling at the feed rate of around tool edge roundness. This tendency was consistent with the wear width VB” and VB’” in turning. In both cases of water soluble and oily cutting fluid, the cutting fluid of lower coefficient of friction caused a larger cutting force volatility. The feed marks were more irregular in lower coefficient cutting fluids.
{"title":"Effect of Cutting Fluid on Tool Wear in Finished Surface Formation Area of Rounded Nosed Tool When Turning Alloy 304","authors":"Takahide Hayashida, Ryutaro Tanaka, K. Sekiya, Keiji Yamada","doi":"10.20965/ijat.2022.p0528","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0528","url":null,"abstract":"In this study, the effect of cutting fluid on tool wear in finished surface formation area was investigated when turning alloy 304 with a TiN coated carbide tool under different lubricant conditions and the transition of surface roughness caused by tool wear was investigated. In the case of water-soluble cutting fluid, the higher concentration emulsion caused a smaller wear width VB and larger VB’”. In the case of oily cutting fluid, the lower co-efficient of friction oil caused a smaller wear width VB and larger VB’”. In both cases of water soluble and oily cutting fluid, the cutting fluid of lower coefficient of friction caused a larger wear width VB in milling at the feed rate of around tool edge roundness. This tendency was consistent with the wear width VB” and VB’” in turning. In both cases of water soluble and oily cutting fluid, the cutting fluid of lower coefficient of friction caused a larger cutting force volatility. The feed marks were more irregular in lower coefficient cutting fluids.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"96 1","pages":"528-535"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75921801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0654
S. Tsai, Wei Wu, Hiroyoshi Sota, T. Hirogaki, E. Aoyama
Using computational fluid dynamics (CFD) technology, a stable manufacturing method for polymeric nanofiber non-woven fabrics based on an improved melt-blowing method and flash spinning is realized to achieve mass productivity. Subsequently, a method to predict filter efficiency using two production methods based on the effects of thickness, filling rate, and fiber diameter on filtration performance is developed to establish a filter design via CFD technology. CFD models featuring uniform fiber diameters are proposed. Next, the pressure loss and flow resistivity are calculated using CFD flow analysis software, as in a filter experiment. The proposed fiber diameter distribution model yields results similar to the experimental value, and the relationship among filling rate, fiber diameter, and flow resistivity is verified. The non-woven filter fabricated in this study demonstrates superior filtration properties, based on the results. Additionally, a method to satisfy both low pressure loss (low flow resistivity) and high filtration efficiency is discussed. Although the pressure loss increases, the filter yields a value below the standard for high-performance face masks, since the fiber diameter is on the nano-order.
{"title":"Investigation of Air Filter Properties of Flash-Spinning Nanofiber Non-Woven Fabric","authors":"S. Tsai, Wei Wu, Hiroyoshi Sota, T. Hirogaki, E. Aoyama","doi":"10.20965/ijat.2022.p0654","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0654","url":null,"abstract":"Using computational fluid dynamics (CFD) technology, a stable manufacturing method for polymeric nanofiber non-woven fabrics based on an improved melt-blowing method and flash spinning is realized to achieve mass productivity. Subsequently, a method to predict filter efficiency using two production methods based on the effects of thickness, filling rate, and fiber diameter on filtration performance is developed to establish a filter design via CFD technology. CFD models featuring uniform fiber diameters are proposed. Next, the pressure loss and flow resistivity are calculated using CFD flow analysis software, as in a filter experiment. The proposed fiber diameter distribution model yields results similar to the experimental value, and the relationship among filling rate, fiber diameter, and flow resistivity is verified. The non-woven filter fabricated in this study demonstrates superior filtration properties, based on the results. Additionally, a method to satisfy both low pressure loss (low flow resistivity) and high filtration efficiency is discussed. Although the pressure loss increases, the filter yields a value below the standard for high-performance face masks, since the fiber diameter is on the nano-order.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"41 1","pages":"654-665"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88383671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0543
M. Nomura, Shogo Ito, T. Fujii, Tsunehisa Suzuki
The objective of this study is to achieve a high-precision and high-efficiency machining process for industrial components of the polyether ether ketone (PEEK) resin, such as the inspection socket of a connector or semiconductor packages. However, the drilling of holes in PEEK resin is challenging. Because PEEK resin is a thermoplastic resin, it can soften or melt owing to the heat generated during processing, which causes burrs and degrades the accuracy of the machined hole, thereby resulting in quality deterioration and hindering post-processing. Since the thermal conductivity of plastic materials including PEEK resin is lower than those of metals, the heat generated during processing does not dissipate to the outside of the workpiece, and the effect of the processing temperature on the processing accuracy is significant, particularly during drilling. Hence, a workpiece is cooled via a cold gas supply in this study. The effect of cold gas cooling on the machined hole accuracy and cutting state in the small-hole machining of PEEK resin is investigated. Results show that cooling the workpiece effectively decreases the cutting temperature and improves the machined hole accuracy. Under the experimental conditions, the combination of nonstep drilling and cooling enables high-precision drilling at approximately the same accuracy as step drilling.
