首页 > 最新文献

Journal of breath research最新文献

英文 中文
Management of functional constipation-associated halitosis: a retrospective study. 功能性便秘相关口臭的治疗:一项回顾性研究。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-25 DOI: 10.1088/1752-7163/ad63c4
Xiao Xian Qian 钱孝先

The features of functional constipation (FC)-associated halitosis were identified in the author's previous report. In this report, the author aimed to further investigate its treatment and efficacy. This retrospective study reviewed 100 FC patients, including 82 (82%) halitosis patients and 18 (18%) non-halitosis patients. They underwent the organoleptic test (OLT) to diagnose halitosis, and the organoleptic score (OLS) (0-5) was used to evaluated halitosis severity. The Cleveland Clinical Constipation Score (CCCS) (0-30) was used to evaluate FC severity. Patients were treated with the laxative polyethylene glycol electrolyte powder (PGEP) for four weeks. These tests were performed before and after treatment. The author found that, before treatment, the CCCS was 20.00 (18.00-23.00) for all patients, 21.00 (19.00-24.00) for halitosis patients, and 18.00 (17.00-18.25) for non-halitosis patients. A significant difference was observed between halitosis patients and non-halitosis patients (P< 0.001). The OLS for halitosis patients was 3.00 (3.00-4.00). A positive correlation (r= 0.814, 95% CI: 0.732-0.872,P< 0.001) was found between OLS and CCCS. A CCCS ⩾18 predicted over 50% probability of halitosis. After treatment, the CCCS significantly decreased to 11.50 (6.00-14.75) (P< 0.001), and OLS significantly decreased to 1.00 (0.00-2.00) (P< 0.001). A positive correlation (r= 0.770, 95% CI: 0.673-0.841,P< 0.001) persisted between OLS and CCCS. A pre-treatment CCCS ⩾21 predicted over 50% probability of post-treatment halitosis, while a post-treatment CCCS ⩾12 predicted over 50% probability of post-treatment halitosis. The author concludes that the severity of FC parallels the severity of FC-associated halitosis, and can predict the probability of halitosis. Laxative treatment with PGEP is effective in improving FC-associated halitosis.

作者在之前的报告中指出了功能性便秘(FC)相关口臭的特征。在本报告中,作者旨在进一步研究其治疗和疗效。这项回顾性研究回顾了 100 例功能性便秘患者,包括 82 例(82%)口臭患者和 18 例(18%)非口臭患者。他们接受了感官测试(OLT)来诊断口臭,并用感官评分(OLS)(0-5)来评估口臭的严重程度。克利夫兰临床便秘评分(CCCS)(0-30)用于评估 FC 的严重程度。患者接受为期四周的泻药聚乙二醇电解质粉(PGEP)治疗。这些测试分别在治疗前后进行。作者发现,在治疗前,所有患者的 CCCS 为 20.00(18.00-23.00),口臭患者为 21.00(19.00-24.00),非口臭患者为 18.00(17.00-18.25)。口臭患者与非口臭患者之间存在明显差异(P < 0.001)。口臭患者的 OLS 为 3.00(3.00-4.00)。OLS 与 CCCS 之间呈正相关(r = 0.814,95% CI:0.732-0.872,P <0.001)。CCCS≥18 预测口臭的可能性超过 50%。治疗后,CCCS 显著降至 11.50(6.00-14.75)(P < 0.001),OLS 显著降至 1.00(0.00-2.00)(P < 0.001)。OLS 和 CCCS 之间持续存在正相关(r = 0.770,95% CI:0.673-0.841,P <0.001)。治疗前 CCCS≥21 预测治疗后口臭的概率超过 50%,而治疗后 CCCS≥12 预测治疗后口臭的概率超过 50%。作者的结论是,FC 的严重程度与 FC 相关口臭的严重程度相似,可以预测口臭的概率。使用 PGEP 进行通便治疗可有效改善 FC 相关性口臭。
{"title":"Management of functional constipation-associated halitosis: a retrospective study.","authors":"Xiao Xian Qian 钱孝先","doi":"10.1088/1752-7163/ad63c4","DOIUrl":"10.1088/1752-7163/ad63c4","url":null,"abstract":"<p><p>The features of functional constipation (FC)-associated halitosis were identified in the author's previous report. In this report, the author aimed to further investigate its treatment and efficacy. This retrospective study reviewed 100 FC patients, including 82 (82%) halitosis patients and 18 (18%) non-halitosis patients. They underwent the organoleptic test (OLT) to diagnose halitosis, and the organoleptic score (OLS) (0-5) was used to evaluated halitosis severity. The Cleveland Clinical Constipation Score (CCCS) (0-30) was used to evaluate FC severity. Patients were treated with the laxative polyethylene glycol electrolyte powder (PGEP) for four weeks. These tests were performed before and after treatment. The author found that, before treatment, the CCCS was 20.00 (18.00-23.00) for all patients, 21.00 (19.00-24.00) for halitosis patients, and 18.00 (17.00-18.25) for non-halitosis patients. A significant difference was observed between halitosis patients and non-halitosis patients (<i>P</i>< 0.001). The OLS for halitosis patients was 3.00 (3.00-4.00). A positive correlation (<i>r</i>= 0.814, 95% CI: 0.732-0.872,<i>P</i>< 0.001) was found between OLS and CCCS. A CCCS ⩾18 predicted over 50% probability of halitosis. After treatment, the CCCS significantly decreased to 11.50 (6.00-14.75) (<i>P</i>< 0.001), and OLS significantly decreased to 1.00 (0.00-2.00) (<i>P</i>< 0.001). A positive correlation (<i>r</i>= 0.770, 95% CI: 0.673-0.841,<i>P</i>< 0.001) persisted between OLS and CCCS. A pre-treatment CCCS ⩾21 predicted over 50% probability of post-treatment halitosis, while a post-treatment CCCS ⩾12 predicted over 50% probability of post-treatment halitosis. The author concludes that the severity of FC parallels the severity of FC-associated halitosis, and can predict the probability of halitosis. Laxative treatment with PGEP is effective in improving FC-associated halitosis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cannabinoids detected in exhaled breath condensate after cannabis use. 吸食大麻后呼出的冷凝物中检测到大麻素。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-23 DOI: 10.1088/1752-7163/ad6347
Jennifer L Berry, Ashley Brooks-Russell, Cheryle N Beuning, Sarah A Limbacher, Tara M Lovestead, Kavita M Jeerage

