Rodrigo Monzon Figueredo, Mariana Cristina de Oliveira, Leandro Jesus de Paula, H. A. Acciari, E. N. Codaro
Susceptibility to hydrogen-induced cracking of API 5L B and X52MS low-carbon steels in NACE 177-A, 177-B, and 284-B solutions has been investigated by the present work. A metallographic analysis of these steels was performed before and after NACE TM0284 standard testing. Corrosion products were characterized by scanning electron microscopy and X-ray dispersive energy spectrometry, which were subsequently identified by X-ray diffraction. Thus it was found that pH directly affects the solubility of corrosion products and hydrogen permeation. Both steels showed generalized corrosion in solution 177-A, and a discontinuous film was formed on their surfaces in solution 177-B; however, only the API 5L B steel failed the HIC test and exhibited greater crack length ratio in solution 177-A. In solution 284-B whose pH is higher, the steels exhibited thick mackinawite films with no internal cracking.
{"title":"A Comparative Study of Hydrogen-Induced Cracking Resistances of API 5L B and X52MS Carbon Steels","authors":"Rodrigo Monzon Figueredo, Mariana Cristina de Oliveira, Leandro Jesus de Paula, H. A. Acciari, E. N. Codaro","doi":"10.1155/2018/1604507","DOIUrl":"https://doi.org/10.1155/2018/1604507","url":null,"abstract":"Susceptibility to hydrogen-induced cracking of API 5L B and X52MS low-carbon steels in NACE 177-A, 177-B, and 284-B solutions has been investigated by the present work. A metallographic analysis of these steels was performed before and after NACE TM0284 standard testing. Corrosion products were characterized by scanning electron microscopy and X-ray dispersive energy spectrometry, which were subsequently identified by X-ray diffraction. Thus it was found that pH directly affects the solubility of corrosion products and hydrogen permeation. Both steels showed generalized corrosion in solution 177-A, and a discontinuous film was formed on their surfaces in solution 177-B; however, only the API 5L B steel failed the HIC test and exhibited greater crack length ratio in solution 177-A. In solution 284-B whose pH is higher, the steels exhibited thick mackinawite films with no internal cracking.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":" ","pages":"1-7"},"PeriodicalIF":3.1,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/1604507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48454291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work focuses on the pitting corrosion of ventilation grilles operated in swimming pool environments. The ventilation grille was made by resistance welding of stainless steel rods. Based on the macroscopic and microscopic examinations, the mechanism of the pitting corrosion was confirmed. Chemical composition microanalysis of sediments as well as base metal using scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) method was carried out. The weldments did not meet the operating conditions of the swimming pool environment. The wear due to the pitting corrosion was identified in heat affected zones of stainless steel weldment and was more severe than the corrosion of base metal. The low quality finish of the joints and influence of the welding process on the weld metal microstructure lead to accelerated deposition of corrosion effecting elements such as chlorine.
{"title":"Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment","authors":"M. Szala, D. Łukasik","doi":"10.1155/2018/9408670","DOIUrl":"https://doi.org/10.1155/2018/9408670","url":null,"abstract":"This work focuses on the pitting corrosion of ventilation grilles operated in swimming pool environments. The ventilation grille was made by resistance welding of stainless steel rods. Based on the macroscopic and microscopic examinations, the mechanism of the pitting corrosion was confirmed. Chemical composition microanalysis of sediments as well as base metal using scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS) method was carried out. The weldments did not meet the operating conditions of the swimming pool environment. The wear due to the pitting corrosion was identified in heat affected zones of stainless steel weldment and was more severe than the corrosion of base metal. The low quality finish of the joints and influence of the welding process on the weld metal microstructure lead to accelerated deposition of corrosion effecting elements such as chlorine.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":" ","pages":"1-7"},"PeriodicalIF":3.1,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9408670","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47354152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victória da Costa Marba, N. N. Regone, E. N. Codaro, H. A. Acciari
Surface characteristics of anodic films formed on electropolished and nonelectropolished titanium substrates have been evaluated using different sets of anodisation parameters at room temperature. Surfaces were analysed by light microscopy, Raman spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation of TiO2 anatase phase was only detected on nonelectropolished substrates and there seems to be a larger amount of anatase as samples are anodised; consequently, the smallest crystals were obtained at the highest frequency of pulsed current. EIS results showed that there is no difference in the degree of compactness along the layer thickness.