{"title":"High-Precision Small-Diameter Deep Hole Drilling Using Cooling and Step Feed in PEEK Resin","authors":"M. Nomura, Shogo Ito, T. Fujii, Tsunehisa Suzuki","doi":"10.20965/ijat.2022.p0543","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0543","url":null,"abstract":"The objective of this study is to achieve a high-precision and high-efficiency machining process for industrial components of the polyether ether ketone (PEEK) resin, such as the inspection socket of a connector or semiconductor packages. However, the drilling of holes in PEEK resin is challenging. Because PEEK resin is a thermoplastic resin, it can soften or melt owing to the heat generated during processing, which causes burrs and degrades the accuracy of the machined hole, thereby resulting in quality deterioration and hindering post-processing. Since the thermal conductivity of plastic materials including PEEK resin is lower than those of metals, the heat generated during processing does not dissipate to the outside of the workpiece, and the effect of the processing temperature on the processing accuracy is significant, particularly during drilling. Hence, a workpiece is cooled via a cold gas supply in this study. The effect of cold gas cooling on the machined hole accuracy and cutting state in the small-hole machining of PEEK resin is investigated. Results show that cooling the workpiece effectively decreases the cutting temperature and improves the machined hole accuracy. Under the experimental conditions, the combination of nonstep drilling and cooling enables high-precision drilling at approximately the same accuracy as step drilling.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"77 1","pages":"543-551"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79274616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0572
Lue Quan, Y. Shimizu, R. Sato, Dong-Wook Shin, H. Matsukuma, A. Archenti, W. Gao
The design and testing of different optical heads were performed to evaluate the pitch deviation of a diffraction scale grating with a small diffraction angle. Based on the proposed pitch deviation evaluation method employing optical angle sensors based on laser autocollimation, a modified optical head with position-sensitive detectors (PSDs) is first designed and constructed by following the conventional optical configuration. Owing to the small angle of diffraction of the first-order diffracted beams, the modified optical head has a large working distance, resulting in poor sensor stability. Therefore, a novel and compact optical head employing a pair of small prisms is designed and developed to shorten the working distance of the optical head. An additional modification was also made to the developed compact optical head in such a way that collimator objectives (COs) in the laser autocollimation units are removed to improve the sensor sensitivity. Experimental comparisons were conducted using the three types of optical heads to verify the feasibility of the developed optical angle sensor with PSDs.