Cannabinoids can be detected in breath after cannabis use, but different breath matrices need to be explored as studies to date with filter-based devices that collect breath aerosols have not demonstrated that breath-based measurements can reliably identify recent cannabis use. Exhaled breath condensate (EBC) is an unexplored aqueous breath matrix that contains condensed volatile compounds and water vapor in addition to aerosols. EBC was collected from participants both before and at two time points (0.7 ± 0.2 h and 1.7 ± 0.3 h) after observed cannabis use. Eleven different cannabinoids were monitored with liquid chromatography tandem mass spectrometry. Five different cannabinoids, including Δ9-tetrahydrocannabinol (THC), were detected in EBC collected from cannabis users. THC was detected in some EBC samples before cannabis use, despite the requested abstinence period. THC was detected in all EBC samples collected at 0.7 h post use and decreased for all participants at 1.7 h. Non-THC cannabinoids were only detected after cannabis use. THC concentrations in EBC samples collected at 0.7 h showed no trend with sample metrics like mass or number of breaths. EBC sampling devices deserve further investigation with respect to modes of cannabis use (e.g, edibles), post use time points, and optimization of cannabinoid recovery.

使用大麻后可在呼气中检测到大麻素,但需要探索不同的呼气基质,因为迄今为止使用基于过滤的设备收集呼气气溶胶的研究并未证明基于呼气的测量能够可靠地识别近期使用大麻的情况。呼出气体冷凝物(EBC)是一种尚未探索的含水呼气基质,除气溶胶外还含有冷凝挥发性化合物和水蒸气。在观察到吸食大麻之前和之后的两个时间点(0.7 h ± 0.2 h 和 1.7 h ± 0.3 h)收集参与者的 EBC。使用液相色谱串联质谱法(LC-MS/MS)监测了 11 种不同的大麻素。从大麻使用者体内收集的 EBC 中检测到五种不同的大麻素,包括 Δ9-四氢大麻酚(THC)。尽管规定了禁食期,但在使用大麻前的一些 EBC 样本中还是检测到了四氢大麻酚。在使用大麻后 0.7 小时采集的所有 EBC 样本中都检测到了四氢大麻酚,而在使用大麻后 1.7 小时,所有参与者的 EBC 样本中检测到的四氢大麻酚浓度都有所下降。在 0.7 小时采集的 EBC 样本中,四氢大麻酚浓度与样本质量或呼吸次数等指标没有趋势关系。EBC 采样设备在大麻使用方式(如食用)、使用后时间点和大麻素回收优化方面值得进一步研究。
{"title":"Cannabinoids detected in exhaled breath condensate after cannabis use.","authors":"Jennifer L Berry, Ashley Brooks-Russell, Cheryle N Beuning, Sarah A Limbacher, Tara M Lovestead, Kavita M Jeerage","doi":"10.1088/1752-7163/ad6347","DOIUrl":"10.1088/1752-7163/ad6347","url":null,"abstract":"<p><p>Cannabinoids can be detected in breath after cannabis use, but different breath matrices need to be explored as studies to date with filter-based devices that collect breath aerosols have not demonstrated that breath-based measurements can reliably identify recent cannabis use. Exhaled breath condensate (EBC) is an unexplored aqueous breath matrix that contains condensed volatile compounds and water vapor in addition to aerosols. EBC was collected from participants both before and at two time points (0.7 ± 0.2 h and 1.7 ± 0.3 h) after observed cannabis use. Eleven different cannabinoids were monitored with liquid chromatography tandem mass spectrometry. Five different cannabinoids, including Δ<sup>9</sup>-tetrahydrocannabinol (THC), were detected in EBC collected from cannabis users. THC was detected in some EBC samples before cannabis use, despite the requested abstinence period. THC was detected in all EBC samples collected at 0.7 h post use and decreased for all participants at 1.7 h. Non-THC cannabinoids were only detected after cannabis use. THC concentrations in EBC samples collected at 0.7 h showed no trend with sample metrics like mass or number of breaths. EBC sampling devices deserve further investigation with respect to modes of cannabis use (e.g, edibles), post use time points, and optimization of cannabinoid recovery.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methane gas in breath test is associated with non-alcoholic fatty liver disease. 呼气测试中的甲烷气体与非酒精性脂肪肝有关。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-17 DOI: 10.1088/1752-7163/ad5faf
Sanggwon An, Eui-Young Cho, Junho Hwang, Hyunseong Yang, Jungho Hwang, Kyusik Shin, Susie Jung, Bom-Taeck Kim, Kyu-Nam Kim, Wooyoung Lee

Although the associations between a patient's body mass index (BMI) and metabolic diseases, as well as their breath test results, have been studied, the relationship between breath hydrogen/methane levels and metabolic diseases needs to be further clarified. We aimed to investigate how the composition of exhaled breath gases relates to metabolic disorders, such as diabetes mellitus, dyslipidemia, hypertension, and nonalcoholic fatty liver disease (NAFLD), and their key risk factors. An analysis was performed using the medical records, including the lactulose breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic of Korea, between January 2016 and December 2021. The patients were grouped according to four different criteria for LBT hydrogen and methane levels. Of 441 patients, 325 (72.1%) had positive results for methane only (hydrogen < 20 parts per million [ppm] and methane ⩾ 3 ppm). BMIs and NAFLD prevalence were higher in patients with only methane positivity than in patients with hydrogen and methane positivity (hydrogen ⩾ 20 ppm and methane ⩾ 3 ppm). According to a multivariate analysis, the odds ratio of only methane positivity was 2.002 (95% confidence interval [CI]: 1.244-3.221,P= 0.004) for NAFLD. Our results demonstrate that breath methane positivity is related to NAFLD and suggest that increased methane gas on the breath tests has the potential to be an easily measurable biomarker for NAFLD diagnosis.