{"title":"Effect of Pulsed Current Frequency and Anodisation Time on Surface Properties of Electropolished and Nonelectropolished Titanium Substrates","authors":"Victória da Costa Marba, N. N. Regone, E. N. Codaro, H. A. Acciari","doi":"10.1155/2018/3204301","DOIUrl":"https://doi.org/10.1155/2018/3204301","url":null,"abstract":"Surface characteristics of anodic films formed on electropolished and nonelectropolished titanium substrates have been evaluated using different sets of anodisation parameters at room temperature. Surfaces were analysed by light microscopy, Raman spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation of TiO2 anatase phase was only detected on nonelectropolished substrates and there seems to be a larger amount of anatase as samples are anodised; consequently, the smallest crystals were obtained at the highest frequency of pulsed current. EIS results showed that there is no difference in the degree of compactness along the layer thickness.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":"2018 1","pages":"1-8"},"PeriodicalIF":3.1,"publicationDate":"2018-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/3204301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44366656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan-Ervin C. Guerrero, D. Camacho, O. Mokhtari, H. Nishikawa
The corrosion and leaching behaviour of a new ternary Sn-0.7Cu-0.05Ni alloy in 3.5 wt.% NaCl solution is reported herein. Potentiodynamic polarization measurements show that Sn-0.7Cu-0.05Ni has the highest corrosion rate. Results of the 30-day Sn leaching measurement show that Sn-Cu-Ni joint has slight decrease attributed to the formation of thin passivation film after 15 days. The leaching amounts of Sn are observed to be higher in solder joint than in solder alloy due to the galvanic corrosion happening on the surface. EDS and XRD results of the corroded surface confirm that the corroded product is made up of oxides of tin.
研究了新型三元Sn-0.7Cu-0.05Ni合金在3.5 wt中的腐蚀和浸出行为。本文报道了% NaCl溶液。动电位极化测量结果表明,Sn-0.7Cu-0.05Ni的腐蚀速率最高。30 d Sn浸出测量结果表明,15 d后Sn- cu - ni接头由于形成较薄的钝化膜而略有减少。锡的浸出量在焊点中比在焊料合金中要高,这是由于焊点表面发生了电蚀。腐蚀表面的EDS和XRD结果证实了腐蚀产物是锡的氧化物。
{"title":"Corrosion and Leaching Behaviours of Sn-0.7Cu-0.05Ni Lead-Free Solder in 3.5 wt.% NaCl Solution","authors":"Jan-Ervin C. Guerrero, D. Camacho, O. Mokhtari, H. Nishikawa","doi":"10.1155/2018/6580750","DOIUrl":"https://doi.org/10.1155/2018/6580750","url":null,"abstract":"The corrosion and leaching behaviour of a new ternary Sn-0.7Cu-0.05Ni alloy in 3.5 wt.% NaCl solution is reported herein. Potentiodynamic polarization measurements show that Sn-0.7Cu-0.05Ni has the highest corrosion rate. Results of the 30-day Sn leaching measurement show that Sn-Cu-Ni joint has slight decrease attributed to the formation of thin passivation film after 15 days. The leaching amounts of Sn are observed to be higher in solder joint than in solder alloy due to the galvanic corrosion happening on the surface. EDS and XRD results of the corroded surface confirm that the corroded product is made up of oxides of tin.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":" ","pages":"1-11"},"PeriodicalIF":3.1,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/6580750","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45087760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pulse-potential coelectrodeposition of reduced graphene oxide/zinc (rGO-Zn) nanocomposite coating is directly controlled upon a steel substrate from a one-pot aqueous mixture containing [GO−/Zn2+]δ+ nanoclusters. GO nanosheets are synthesized by modified Hummer’s approach while Zn cations are produced in the solution and deposited on GO nanosheets using anodic dissolution technique. Eventually, nanoclusters are reduced to rGO-Zn film through an electrochemical process. Chemical composition, surface morphology, and corrosion resistance of the thin film are characterized. Results show that the corrosion resistance of rGO-Zn coating is approximately 10 times more than the bare steel.