{"title":"Design and Testing of a Compact Optical Angle Sensor for Pitch Deviation Measurement of a Scale Grating with a Small Angle of Diffraction","authors":"Lue Quan, Y. Shimizu, R. Sato, Dong-Wook Shin, H. Matsukuma, A. Archenti, W. Gao","doi":"10.20965/ijat.2022.p0572","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0572","url":null,"abstract":"The design and testing of different optical heads were performed to evaluate the pitch deviation of a diffraction scale grating with a small diffraction angle. Based on the proposed pitch deviation evaluation method employing optical angle sensors based on laser autocollimation, a modified optical head with position-sensitive detectors (PSDs) is first designed and constructed by following the conventional optical configuration. Owing to the small angle of diffraction of the first-order diffracted beams, the modified optical head has a large working distance, resulting in poor sensor stability. Therefore, a novel and compact optical head employing a pair of small prisms is designed and developed to shorten the working distance of the optical head. An additional modification was also made to the developed compact optical head in such a way that collimator objectives (COs) in the laser autocollimation units are removed to improve the sensor sensitivity. Experimental comparisons were conducted using the three types of optical heads to verify the feasibility of the developed optical angle sensor with PSDs.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"1 1","pages":"572-581"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90357066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0582
H. Shimizu, Koichi Tamiya, Shoichiro Mizukami, Yuuma Tamaru
Multi-point scanning measurement, which is effective in eliminating motion errors of the stage in on-machine profile measurement, requires multiple displacement sensors of equal pitch to measure displacements simultaneously. However, it is not easy to arrange small sensors with high alignment accuracy when applying the multi-point method at a narrow pitch. In addition, if many sensors can be arranged in parallel, improvement in measurement accuracy can be expected. Therefore, a new micro electro mechanical system (MEMS) device for straightness measurement, one that integrates 10 cantilever displacement sensors, has been proposed. This device can be expected to solve the problem involved in the multi-point method because of the characteristics of MEMS, as the semiconductor processing method can make mechanical structures with high accuracy and it can easily make the device with many identical structures. The device is designed to measure waviness less than 100 μm in height. Ten cantilevers of 11 mm length are fabricated in parallel with 1.8 mm pitch on a side of a base substrate 20 mm square. The strain induced by a displacement of the probe placed near the front edge of the cantilever is detected as a change in the resistance of the piezo resistor at the foot of the cantilever. In the fabrication process of this device, crystal anisotropic etching is performed for 12 hours to form probes 250 μm high. A new fabrication process is also proposed in which a protective process is added to prevent damage to the circuits already formed during the etching. A prototype is investigated, and it is found that the resistance value increases about 0.45% in proportion to the displacement of 100 μm. It is therefore confirmed that this device has the basic ability to detect displacement.
{"title":"A MEMS Device Integrating Multiple Cantilever Displacement Sensors to Evaluate Flat Machined Surfaces","authors":"H. Shimizu, Koichi Tamiya, Shoichiro Mizukami, Yuuma Tamaru","doi":"10.20965/ijat.2022.p0582","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0582","url":null,"abstract":"Multi-point scanning measurement, which is effective in eliminating motion errors of the stage in on-machine profile measurement, requires multiple displacement sensors of equal pitch to measure displacements simultaneously. However, it is not easy to arrange small sensors with high alignment accuracy when applying the multi-point method at a narrow pitch. In addition, if many sensors can be arranged in parallel, improvement in measurement accuracy can be expected. Therefore, a new micro electro mechanical system (MEMS) device for straightness measurement, one that integrates 10 cantilever displacement sensors, has been proposed. This device can be expected to solve the problem involved in the multi-point method because of the characteristics of MEMS, as the semiconductor processing method can make mechanical structures with high accuracy and it can easily make the device with many identical structures. The device is designed to measure waviness less than 100 μm in height. Ten cantilevers of 11 mm length are fabricated in parallel with 1.8 mm pitch on a side of a base substrate 20 mm square. The strain induced by a displacement of the probe placed near the front edge of the cantilever is detected as a change in the resistance of the piezo resistor at the foot of the cantilever. In the fabrication process of this device, crystal anisotropic etching is performed for 12 hours to form probes 250 μm high. A new fabrication process is also proposed in which a protective process is added to prevent damage to the circuits already formed during the etching. A prototype is investigated, and it is found that the resistance value increases about 0.45% in proportion to the displacement of 100 μm. It is therefore confirmed that this device has the basic ability to detect displacement.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"407 1","pages":"582-587"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78120611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0609
Taiichiro Fukunaga, H. Narahara
This paper describes a method to represent and predict the melting and solidifying shape of metal powder materials in the selective laser melting (SLM) method of metal addition manufacturing using a small number of physical properties. This is a processing method to complete a three-dimensional modeling object by layer-by-layer stacking. A laser beam is used to create objects with minimal voids and distortion by appropriately setting the scanning speed, output intensity, spot diameter, hatch spacing, and other conditions. Repeating actual experiments to determine the optimal build conditions increases the cost of operating the machine, such as electricity and labor, and the cost of materials when a modeling failure occurs. In recent years, attempts have been made to determine the optimal build conditions by analyzing the melting and solidification phenomena of metallic materials through precise simulations. However, it is necessary to set many physical property values as the parameters. Many physical property values are difficult to measure, and if these values are incorrect, the analysis results can differ significantly. In this study, a theoretical model for predicting the cross-sectional area and cross-sectional thickness of the melt pool using a single-track laser was developed using a small number of physical properties, such as melting point, thermal conductivity, and latent heat. To further examine the validity of the theoretical model, experiments were conducted for comparison purposes. In this experiment, 5 × 1 × 1 mm rectangular specimens were stacked and fabricated by a metal additive manufacturing machine using different laser beam irradiation conditions. The fabricated samples were cut, polished, and etched with nital, and the melt pool shapes were measured. Finally, experimental and theoretical values were compared to confirm the validity of the constructed theoretical model. This indicates that the proposed model can predict the melt pool shape.