虽然已经研究了身体质量指数(BMI)水平与代谢性疾病之间的关系,以及呼气测试结果与 BMI 水平之间的关系,但呼出气体中氢气/甲烷水平与代谢性疾病之间的关系仍有待进一步明确。本研究旨在探讨呼出气体的成分与代谢性疾病及其主要风险因素之间的关系。体重指数(BMI)水平升高会大大增加患代谢性疾病的风险;本研究将其纳入研究范围,以发现两者之间的关联。本研究还包括糖尿病、血脂异常、高血压和非酒精性脂肪肝(NAFLD)等代谢性疾病。 研究人员对2016年1月至2021年12月期间在大韩民国水原市安州大学医疗中心就诊的患者的医疗记录(包括乳果糖呼气试验(LBT)数据)进行了分析。受试者按照乳果糖呼气试验氢气和甲烷水平的四种不同标准分组:1)正常(N)(氢气< 20 ppm,甲烷< 3 ppm);2)仅氢气(H+)(氢气≥ 20 ppm,甲烷< 3 ppm);3)甲烷阳性(M+)(氢气< 20 ppm,甲烷≥ 3 ppm);4)甲烷和氢气阳性(M+/H+)(氢气≥ 20 ppm,甲烷≥ 3 ppm)。在 441 名受试者中,325 人(72.1%)的甲烷检测结果呈阳性(M+)。M+受试者的体重指数和非酒精性脂肪肝发病率高于氢气和甲烷阳性(H+/M+)受试者。根据多变量分析,M+ 与非酒精性脂肪肝的几率比(OR)为 2.002(95% CI:1.244-3.221,P = 0.004)。我们的研究结果表明,呼气甲烷阳性与非酒精性脂肪肝有关,并表明呼气检测中甲烷气体的增加有可能成为诊断非酒精性脂肪肝的一种易于测量的生物标志物。
{"title":"Methane gas in breath test is associated with non-alcoholic fatty liver disease.","authors":"Sanggwon An, Eui-Young Cho, Junho Hwang, Hyunseong Yang, Jungho Hwang, Kyusik Shin, Susie Jung, Bom-Taeck Kim, Kyu-Nam Kim, Wooyoung Lee","doi":"10.1088/1752-7163/ad5faf","DOIUrl":"10.1088/1752-7163/ad5faf","url":null,"abstract":"<p><p>Although the associations between a patient's body mass index (BMI) and metabolic diseases, as well as their breath test results, have been studied, the relationship between breath hydrogen/methane levels and metabolic diseases needs to be further clarified. We aimed to investigate how the composition of exhaled breath gases relates to metabolic disorders, such as diabetes mellitus, dyslipidemia, hypertension, and nonalcoholic fatty liver disease (NAFLD), and their key risk factors. An analysis was performed using the medical records, including the lactulose breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic of Korea, between January 2016 and December 2021. The patients were grouped according to four different criteria for LBT hydrogen and methane levels. Of 441 patients, 325 (72.1%) had positive results for methane only (hydrogen < 20 parts per million [ppm] and methane ⩾ 3 ppm). BMIs and NAFLD prevalence were higher in patients with only methane positivity than in patients with hydrogen and methane positivity (hydrogen ⩾ 20 ppm and methane ⩾ 3 ppm). According to a multivariate analysis, the odds ratio of only methane positivity was 2.002 (95% confidence interval [CI]: 1.244-3.221,<i>P</i>= 0.004) for NAFLD. Our results demonstrate that breath methane positivity is related to NAFLD and suggest that increased methane gas on the breath tests has the potential to be an easily measurable biomarker for NAFLD diagnosis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of pathogenic bacteria and biomarkers in lung specimens from cystic fibrosis patients. 检测囊性纤维化患者肺部标本中的致病菌和生物标记物。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-16 DOI: 10.1088/1752-7163/ad56bc
James J Tolle, Samadhan Jadhao, Brijesh Patel, Heying Sun, Susan Eastman, Tina Hartert, David N Ku, Larry J Anderson

Diagnosing lung infections is often challenging because of the lack of a high-quality specimen from the diseased lung. Since persons with cystic fibrosis are subject to chronic lung infection, there is frequently a need for a lung specimen. In this small, proof of principle study, we determined that PneumoniaCheckTM, a non-invasive device that captures coughed droplets from the lung on a filter, might help meet this need. We obtained 10 PneumoniaCheckTMcoughed specimens and 2 sputum specimens from adult CF patients hospitalized with an exacerbation of their illness. We detected amylase (upper respiratory tract) with an enzymatic assay, surfactant A (lower respiratory tract) with an immunoassay, pathogenic bacteria by PCR, and markers of inflammation by a Luminex multiplex immunoassay. The amylase and surfactant A levels suggested that 9/10 coughed specimens were from lower respiratory tract with minimal upper respiratory contamination. The PCR assays detected pathogenic bacteria in 7 of 9 specimens and multiplex Luminex assay detected a variety of cytokines or chemokines. These data indicate that the PneumoniaCheckTMcoughed specimens can capture good quality lower respiratory tract specimens that have the potential to help in diagnosis, management and understanding of CF exacerbations and other lung disease.