{"title":"An Electrochemical Synthesis of Reduced Graphene Oxide/Zinc Nanocomposite Coating through Pulse-Potential Electrodeposition Technique and the Consequent Corrosion Resistance","authors":"S. Asl, A. Afshar, Y. Yaghoubinezhad","doi":"10.1155/2018/3028693","DOIUrl":"https://doi.org/10.1155/2018/3028693","url":null,"abstract":"Pulse-potential coelectrodeposition of reduced graphene oxide/zinc (rGO-Zn) nanocomposite coating is directly controlled upon a steel substrate from a one-pot aqueous mixture containing [GO−/Zn2+]δ+ nanoclusters. GO nanosheets are synthesized by modified Hummer’s approach while Zn cations are produced in the solution and deposited on GO nanosheets using anodic dissolution technique. Eventually, nanoclusters are reduced to rGO-Zn film through an electrochemical process. Chemical composition, surface morphology, and corrosion resistance of the thin film are characterized. Results show that the corrosion resistance of rGO-Zn coating is approximately 10 times more than the bare steel.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":"2018 1","pages":"1-13"},"PeriodicalIF":3.1,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/3028693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47819207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of the deformation structure and annealing temperature on the corrosion of ultrafine-grain (UFG) Fe-Cr alloys with 8 to 12% Cr prepared by equal channel angular pressing (ECAP) was investigated with particular emphasis on the stability of the passivation layer. Fe-Cr alloys were processed by ECAP using up to eight passes at 423 K by the Bc route, followed by annealing at temperatures of 473 to 1173 K for 1 h. Passivity appeared in all alloys as a result of ECAP, and the stability of the passivation layer was evaluated by anodic polarization measurements in a 1000 mol·m−3 NaCl solution. The stability of the passivation layer increased as the degree of deformation became more extensive with successive ECAP passes, and distinct escalation occurred with the formation of a UFG microstructure. In the early stages of annealing at moderate temperatures, the stability of the passivation layer deteriorated, although no visible grain growth occurred, and this effect increased monotonically with increasing annealing temperature. The high degree of stability of the passivation layer on UFG alloys following ECAP can be attributed to the large number of high-angle nonequilibrium grain boundaries, which may lead to Cr enrichment of the surface region. The deterioration of the passivation layer in the early stages of annealing may be attributed to a change in the grain boundaries to an equilibrium state. The present results show that the superiority of as-ECAPed materials of the Fe-Cr alloy to recovered ones by heat treatment can be achieved with 8–10% Cr as observed in 20% Cr.
{"title":"Effect of Deformation Structure and Annealing Temperature on Corrosion of Ultrafine-Grain Fe-Cr Alloy Prepared by Equal Channel Angular Pressing","authors":"M. Rifai, M. Yuasa, H. Miyamoto","doi":"10.1155/2018/4853175","DOIUrl":"https://doi.org/10.1155/2018/4853175","url":null,"abstract":"The effect of the deformation structure and annealing temperature on the corrosion of ultrafine-grain (UFG) Fe-Cr alloys with 8 to 12% Cr prepared by equal channel angular pressing (ECAP) was investigated with particular emphasis on the stability of the passivation layer. Fe-Cr alloys were processed by ECAP using up to eight passes at 423 K by the Bc route, followed by annealing at temperatures of 473 to 1173 K for 1 h. Passivity appeared in all alloys as a result of ECAP, and the stability of the passivation layer was evaluated by anodic polarization measurements in a 1000 mol·m−3 NaCl solution. The stability of the passivation layer increased as the degree of deformation became more extensive with successive ECAP passes, and distinct escalation occurred with the formation of a UFG microstructure. In the early stages of annealing at moderate temperatures, the stability of the passivation layer deteriorated, although no visible grain growth occurred, and this effect increased monotonically with increasing annealing temperature. The high degree of stability of the passivation layer on UFG alloys following ECAP can be attributed to the large number of high-angle nonequilibrium grain boundaries, which may lead to Cr enrichment of the surface region. The deterioration of the passivation layer in the early stages of annealing may be attributed to a change in the grain boundaries to an equilibrium state. The present results show that the superiority of as-ECAPed materials of the Fe-Cr alloy to recovered ones by heat treatment can be achieved with 8–10% Cr as observed in 20% Cr.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":"2018 1","pages":"1-15"},"PeriodicalIF":3.1,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/4853175","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41480742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper studies behaviours of Cymbopogon citratus leaf-extract and NaNO2, used as equal-mass admixture models, in 3.5% NaCl-immersed steel-reinforced concrete by nondestructive electrochemical methods and by compressive-strength improvement/reduction effects. Corrosion-rate, corrosion-current, and corrosion-potential constitute electrochemical test-techniques while compressive-strength effect investigations followed ASTM C29 and ASTM C33, in experiments using positive-controls for the electrochemical and compressive-strength studies. Analyses of the different electrochemical test-results mostly portrayed agreements on reinforcing-steel anticorrosion effects by the concentrations of natural plant and of chemical admixtures in the saline/marine simulating-environment and in the distilled H2O (electrochemical positive control) of steel-reinforced concrete immersions. These indicated that little amount (0.0833% cement for concrete-mixing) of Cymbopogon citratus leaf-extract was required for optimal inhibition efficiency, η = 99.35%, on reinforcing-steel corrosion, in the study. Results of compressive-strength change factor also indicated that the 0.0833% Cymbopogon citratus concentration outperformed NaNO2 admixture concentrations also in compressive-strength improvement effects on the NaCl-immersed steel-reinforced concrete. These established implications, from the study, on the suitability of the eco-friendly Cymbopogon citratus leaf-extract for replacing the also highly effective NaNO2 inhibitor of steel-in-concrete corrosion in concrete designed for the saline/marine service-environment.