{"title":"Simplified Prediction of Melt Pool Shape in Metal Additive Manufacturing Using Maraging Steel","authors":"Taiichiro Fukunaga, H. Narahara","doi":"10.20965/ijat.2022.p0609","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0609","url":null,"abstract":"This paper describes a method to represent and predict the melting and solidifying shape of metal powder materials in the selective laser melting (SLM) method of metal addition manufacturing using a small number of physical properties. This is a processing method to complete a three-dimensional modeling object by layer-by-layer stacking. A laser beam is used to create objects with minimal voids and distortion by appropriately setting the scanning speed, output intensity, spot diameter, hatch spacing, and other conditions. Repeating actual experiments to determine the optimal build conditions increases the cost of operating the machine, such as electricity and labor, and the cost of materials when a modeling failure occurs. In recent years, attempts have been made to determine the optimal build conditions by analyzing the melting and solidification phenomena of metallic materials through precise simulations. However, it is necessary to set many physical property values as the parameters. Many physical property values are difficult to measure, and if these values are incorrect, the analysis results can differ significantly. In this study, a theoretical model for predicting the cross-sectional area and cross-sectional thickness of the melt pool using a single-track laser was developed using a small number of physical properties, such as melting point, thermal conductivity, and latent heat. To further examine the validity of the theoretical model, experiments were conducted for comparison purposes. In this experiment, 5 × 1 × 1 mm rectangular specimens were stacked and fabricated by a metal additive manufacturing machine using different laser beam irradiation conditions. The fabricated samples were cut, polished, and etched with nital, and the melt pool shapes were measured. Finally, experimental and theoretical values were compared to confirm the validity of the constructed theoretical model. This indicates that the proposed model can predict the melt pool shape.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"69 1","pages":"609-614"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87127827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0642
Srinath Gudur, S. Simhambhatla, N. Reddy
Wire-based direct energy deposition (W-DED) techniques in metal additive manufacturing allow part-fabrication at higher deposition rates and lower costs. Given the lack of any support mechanism, these processes face challenges in fabricating overhanging features. The inherent overhang capability of weld-beads and higher-order kinematics can help realize certain complex geometries. However, significant challenges like non-uniform slicing, constrained deposition-torch accessibility, etc., limit the efficacy of these approaches. The present work describes a deformation-aided deposition process designed to overcome some of these limitations and to manufacture complex metallic components. It is based on a sequential combination of deposition and bending processes: a shape fabricated through W-DED deposition is bent to form the required shape. The cycle of deposition and bending is repeated until the final desired geometry is realized. The anisotropic and deterministic behaviors of the deposited components are analyzed in terms of springback and the punch force. Finally, the benefit of current hybrid process is demonstrated through a few illustrative geometries.