由于缺乏高质量的病肺标本,诊断肺部感染往往具有挑战性。由于囊性纤维化患者会受到慢性肺部感染,因此经常需要肺部标本。在这项小型原理验证研究中,我们确定 PneumoniaCheckTM 是一种非侵入性设备,可通过过滤器捕捉肺部咳出的液滴,从而帮助满足这一需求。我们从因病情加重而住院的成年 CF 患者身上获取了 10 份 PneumoniaCheckTM 咳嗽标本和 2 份痰标本。我们用酶法检测了淀粉酶(上呼吸道),用免疫测定法检测了表面活性物质 A(下呼吸道),用 PCR 检测了致病菌,用 Luminex 多重免疫测定法检测了炎症标记物。淀粉酶和表面活性物质 A 水平表明,9/10 的咳嗽标本来自下呼吸道,上呼吸道污染极少。PCR 检测在 9 份标本中的 7 份中检测到了病原菌,而多重 Luminex 检测则检测到了多种细胞因子或趋化因子。这些数据表明,PneumoniaCheckTM 咳嗽标本能采集到高质量的下呼吸道标本,有可能帮助诊断、管理和了解 CF 恶化和其他肺部疾病。
{"title":"Detection of pathogenic bacteria and biomarkers in lung specimens from cystic fibrosis patients.","authors":"James J Tolle, Samadhan Jadhao, Brijesh Patel, Heying Sun, Susan Eastman, Tina Hartert, David N Ku, Larry J Anderson","doi":"10.1088/1752-7163/ad56bc","DOIUrl":"10.1088/1752-7163/ad56bc","url":null,"abstract":"<p><p>Diagnosing lung infections is often challenging because of the lack of a high-quality specimen from the diseased lung. Since persons with cystic fibrosis are subject to chronic lung infection, there is frequently a need for a lung specimen. In this small, proof of principle study, we determined that PneumoniaCheck<sup>TM</sup>, a non-invasive device that captures coughed droplets from the lung on a filter, might help meet this need. We obtained 10 PneumoniaCheck<sup>TM</sup>coughed specimens and 2 sputum specimens from adult CF patients hospitalized with an exacerbation of their illness. We detected amylase (upper respiratory tract) with an enzymatic assay, surfactant A (lower respiratory tract) with an immunoassay, pathogenic bacteria by PCR, and markers of inflammation by a Luminex multiplex immunoassay. The amylase and surfactant A levels suggested that 9/10 coughed specimens were from lower respiratory tract with minimal upper respiratory contamination. The PCR assays detected pathogenic bacteria in 7 of 9 specimens and multiplex Luminex assay detected a variety of cytokines or chemokines. These data indicate that the PneumoniaCheck<sup>TM</sup>coughed specimens can capture good quality lower respiratory tract specimens that have the potential to help in diagnosis, management and understanding of CF exacerbations and other lung disease.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of selected exhaled breath volatiles stored in Tenax®TA adsorbent tubes at -80 °C. 部分呼出气体挥发物在 -80°C 温度下储存于 Tenax® TA 吸附管中的稳定性。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-12 DOI: 10.1088/1752-7163/ad5dee
Pawel Mochalski, Chris A Mayhew

Preservation of the breath sample integrity during storage and transport is one of the biggest challenges in off-line exhaled breath gas analysis. In this context, adsorbent tubes are frequently used as storage containers for use with analytical methods employing gas chromatography with mass spectrometric detection. The key objective of this short communication is to provide data on the recovery of selected breath volatiles from Tenax®TA adsorbent tubes that were stored at -80 °C for up to 90 d. For this purpose, an Owlstone Medical's ReCIVA®Breath Sampler was used for exhaled breath collection. The following fifteen compounds, selected to cover a range of chemical properties, were monitored for their stability: isoprene, n-heptane, n-nonane, toluene, p-cymene, allyl methyl sulfide, 1-(methylthio)-propane, 1-(methylthio)-1-propene,α-pinene, DL-limonene,β-pinene,γ-terpinene, 2-pentanone, acetoin and 2,3 butanedione. All compounds, but one (acetoin), were found to be stable during the first 4 weeks of storage (recovery within ± 2 × RSD). Furthermore, n-nonane was stable during the whole of the investigated period.

在离线呼出气体分析中,如何在储存和运输过程中保持呼气样本的完整性是最大的挑战之一。在这种情况下,吸附管经常被用作储存容器,用于采用气相色谱和质谱检测的分析方法。本短文的主要目的是提供在 -80 C 温度下储存长达 90 天的 Tenax® TA 吸附管中所选呼气挥发物的回收数据。为此,我们使用 Owlstone Medical 的 ReCIVA® 呼吸采样器收集呼出气体。监测了以下 15 种化合物的稳定性,所选化合物涵盖了一系列化学特性:异戊二烯、正庚烷、正壬烷、甲苯、对甲苯、烯丙基甲基硫醚、1-(甲硫基)-丙烷、1-(甲硫基)-1-丙烯、-蒎烯、DL-柠檬烯、β-蒎烯、-萜品烯、2-戊酮、乙炔和 2,3-丁二酮。除一种化合物(乙炔)外,所有化合物在最初 4 周的储藏期间都很稳定(回收率在  2×RSD 范围内)。此外,正壬烷在整个调查期间都很稳定。
{"title":"Stability of selected exhaled breath volatiles stored in Tenax<sup>®</sup>TA adsorbent tubes at -80 °C.","authors":"Pawel Mochalski, Chris A Mayhew","doi":"10.1088/1752-7163/ad5dee","DOIUrl":"10.1088/1752-7163/ad5dee","url":null,"abstract":"<p><p>Preservation of the breath sample integrity during storage and transport is one of the biggest challenges in off-line exhaled breath gas analysis. In this context, adsorbent tubes are frequently used as storage containers for use with analytical methods employing gas chromatography with mass spectrometric detection. The key objective of this short communication is to provide data on the recovery of selected breath volatiles from Tenax<sup>®</sup>TA adsorbent tubes that were stored at -80 °C for up to 90 d. For this purpose, an Owlstone Medical's ReCIVA<sup>®</sup>Breath Sampler was used for exhaled breath collection. The following fifteen compounds, selected to cover a range of chemical properties, were monitored for their stability: isoprene, n-heptane, n-nonane, toluene, p-cymene, allyl methyl sulfide, 1-(methylthio)-propane, 1-(methylthio)-1-propene,<i>α</i>-pinene, DL-limonene,<i>β</i>-pinene,<i>γ</i>-terpinene, 2-pentanone, acetoin and 2,3 butanedione. All compounds, but one (acetoin), were found to be stable during the first 4 weeks of storage (recovery within ± 2 × RSD). Furthermore, n-nonane was stable during the whole of the investigated period.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source. 从肺癌患者和易感烟草消费者呼出的冷凝液和痰中提取外泌体并确定其特征--潜在的无创诊断生物标记源。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-11 DOI: 10.1088/1752-7163/ad5eae
Afsareen Bano, Pooja Yadav, Megha Sharma, Deepika Verma, Ravina Vats, Dhruva Chaudhry, Pawan Kumar, Rashmi Bhardwaj

Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (n= 30), tobacco smokers (n= 30), and lung cancer patients (n= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (p < 0.05) and sputum (p= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (p < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.

外泌体的非侵入性样本来源,如呼气和痰,与肿瘤微环境非常接近,可能含有肺癌的生物标记物,比侵入性样本来源更容易进行生物标记物筛选。我们亟需针对低容量非侵入性样本的标准化外泌体提取和表征方法。我们从健康的非吸烟者(30 人)、烟草吸烟者(30 人)和肺癌患者(40 人)身上分离出呼气冷凝物(EBC)和痰外泌体并对其进行表征,并将结果与侵入性样本来源进行关联。EBC样本使用市售的R-试管收集。收集痰液样本时,参与者要深呼吸、屏住呼吸并在收集容器中咳嗽。采用动态光散射、纳米粒子跟踪分析和透射电子显微镜评估外泌体形态。蛋白质分离、Western 印迹、通过 EXOCET 进行外泌体定量,以及傅立叶变换红外光谱进行分子表征。从 EBC 和痰样本中成功分离出了外泌体,其产量和纯度足以进行后续的下游处理和表征。根据外泌体的大小、形状和表面标记物的表达,对外泌体进行了确认。值得注意的是,根据我们的研究结果,癌症外泌体不仅在血浆亚组中体积最大,在EBC(p p= 0.0036)亚组中也是如此。对照亚组与对照亚组之间的外泌体浓度存在明显差异(p
{"title":"Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source.","authors":"Afsareen Bano, Pooja Yadav, Megha Sharma, Deepika Verma, Ravina Vats, Dhruva Chaudhry, Pawan Kumar, Rashmi Bhardwaj","doi":"10.1088/1752-7163/ad5eae","DOIUrl":"https://doi.org/10.1088/1752-7163/ad5eae","url":null,"abstract":"<p><p>Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (<i>n</i>= 30), tobacco smokers (<i>n</i>= 30), and lung cancer patients (<i>n</i>= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (<i>p</i> < 0.05) and sputum (<i>p</i>= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (<i>p</i> < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"18 4","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exhaled breath analysis for the discrimination of asthma and chronic obstructive pulmonary disease. 用于鉴别哮喘和慢性阻塞性肺病的呼气分析。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-10 DOI: 10.1088/1752-7163/ad53f8
Lan Li, Haibin Chen, Jinying Shi, Shukun Chai, Li Yan, Deyang Meng, Zhigang Cai, Jitao Guan, Yunwei Xin, Xu Zhang, Wuzhuang Sun, Xi Lu, Mengqi He, Qingyun Li, Xixin Yan

Chronic obstructive pulmonary disease (COPD) and asthma are the most common chronic respiratory diseases. In middle-aged and elderly patients, it is difficult to distinguish between COPD and asthma based on clinical symptoms and pulmonary function examinations in clinical practice. Thus, an accurate and reliable inspection method is required. In this study, we aimed to identify breath biomarkers and evaluate the accuracy of breathomics-based methods for discriminating between COPD and asthma. In this multi-center cross-sectional study, exhaled breath samples were collected from 89 patients with COPD and 73 with asthma and detected on a high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) platform from 20 October 2022, to 20 May 2023, in four hospitals. Data analysis was performed from 15 June 2023 to 16 August 2023. The sensitivity, specificity, and accuracy were calculated to assess the overall performance of the volatile organic component (VOC)-based COPD and asthma discrimination models. Potential VOC markers related to COPD and asthma were also analyzed. The age of all participants ranged from to 18-86 years, and 54 (33.3%) were men. The age [median (minimum, maximum)] of COPD and asthma participants were 66.0 (46.0, 86.0), and 44.0 (17.0, 80.0). The male and female ratio of COPD and asthma participants were 14/75 and 40/33, respectively. Based on breathomics feature selection, ten VOCs were identified as COPD and asthma discrimination biomarkers via breath testing. The joint panel of these ten VOCs achieved an area under the curve of 0.843, sensitivity of 75.9%, specificity of 87.5%, and accuracy of 80.0% in COPD and asthma discrimination. Furthermore, the VOCs detected in the breath samples were closely related to the clinical characteristics of COPD and asthma. The VOC-based COPD and asthma discrimination model showed good accuracy, providing a new strategy for clinical diagnosis. Breathomics-based methods may play an important role in the diagnosis of COPD and asthma.