{"title":"Cymbopogon citratus and NaNO2 Behaviours in 3.5% NaCl-Immersed Steel-Reinforced Concrete: Implications for Eco-Friendly Corrosion Inhibitor Applications for Steel in Concrete","authors":"J. Okeniyi, A. Popoola, E. T. Okeniyi","doi":"10.1155/2018/5949042","DOIUrl":"https://doi.org/10.1155/2018/5949042","url":null,"abstract":"This paper studies behaviours of Cymbopogon citratus leaf-extract and NaNO2, used as equal-mass admixture models, in 3.5% NaCl-immersed steel-reinforced concrete by nondestructive electrochemical methods and by compressive-strength improvement/reduction effects. Corrosion-rate, corrosion-current, and corrosion-potential constitute electrochemical test-techniques while compressive-strength effect investigations followed ASTM C29 and ASTM C33, in experiments using positive-controls for the electrochemical and compressive-strength studies. Analyses of the different electrochemical test-results mostly portrayed agreements on reinforcing-steel anticorrosion effects by the concentrations of natural plant and of chemical admixtures in the saline/marine simulating-environment and in the distilled H2O (electrochemical positive control) of steel-reinforced concrete immersions. These indicated that little amount (0.0833% cement for concrete-mixing) of Cymbopogon citratus leaf-extract was required for optimal inhibition efficiency, η = 99.35%, on reinforcing-steel corrosion, in the study. Results of compressive-strength change factor also indicated that the 0.0833% Cymbopogon citratus concentration outperformed NaNO2 admixture concentrations also in compressive-strength improvement effects on the NaCl-immersed steel-reinforced concrete. These established implications, from the study, on the suitability of the eco-friendly Cymbopogon citratus leaf-extract for replacing the also highly effective NaNO2 inhibitor of steel-in-concrete corrosion in concrete designed for the saline/marine service-environment.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":" ","pages":"1-11"},"PeriodicalIF":3.1,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/5949042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44121333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Idouhli, A. N. Ousidi, Y. Koumya, A. Abouelfida, A. Benyaich, A. Auhmani, M. Y. A. Itto
We have studied the inhibitory effect of some Monoterpenic Thiosemicarbazones on steel corrosion in 1 M HCl solution. The potentiodynamic polarization and electrochemical impedance spectroscopy were used. The Monoterpenic Thiosemicarbazones have inhibited significantly the dissolution of steel. The inhibition efficiency increased with increasing inhibitor concentration and also with the increase in temperature (293–323 K). Furthermore, the results obtained revealed that the adsorption of inhibitor on steel surface obeys Langmuir adsorption model and the thermodynamic parameters such as enthalpy and activation energy were determined. The scanning electron microscopy combined with dispersive X-ray spectroscopy examinations were used to see the shape of the surface morphology and to determine the elemental composition. Scanning electron microscope (SEM) images show that the surface damage decreases when the inhibitor is added. The quantum chemical calculations using density functional theory (DFT) were performed in order to provide some insights into the electronic density distribution as well as the nature of inhibitor-steel interaction.