{"title":"Enhancing the Shape Complexity in Direct Energy Deposition with Phased Deformation","authors":"Srinath Gudur, S. Simhambhatla, N. Reddy","doi":"10.20965/ijat.2022.p0642","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0642","url":null,"abstract":"Wire-based direct energy deposition (W-DED) techniques in metal additive manufacturing allow part-fabrication at higher deposition rates and lower costs. Given the lack of any support mechanism, these processes face challenges in fabricating overhanging features. The inherent overhang capability of weld-beads and higher-order kinematics can help realize certain complex geometries. However, significant challenges like non-uniform slicing, constrained deposition-torch accessibility, etc., limit the efficacy of these approaches. The present work describes a deformation-aided deposition process designed to overcome some of these limitations and to manufacture complex metallic components. It is based on a sequential combination of deposition and bending processes: a shape fabricated through W-DED deposition is bent to form the required shape. The cycle of deposition and bending is repeated until the final desired geometry is realized. The anisotropic and deterministic behaviors of the deposited components are analyzed in terms of springback and the punch force. Finally, the benefit of current hybrid process is demonstrated through a few illustrative geometries.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"24 1","pages":"642-653"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84653970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0552
Naofumi Tsuji, Kota Takashima, A. Sakurada, Kazuto Miyawaki, H. Isobe
This study quantitatively and theoretically clarifies the machining characteristics of the chisel engagement and the cutting-edge wear behavior in drilling in a workpiece superimposed with ultrasonic vibration. The machining phenomenon of drilling by this method considers being the same as drilling by ultrasonic vibration spindle from the viewpoint of the relative motion of the cutting edge and workpiece. However, the details have not been clarified yet. The chisel engagement behavior experiment at the initial stage of the drilling and cutting-edge wear experiment were carried out in this study. The chisel engagement behavior experiment revealed lower axial relative velocity results in a minor effect. In the cutting-edge life experiment, when the cutting fluid and the supply method were changed, the minimal oil with mist supply showed the same result as water-soluble with jet supply without breaking the drill. However, considerable wear was generated at the cutting edge in the initial drilling stage. When suitable ultrasonic vibration-assisted drilling was applied, initial wear decreased by 40% but could not be suppressed entirely. As a result of theoretical elucidation on this initial wear, it was proven that the flank face of the cutting edge contacted the workpiece when critical amplitude was exceeded. In the experiment to prove the validity of this theory, the initial wear occurred when the critical amplitude was exceeded. The cutting-edge wears increased in proportion to the working relief angle.
{"title":"Elucidation of Drilling Behavior on Workpiece Superimposed with Ultrasonic Vibration","authors":"Naofumi Tsuji, Kota Takashima, A. Sakurada, Kazuto Miyawaki, H. Isobe","doi":"10.20965/ijat.2022.p0552","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0552","url":null,"abstract":"This study quantitatively and theoretically clarifies the machining characteristics of the chisel engagement and the cutting-edge wear behavior in drilling in a workpiece superimposed with ultrasonic vibration. The machining phenomenon of drilling by this method considers being the same as drilling by ultrasonic vibration spindle from the viewpoint of the relative motion of the cutting edge and workpiece. However, the details have not been clarified yet. The chisel engagement behavior experiment at the initial stage of the drilling and cutting-edge wear experiment were carried out in this study. The chisel engagement behavior experiment revealed lower axial relative velocity results in a minor effect. In the cutting-edge life experiment, when the cutting fluid and the supply method were changed, the minimal oil with mist supply showed the same result as water-soluble with jet supply without breaking the drill. However, considerable wear was generated at the cutting edge in the initial drilling stage. When suitable ultrasonic vibration-assisted drilling was applied, initial wear decreased by 40% but could not be suppressed entirely. As a result of theoretical elucidation on this initial wear, it was proven that the flank face of the cutting edge contacted the workpiece when critical amplitude was exceeded. In the experiment to prove the validity of this theory, the initial wear occurred when the critical amplitude was exceeded. The cutting-edge wears increased in proportion to the working relief angle.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"13 1","pages":"552-561"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88012980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0588
Yuuma Tamaru, Kensuke Kawata, H. Shimizu
High-precision positioning can be obtained by reducing sliding friction and securing support rigidity. A prototype of a biaxial positioning table with non-contact drive by magnetic force and flexible mechanism support was developed to meet these requirements. The magnetic poles of a permanent magnet and an electromagnet were placed opposite to each other with an appropriate gap between them, and the attraction force between the two poles was used as the actuator for fine feed. The table was supported with a flexible mechanism composed of metal (A2017) beams with notches and elastic hinges assembled into a square frame shape. The permanent magnets were commercial neodymium magnets, and the electromagnets were self-made of S45C core bars. Two types of attraction force, maximum and minimum, were set depending on the number of neodymium magnets and the magnetic pole gap. The relationship between the applied current and attraction force for each type was calibrated using an electronic balance. Upon increasing and decreasing the applied current to the electromagnets, a linear relationship was shown between them. The relationship between the attraction force and the X- and Y-axes displacements was simulated by finite element analysis. Based on both results, the relationship between the applied current and displacement was estimated. The fine-feed experiment was conducted in both directions of the X- and Y-axes by applying current to electromagnets in a stepwise sequence. The displacements of total strokes in the long-stroke feed on applying the maximum attraction force were 340 μm and 315 μm for the X-axis and 160 μm and 133 μm for the Y-axis. These values are 2.0–2.8 times larger than the estimated displacement. Additionally, 3%–12% of the other axes interference occurred between the X- and Y-axes. In the high resolution feed applying the minimum attraction force, the displacement per step was 75 nm and 78 nm for the X-axis and 35 nm and 39 nm for the Y-axis. Cooperative feed with a combination of long stroke and high resolution was verified to be feasible.