摘要 背景 慢性阻塞性肺疾病(COPD)和哮喘是最常见的慢性呼吸系统疾病。在临床实践中,中老年患者很难根据临床症状和肺功能检查来区分 COPD 和哮喘。本研究旨在确定呼吸生物标志物,并评估基于呼吸组学的方法区分慢性阻塞性肺病和哮喘的准确性。在这项多中心横断面研究中,我们从 2022 年 10 月 20 日至 2023 年 5 月 20 日在四家医院收集了 89 名慢性阻塞性肺病患者和 73 名哮喘患者的呼气样本,并在高压光子电离飞行时间质谱(HPPI-TOFMS)平台上进行了检测。数据分析于 2023 年 6 月 15 日至 2023 年 8 月 16 日进行。通过计算灵敏度、特异性和准确性来评估基于挥发性有机化合物的慢性阻塞性肺病和哮喘鉴别模型的整体性能。此外,还分析了与慢性阻塞性肺病和哮喘相关的潜在挥发性有机化合物标记物。 结果 所有参与者的年龄在 18-86 岁之间,男性 54 人(33.3%)。根据呼气组学特征选择,通过呼气测试确定了 10 种挥发性有机化合物作为慢性阻塞性肺病和哮喘的鉴别生物标志物。这十种挥发性有机化合物的联合面板在慢性阻塞性肺病和哮喘鉴别中的曲线下面积(AUC)为 0.843,灵敏度为 75.9%,特异度为 87.5%,准确度为 80.0%。此外,呼气样本中检测到的挥发性有机化合物与慢性阻塞性肺病和哮喘的临床特征密切相关。基于呼吸组学的方法可在慢性阻塞性肺病和哮喘的诊断中发挥重要作用。
{"title":"Exhaled breath analysis for the discrimination of asthma and chronic obstructive pulmonary disease.","authors":"Lan Li, Haibin Chen, Jinying Shi, Shukun Chai, Li Yan, Deyang Meng, Zhigang Cai, Jitao Guan, Yunwei Xin, Xu Zhang, Wuzhuang Sun, Xi Lu, Mengqi He, Qingyun Li, Xixin Yan","doi":"10.1088/1752-7163/ad53f8","DOIUrl":"10.1088/1752-7163/ad53f8","url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) and asthma are the most common chronic respiratory diseases. In middle-aged and elderly patients, it is difficult to distinguish between COPD and asthma based on clinical symptoms and pulmonary function examinations in clinical practice. Thus, an accurate and reliable inspection method is required. In this study, we aimed to identify breath biomarkers and evaluate the accuracy of breathomics-based methods for discriminating between COPD and asthma. In this multi-center cross-sectional study, exhaled breath samples were collected from 89 patients with COPD and 73 with asthma and detected on a high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) platform from 20 October 2022, to 20 May 2023, in four hospitals. Data analysis was performed from 15 June 2023 to 16 August 2023. The sensitivity, specificity, and accuracy were calculated to assess the overall performance of the volatile organic component (VOC)-based COPD and asthma discrimination models. Potential VOC markers related to COPD and asthma were also analyzed. The age of all participants ranged from to 18-86 years, and 54 (33.3%) were men. The age [median (minimum, maximum)] of COPD and asthma participants were 66.0 (46.0, 86.0), and 44.0 (17.0, 80.0). The male and female ratio of COPD and asthma participants were 14/75 and 40/33, respectively. Based on breathomics feature selection, ten VOCs were identified as COPD and asthma discrimination biomarkers via breath testing. The joint panel of these ten VOCs achieved an area under the curve of 0.843, sensitivity of 75.9%, specificity of 87.5%, and accuracy of 80.0% in COPD and asthma discrimination. Furthermore, the VOCs detected in the breath samples were closely related to the clinical characteristics of COPD and asthma. The VOC-based COPD and asthma discrimination model showed good accuracy, providing a new strategy for clinical diagnosis. Breathomics-based methods may play an important role in the diagnosis of COPD and asthma.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking breath analysis using peppermint approach with gas chromatography ion mobility spectrometer coupled to micro thermal desorber. 利用气相色谱离子迁移谱仪和微型热脱附仪,采用薄荷方法对呼气进行基准分析。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-04 DOI: 10.1088/1752-7163/ad5863
Dorota M Ruszkiewicz, Kristian J Kiland, Yoonseo Mok, Crista Bartolomeu, Scott A Borden, Paul Thomas, Stephen Lam, Renelle Myers

The Peppermint Initiative, established within the International Association of Breath Research, introduced the peppermint protocol, a breath analysis benchmarking effort designed to address the lack of inter-comparability of outcomes across different breath sampling techniques and analytical platforms. Benchmarking with gas chromatography-ion mobility spectrometry (GC-IMS) using peppermint has been previously reported however, coupling micro-thermal desorption (µTD) to GC-IMS has not yet, been benchmarked for breath analysis. To benchmarkµTD-GC-IMS for breath analysis using the peppermint protocol. Ten healthy participants (4 males and 6 females, aged 20-73 years), were enrolled to give six breath samples into Nalophan bags via a modified peppermint protocol. Breath sampling after peppermint ingestion occurred over 6 h att= 60, 120, 200, 280, and 360 min. The breath samples (120 cm3) were pre-concentrated in theµTD before being transferred into the GC-IMS for detection. Data was processed using VOCal, including background subtractions, peak volume measurements, and room air assessment. During peppermint washout, eucalyptol showed the highest change in concentration levels, followed byα-pinene andβ-pinene. The reproducibility of the technique for breath analysis was demonstrated by constructing logarithmic washout curves, with the average linearity coefficient ofR2= 0.99. The time to baseline (benchmark) value for the eucalyptol washout was 1111 min (95% CI: 529-1693 min), obtained by extrapolating the average logarithmic washout curve. The study demonstrated thatµTD-GC-IMS is reproducible and suitable technique for breath analysis, with benchmark values for eucalyptol comparable to the gold standard GC-MS.

