The currently defined Safe Working Load (SWL) of the U-bolt has been determined excessively conservatively. To address this issue, this study conducted structural tests and numerical analysis on round type U-bolts of various sizes. The structural tests were conducted using a 2.5 MN actuator at the SURF R&D center, and the strain was measured through a uniaxial strain gage. The test showed the failure load greatly exceeded the design load with horizontal force. This necessitates a reevaluation and redefinition of load standards. Nonlinear numerical analysis was carried out, and these results were compared with the structural test results. When subjected to vertical loading, behavior was similar to uniaxial tension. On the other hand, using linear elastic analysis for determining SWL for horizontal loading was found to be irrational. A methodology was proposed for estimating the SWL of the U-bolt.
To assess the effectiveness of subgrid scale (SGS) models on the prediction results of unsteady loads and turbulent fluctuation of pumpjet propulsors equipped with both front and rear stators, a pumpjet propulsor computational model with attached parts at the model scale is developed using a fully structured mesh, and large eddy simulations are conducted. The computational results of the different SGS models are compared based on five aspects: open water characteristics, turbulence parameters, incoming turbulence spectrum, vortex structure, and fluctuating pressure. Their results are also compared with the experimental values, and the correlation between the internal flow characteristics of the pumpjet propulsor and the turbulent fluctuation is analyzed. According to the results, as regards the prediction of the open water performance of the pumpjet propulsor containing both front and rear stators, the overall trend obtained by the three subgrid models is similar, and the error between the values predicted by the SL model and the experimental ones is the smallest. At the same mesh level, the turbulent fluctuating scale obtained by the SL model is larger than that obtained by the WALE and DSL models, and the turbulent time scale obtained by the DSL model has the smallest fluctuation in the circumferential direction. Among the three SGS models, the turbulent fluctuating scale of the SL model is larger than those of the WALE and DSL models. The SL model exhibits the largest energy dissipation among the three SGS models, followed by the DSL model, while that of the WALE model is the smallest. In the WALE model, the leakage vortex at the top of the blade is the longest, followed by the DSL model, while it is the shortest in the SL model. In the WALE and DSL models, the fluctuating load fluctuates more in the transition region from the middle section to the trailing edge of the blade.
With the increasing size of ships and increasing demand for autonomous navigation, ensuring ship safety is not the only concern; the efficiency of anti-collision technology should be enhanced. In this paper, we propose a novel hybrid anti-collision path planning method called VO-PATH. This method combines the advantages of the Velocity Obstacle (VO) algorithm, which guarantees anti-collision for autonomous ships, with the A* algorithm, which is known for its capacity to optimize paths. To assess the effectiveness of the proposed method, we conducted anti-collision simulations for both single- and multiple-encounter scenarios, all of which adhered to COLREGs-defined avoidance obligations. Furthermore, we evaluated the performance of the proposed method by comparing its results with those obtained using conventional VO and A* algorithms. The findings indicate that the proposed method is superior to the A* algorithm in terms of steering away from collisions in complex multiple-encounter scenarios. Additionally, the proposed method significantly reduces the distance traveled by the ship to avoid potential collisions, with improvements of up to approximately 6.6% compared with alternative algorithms. We expect that this reduction will enhance safety and provide a more efficient anti-collision path.