我们研究了一些单萜缩氨基硫脲对钢腐蚀的抑制作用 M HCl溶液。使用了动电位极化和电化学阻抗谱。单萜缩氨基硫脲对钢的溶解有显著的抑制作用。抑制效率随着抑制剂浓度的增加和温度的升高而增加(293–323 K) 。结果表明,缓蚀剂在钢表面的吸附符合Langmuir吸附模型,并确定了焓和活化能等热力学参数。扫描电子显微镜结合色散X射线光谱检查用于观察表面形态的形状并确定元素组成。扫描电子显微镜(SEM)图像显示,添加抑制剂后,表面损伤减少。使用密度泛函理论(DFT)进行了量子化学计算,以便对电子密度分布以及抑制剂-钢相互作用的性质提供一些见解。
{"title":"Electrochemical Studies of Monoterpenic Thiosemicarbazones as Corrosion Inhibitor for Steel in 1 M HCl","authors":"R. Idouhli, A. N. Ousidi, Y. Koumya, A. Abouelfida, A. Benyaich, A. Auhmani, M. Y. A. Itto","doi":"10.1155/2018/9212705","DOIUrl":"https://doi.org/10.1155/2018/9212705","url":null,"abstract":"We have studied the inhibitory effect of some Monoterpenic Thiosemicarbazones on steel corrosion in 1 M HCl solution. The potentiodynamic polarization and electrochemical impedance spectroscopy were used. The Monoterpenic Thiosemicarbazones have inhibited significantly the dissolution of steel. The inhibition efficiency increased with increasing inhibitor concentration and also with the increase in temperature (293–323 K). Furthermore, the results obtained revealed that the adsorption of inhibitor on steel surface obeys Langmuir adsorption model and the thermodynamic parameters such as enthalpy and activation energy were determined. The scanning electron microscopy combined with dispersive X-ray spectroscopy examinations were used to see the shape of the surface morphology and to determine the elemental composition. Scanning electron microscope (SEM) images show that the surface damage decreases when the inhibitor is added. The quantum chemical calculations using density functional theory (DFT) were performed in order to provide some insights into the electronic density distribution as well as the nature of inhibitor-steel interaction.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":" ","pages":"1-15"},"PeriodicalIF":3.1,"publicationDate":"2018-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9212705","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47708009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wu Wenhao, Zhao Ming, W. Haiyan, Yanxi Zhang, Wu Tong
Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.
{"title":"Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe","authors":"Wu Wenhao, Zhao Ming, W. Haiyan, Yanxi Zhang, Wu Tong","doi":"10.1155/2018/7284246","DOIUrl":"https://doi.org/10.1155/2018/7284246","url":null,"abstract":"Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":"2018 1","pages":"1-11"},"PeriodicalIF":3.1,"publicationDate":"2018-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/7284246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43187497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isopropylamine was taken as a raw material to synthesize a new multi-alkyl multiple quaternary-ammonium salts gemini surfactant bis[2-hydroxy-3-(dodecyldimethylammonio)propyl]-isopropylamine dichloride. The structure of the synthetic product was characterized by 1H NMR and FTIR. The surface activity was investigated; the inhibition efficiencies and inhibition mechanism of the synthetic product were studied by weight loss method, electrochemical method, microscopic morphology observation, and adsorption model calculation. The results indicate that cmc of synthetic product was 9.204 × mol/L; when the concentrations were lower than cmc, the inhibition efficiencies rose substantially, which was up to 89.3% with the concentration of 9.204 × mol/L; when they were higher than cmc, inhibition efficiencies were basically unchanged; polarization tests showed that the synthesis product could restrain both anodic and cathodic reactions; when the concentrations were lower than cmc, the adsorption of the synthetic product conformed to the Langmuir model, which formed monolayer on the 2024 Al-Cu-Mg alloy surface; when they were higher than cmc, it formed bilayer, so the adsorption of the synthetic product did not conform to the Langmuir model anymore.
{"title":"Synthesis of a Novel Gemini Cationic Surfactant and Its Inhibition Behaviour and Mechanism Study on 2024 Al-Cu-Mg Alloy in Acid Solution","authors":"Juan Du, Q. Chen, Qin Liu, Xuelan Hu","doi":"10.1155/2018/9890504","DOIUrl":"https://doi.org/10.1155/2018/9890504","url":null,"abstract":"Isopropylamine was taken as a raw material to synthesize a new multi-alkyl multiple quaternary-ammonium salts gemini surfactant bis[2-hydroxy-3-(dodecyldimethylammonio)propyl]-isopropylamine dichloride. The structure of the synthetic product was characterized by 1H NMR and FTIR. The surface activity was investigated; the inhibition efficiencies and inhibition mechanism of the synthetic product were studied by weight loss method, electrochemical method, microscopic morphology observation, and adsorption model calculation. The results indicate that cmc of synthetic product was 9.204 × mol/L; when the concentrations were lower than cmc, the inhibition efficiencies rose substantially, which was up to 89.3% with the concentration of 9.204 × mol/L; when they were higher than cmc, inhibition efficiencies were basically unchanged; polarization tests showed that the synthesis product could restrain both anodic and cathodic reactions; when the concentrations were lower than cmc, the adsorption of the synthetic product conformed to the Langmuir model, which formed monolayer on the 2024 Al-Cu-Mg alloy surface; when they were higher than cmc, it formed bilayer, so the adsorption of the synthetic product did not conform to the Langmuir model anymore.","PeriodicalId":13893,"journal":{"name":"International Journal of Corrosion","volume":"2018 1","pages":"1-12"},"PeriodicalIF":3.1,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/9890504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47331035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}