背景 在国际呼气研究协会(International Association of Breath Research)内成立的薄荷计划(Peppermint Initiative)推出了薄荷协议,这是一项呼气分析基准测试工作,旨在解决不同呼气采样技术和分析平台的结果缺乏相互可比性的问题。使用薄荷进行气相色谱-离子迁移谱法(GC-IMS)的基准测试之前已有报道,但将微热解吸附(µTD)与气相色谱-离子迁移谱法(GC-IMS)联用进行呼气分析的基准测试还没有报道。 目标 为使用薄荷协议进行呼气分析的 µTD-GC-IMS 设定基准。 方法 10 名健康的参与者(4 男 6 女,年龄在 20 - 73 岁之间)通过改良的薄荷协议在纳洛芬袋中采集了 6 份呼气样本。在摄入薄荷后的 6 小时内,分别在 t = 60、120、200、280 和 360 分钟时进行呼气采样。呼气样本(120 立方厘米)在转移到 GC-IMS 进行检测之前,已在 µTD 中进行了预浓缩。使用 VOCal 对数据进行处理,包括背景减去、峰值体积测量和室内空气评估。 结果 在薄荷洗脱过程中,桉叶油醇的浓度水平变化最大,其次是 α-蒎烯和β-蒎烯。通过构建对数冲洗曲线,证明了呼气分析技术的重现性,平均线性系数为 R2 = 0.99。通过推断平均对数洗脱曲线,桉叶油醇洗脱的基线(基准)时间为 1111 分钟(95% CI:529-1693 分钟)。我们获得了 µTD-GC-IMS 的基准值(桉叶油醇洗脱),桉叶油醇的基准值为 1111 分钟(95% CI:529-1693 分钟),与黄金标准 GC-MS 相当。
{"title":"Benchmarking breath analysis using peppermint approach with gas chromatography ion mobility spectrometer coupled to micro thermal desorber.","authors":"Dorota M Ruszkiewicz, Kristian J Kiland, Yoonseo Mok, Crista Bartolomeu, Scott A Borden, Paul Thomas, Stephen Lam, Renelle Myers","doi":"10.1088/1752-7163/ad5863","DOIUrl":"10.1088/1752-7163/ad5863","url":null,"abstract":"<p><p>The Peppermint Initiative, established within the International Association of Breath Research, introduced the peppermint protocol, a breath analysis benchmarking effort designed to address the lack of inter-comparability of outcomes across different breath sampling techniques and analytical platforms. Benchmarking with gas chromatography-ion mobility spectrometry (GC-IMS) using peppermint has been previously reported however, coupling micro-thermal desorption (<i>µ</i>TD) to GC-IMS has not yet, been benchmarked for breath analysis. To benchmark<i>µ</i>TD-GC-IMS for breath analysis using the peppermint protocol. Ten healthy participants (4 males and 6 females, aged 20-73 years), were enrolled to give six breath samples into Nalophan bags via a modified peppermint protocol. Breath sampling after peppermint ingestion occurred over 6 h at<i>t</i>= 60, 120, 200, 280, and 360 min. The breath samples (120 cm<sup>3</sup>) were pre-concentrated in the<i>µ</i>TD before being transferred into the GC-IMS for detection. Data was processed using VOCal, including background subtractions, peak volume measurements, and room air assessment. During peppermint washout, eucalyptol showed the highest change in concentration levels, followed by<i>α</i>-pinene and<i>β</i>-pinene. The reproducibility of the technique for breath analysis was demonstrated by constructing logarithmic washout curves, with the average linearity coefficient of<i>R</i><sup>2</sup>= 0.99. The time to baseline (benchmark) value for the eucalyptol washout was 1111 min (95% CI: 529-1693 min), obtained by extrapolating the average logarithmic washout curve. The study demonstrated that<i>µ</i>TD-GC-IMS is reproducible and suitable technique for breath analysis, with benchmark values for eucalyptol comparable to the gold standard GC-MS.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic nose based analysis of exhaled volatile organic compounds spectrum reveals asthmatic shifts and consistency in controls post-exercise and spirometry. 基于电子鼻的呼出挥发性有机化合物频谱分析揭示了哮喘的转变以及运动后和肺活量测定对照组的一致性。
IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-26 DOI: 10.1088/1752-7163/ad5864
Silvano Dragonieri, Marcin Di Marco, Madiha Ahroud, Vitaliano Nicola Quaranta, Andrea Portacci, Ilaria Iorillo, Francesca Montagnolo, Giovanna Elisiana Carpagnano

Analyzing exhaled volatile organic compounds (VOCs) with an electronic nose (e-nose) is emerging in medical diagnostics as a non-invasive, quick, and sensitive method for disease detection and monitoring. This study investigates if activities like spirometry or physical exercise affect exhaled VOCs measurements in asthmatics and healthy individuals, a crucial step for e-nose technology's validation for clinical use. The study analyzed exhaled VOCs using an e-nose in 27 healthy individuals and 27 patients with stable asthma, before and after performing spirometry and climbing five flights of stairs. Breath samples were collected using a validated technique and analyzed with a Cyranose 320 e-nose. In healthy controls, the exhaled VOCs spectrum remained unchanged after both lung function test and exercise. In asthmatics, principal component analysis and subsequent discriminant analysis revealed significant differences post-spirometry (vs. baseline 66.7% cross validated accuracy [CVA],p< 0.05) and exercise (vs. baseline 70.4% CVA,p< 0.05). E-nose measurements in healthy individuals are consistent, unaffected by spirometry or physical exercise. However, in asthma patients, significant changes in exhaled VOCs were detected post-activities, indicating airway responses likely due to constriction or inflammation, underscoring the e-nose's potential for respiratory condition diagnosis and monitoring.