{"title":"Design and Prototyping of Biaxial Flexible Support Table for Fine Positioning Through Controlled Magnetic Attraction Forces","authors":"Yuuma Tamaru, Kensuke Kawata, H. Shimizu","doi":"10.20965/ijat.2022.p0588","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0588","url":null,"abstract":"High-precision positioning can be obtained by reducing sliding friction and securing support rigidity. A prototype of a biaxial positioning table with non-contact drive by magnetic force and flexible mechanism support was developed to meet these requirements. The magnetic poles of a permanent magnet and an electromagnet were placed opposite to each other with an appropriate gap between them, and the attraction force between the two poles was used as the actuator for fine feed. The table was supported with a flexible mechanism composed of metal (A2017) beams with notches and elastic hinges assembled into a square frame shape. The permanent magnets were commercial neodymium magnets, and the electromagnets were self-made of S45C core bars. Two types of attraction force, maximum and minimum, were set depending on the number of neodymium magnets and the magnetic pole gap. The relationship between the applied current and attraction force for each type was calibrated using an electronic balance. Upon increasing and decreasing the applied current to the electromagnets, a linear relationship was shown between them. The relationship between the attraction force and the X- and Y-axes displacements was simulated by finite element analysis. Based on both results, the relationship between the applied current and displacement was estimated. The fine-feed experiment was conducted in both directions of the X- and Y-axes by applying current to electromagnets in a stepwise sequence. The displacements of total strokes in the long-stroke feed on applying the maximum attraction force were 340 μm and 315 μm for the X-axis and 160 μm and 133 μm for the Y-axis. These values are 2.0–2.8 times larger than the estimated displacement. Additionally, 3%–12% of the other axes interference occurred between the X- and Y-axes. In the high resolution feed applying the minimum attraction force, the displacement per step was 75 nm and 78 nm for the X-axis and 35 nm and 39 nm for the Y-axis. Cooperative feed with a combination of long stroke and high resolution was verified to be feasible.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"28 1","pages":"588-597"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82798627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-05DOI: 10.20965/ijat.2022.p0536
Hidetake Tanaka, Yutaka Fukada, Ryuta Kuboshima
Carbon fiber-reinforced plastics (CFRP), which are classified as functional resins, are rapidly replacing conventional materials because of their excellent properties. Typically, they have been used to fabricate components of airplanes or cars. In the field of medicine, the demand for micro-machined products manufactured with lathes is also increasing. However, owing to the significant tool wear caused by the carbon fiber, CFRP machining can result in burrs and inaccuracies in the finished product. The tool wear caused by carbon fiber must be reduced to ensure high dimensional accuracy. In this study, the possibility of combining conventional turning with electric current or electrical discharge machining was explored.
{"title":"Feasibility Study of EDM-Assisted Combined Turning for Unidirectional CFRP","authors":"Hidetake Tanaka, Yutaka Fukada, Ryuta Kuboshima","doi":"10.20965/ijat.2022.p0536","DOIUrl":"https://doi.org/10.20965/ijat.2022.p0536","url":null,"abstract":"Carbon fiber-reinforced plastics (CFRP), which are classified as functional resins, are rapidly replacing conventional materials because of their excellent properties. Typically, they have been used to fabricate components of airplanes or cars. In the field of medicine, the demand for micro-machined products manufactured with lathes is also increasing. However, owing to the significant tool wear caused by the carbon fiber, CFRP machining can result in burrs and inaccuracies in the finished product. The tool wear caused by carbon fiber must be reduced to ensure high dimensional accuracy. In this study, the possibility of combining conventional turning with electric current or electrical discharge machining was explored.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"41 1","pages":"536-542"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75921246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}