背景:使用电子鼻(e-nose)分析呼出的挥发性有机化合物(VOCs)作为一种无创、快速、灵敏的疾病检测和监控方法,正在医疗诊断领域崭露头角。本研究调查了肺活量测定或体育锻炼等活动是否会影响哮喘患者和健康人呼出的挥发性有机化合物测量值,这是电子鼻技术临床应用验证的关键一步:研究使用电子鼻分析了 27 名健康人和 27 名稳定期哮喘患者在进行肺活量测定和爬五层楼梯前后呼出的挥发性有机化合物。研究人员使用经过验证的技术收集呼气样本,并使用 Cyranose 320 电子鼻进行分析:在健康对照组中,肺功能测试和运动后呼出的挥发性有机化合物谱保持不变。在哮喘患者中,主成分分析和随后的判别分析显示出呼吸测定后的显著差异(与基线66.7%的交叉验证准确度[CVA]相比,P<0.05)。
{"title":"Electronic nose based analysis of exhaled volatile organic compounds spectrum reveals asthmatic shifts and consistency in controls post-exercise and spirometry.","authors":"Silvano Dragonieri, Marcin Di Marco, Madiha Ahroud, Vitaliano Nicola Quaranta, Andrea Portacci, Ilaria Iorillo, Francesca Montagnolo, Giovanna Elisiana Carpagnano","doi":"10.1088/1752-7163/ad5864","DOIUrl":"10.1088/1752-7163/ad5864","url":null,"abstract":"<p><p>Analyzing exhaled volatile organic compounds (VOCs) with an electronic nose (e-nose) is emerging in medical diagnostics as a non-invasive, quick, and sensitive method for disease detection and monitoring. This study investigates if activities like spirometry or physical exercise affect exhaled VOCs measurements in asthmatics and healthy individuals, a crucial step for e-nose technology's validation for clinical use. The study analyzed exhaled VOCs using an e-nose in 27 healthy individuals and 27 patients with stable asthma, before and after performing spirometry and climbing five flights of stairs. Breath samples were collected using a validated technique and analyzed with a Cyranose 320 e-nose. In healthy controls, the exhaled VOCs spectrum remained unchanged after both lung function test and exercise. In asthmatics, principal component analysis and subsequent discriminant analysis revealed significant differences post-spirometry (vs. baseline 66.7% cross validated accuracy [CVA],<i>p</i>< 0.05) and exercise (vs. baseline 70.4% CVA,<i>p</i>< 0.05). E-nose measurements in healthy individuals are consistent, unaffected by spirometry or physical exercise. However, in asthma patients, significant changes in exhaled VOCs were detected post-activities, indicating airway responses likely due to constriction or inflammation, underscoring the e-nose's potential for respiratory condition diagnosis and monitoring.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reference equations for exhaled nitric oxide-what is needed? 呼出一氧化氮参考方程--需要什么?
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-14 DOI: 10.1088/1752-7163/ad4aba
Marieann Högman

Standardisation is the road to improvement! If we all measure exhaled nitric oxide (NO) the same way, we will be successful in having data to make reference questions. Many research groups have published their reference equation, but most differ considerably. About 25 years ago, using the flow of 50 ml s-1was recommended and not using a nose clip. When collecting data worldwide, we still see publications that do not indicate what flow was used and that nose clip was utilised. Three things are needed: the analysing method, a flow recording and a filled-in nitric oxide questionnaire. The analysing method is because the techniques have different sensitivity, response times and calibration. The flow of 50 ml s-1is on the steep part of the NO output curve; therefore, we need to record the flow to analyse repeated measurements or compare results. The NO questionnaire controls individual factors that may influence the NO measurements, i.e. food intake, smoking and upper airway infection. An important tool in following old and new disease treatments, at home or in health care, is exhaled biomarkers. If we follow the standardisation we have agreed upon, we will be able to have data to say what a high or a low exhaled NO value is.

标准化是改进之路!如果我们都用同样的方法测量呼出的一氧化氮(NO),我们就能成功地获得数据来提出参考问题。许多研究小组都公布了他们的参考方程,但大多数差异很大。大约 25 年前,我们推荐使用 50 mL s-1 的流量,并且不使用鼻夹。在全球范围内收集数据时,我们仍能看到一些出版物没有说明使用的流量和鼻夹。我们需要三样东西:分析方法、流量记录和填写的一氧化氮问卷。分析方法是因为不同技术有不同的灵敏度、响应时间和校准。50 mL s-1 的流量位于一氧化氮输出曲线的陡峭部分;因此,我们需要记录流量,以便分析重复测量或比较结果。NO 问卷可控制可能影响 NO 测量的个体因素,即食物摄入量、吸烟和上呼吸道感染。呼出的生物标记物是在家庭或医疗机构中跟踪新旧疾病治疗的重要工具。如果我们遵循已达成共识的标准化方法,我们就能获得数据来说明呼出的 NO 值是高还是低。
{"title":"Reference equations for exhaled nitric oxide-what is needed?","authors":"Marieann Högman","doi":"10.1088/1752-7163/ad4aba","DOIUrl":"10.1088/1752-7163/ad4aba","url":null,"abstract":"<p><p>Standardisation is the road to improvement! If we all measure exhaled nitric oxide (NO) the same way, we will be successful in having data to make reference questions. Many research groups have published their reference equation, but most differ considerably. About 25 years ago, using the flow of 50 ml s<sup>-1</sup>was recommended and not using a nose clip. When collecting data worldwide, we still see publications that do not indicate what flow was used and that nose clip was utilised. Three things are needed: the analysing method, a flow recording and a filled-in nitric oxide questionnaire. The analysing method is because the techniques have different sensitivity, response times and calibration. The flow of 50 ml s<sup>-1</sup>is on the steep part of the NO output curve; therefore, we need to record the flow to analyse repeated measurements or compare results. The NO questionnaire controls individual factors that may influence the NO measurements, i.e. food intake, smoking and upper airway infection. An important tool in following old and new disease treatments, at home or in health care, is exhaled biomarkers. If we follow the standardisation we have agreed upon, we will be able to have data to say what a high or a low exhaled NO value is.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of breath research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1