Pub Date : 2024-12-16DOI: 10.1088/1752-7163/ad9ac4
Sarah Basler, Noriane A Sievi, Felix Schmidt, Kai Fricke, Alexandra Arvaji, Jonas Herth, Diego M Baur, Pablo Sinues, Silvia Ulrich, Malcolm Kohler
Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) show high variability in individual susceptibility and promote disease progression; thus, accurate diagnosis and treatment is essential. Unravelling the molecular metabolic changes during AECOPD in breath could promote understanding of AECOPD and its treatment. Our objective was to investigate the metabolic breath profiles during AECOPD for biomarker detection. We conducted real-time breath analysis in patients with COPD during AECOPD and during subsequent stable phase. Molecular breath patterns were compared between AECOPD and stable phase by dimension reduction techniques and paired t-tests. Pathway enrichment analyses were performed to investigate underlying metabolic pathways. Partial least-squares discriminant analysis and XGboost were utilised to build a prediction model to differentiate AECOPD from stable state. 35 patients (60% male) with a mean age of 65 (10.2) yr with AECOPD were included. AECOPD could be predicted with a high sensitivity of 82.5% (95% confidence interval of 68.8%-93.8%) and an excellent discriminative power (AUC = 0.86). Metabolic changes in the linoleate, tyrosine, and tryptophan pathways during AECOPD were predominant. Significant metabolic changes occur during COPD exacerbations, predominantly in the linoleate, tyrosine, and tryptophan pathways, which are all linked to inflammation. Real-time exhaled breath analysis enables a good prediction of AECOPD compared to stable state and thus could enhance precision of AECOPD diagnosis and efficacy in clinical practice.
{"title":"Molecular breath profile of acute COPD exacerbations.","authors":"Sarah Basler, Noriane A Sievi, Felix Schmidt, Kai Fricke, Alexandra Arvaji, Jonas Herth, Diego M Baur, Pablo Sinues, Silvia Ulrich, Malcolm Kohler","doi":"10.1088/1752-7163/ad9ac4","DOIUrl":"10.1088/1752-7163/ad9ac4","url":null,"abstract":"<p><p>Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) show high variability in individual susceptibility and promote disease progression; thus, accurate diagnosis and treatment is essential. Unravelling the molecular metabolic changes during AECOPD in breath could promote understanding of AECOPD and its treatment. Our objective was to investigate the metabolic breath profiles during AECOPD for biomarker detection. We conducted real-time breath analysis in patients with COPD during AECOPD and during subsequent stable phase. Molecular breath patterns were compared between AECOPD and stable phase by dimension reduction techniques and paired t-tests. Pathway enrichment analyses were performed to investigate underlying metabolic pathways. Partial least-squares discriminant analysis and XGboost were utilised to build a prediction model to differentiate AECOPD from stable state. 35 patients (60% male) with a mean age of 65 (10.2) yr with AECOPD were included. AECOPD could be predicted with a high sensitivity of 82.5% (95% confidence interval of 68.8%-93.8%) and an excellent discriminative power (AUC = 0.86). Metabolic changes in the linoleate, tyrosine, and tryptophan pathways during AECOPD were predominant. Significant metabolic changes occur during COPD exacerbations, predominantly in the linoleate, tyrosine, and tryptophan pathways, which are all linked to inflammation. Real-time exhaled breath analysis enables a good prediction of AECOPD compared to stable state and thus could enhance precision of AECOPD diagnosis and efficacy in clinical practice.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Several clinical studies have reported promising correlations between propofol concentration in exhaled breath (Ce-pro) and the bispectral index (BIS) in patients, suggesting the potential of exhaled propofol measurement as a non-invasive method for adjusting anesthesia depth. However, these studies are still in the validation phase of instrument effectiveness, often limited by small sample sizes or inappropriate instrument selection, and thus lack convincing results regarding these correlations. In this study, one hundred patients aged 18-65, undergoing elective thyroid surgery under general anesthesia were included. The vacuum ultraviolet photoionization and time-of-flight mass spectrometry was employed to monitor Ce-pro at 20 s intervals, alongside continuous BIS measurement. The association between Ce-pro and BIS was analyzed using linear mixed-effects models, with marginalR2used to assess the correlation. The threshold of Ce-pro at awakening was also explored. Additionally, the univariate and multifactorial diagnostic model, including end-of-surgery Ce-pro, were employed to assess the accuracy of predicting delayed recovery. A weak correlation was observed between intraoperative Ce-pro and BIS (marginalR2= 0.348). Predictive models utilizing end-of-surgery Ce-pro levels showed good accuracy (area under the curve (AUC) = 0.75, 95% CI: 0.62-0.89,P= 0.003) in predicting delayed recovery, while the model using end-of-surgery Ce-pro combined with gender, sufentanil dosage, the time from the last administration of sufentanil to the end of surgery, and anesthesia duration demonstrated stronger predicting accuracy (AUC = 0.91, 95% CI: 0.85-0.98,P< 0.001). This study suggests that Ce-pro alone may not reliably predict the depth of anesthesia in clinical practice, but shows promising accuracy in predicting delayed recovery from anesthesia.
{"title":"Correlations between propofol concentration in exhaled breath and BIS in patients undergoing thyroid surgery.","authors":"Xiaoxiao Li, Pan Chang, Xing Liu, Zhongjun Zhao, Yixiang Duan, Wensheng Zhang","doi":"10.1088/1752-7163/ad9496","DOIUrl":"10.1088/1752-7163/ad9496","url":null,"abstract":"<p><p>Several clinical studies have reported promising correlations between propofol concentration in exhaled breath (Ce-pro) and the bispectral index (BIS) in patients, suggesting the potential of exhaled propofol measurement as a non-invasive method for adjusting anesthesia depth. However, these studies are still in the validation phase of instrument effectiveness, often limited by small sample sizes or inappropriate instrument selection, and thus lack convincing results regarding these correlations. In this study, one hundred patients aged 18-65, undergoing elective thyroid surgery under general anesthesia were included. The vacuum ultraviolet photoionization and time-of-flight mass spectrometry was employed to monitor Ce-pro at 20 s intervals, alongside continuous BIS measurement. The association between Ce-pro and BIS was analyzed using linear mixed-effects models, with marginal<i>R</i><sup>2</sup>used to assess the correlation. The threshold of Ce-pro at awakening was also explored. Additionally, the univariate and multifactorial diagnostic model, including end-of-surgery Ce-pro, were employed to assess the accuracy of predicting delayed recovery. A weak correlation was observed between intraoperative Ce-pro and BIS (marginal<i>R</i><sup>2</sup>= 0.348). Predictive models utilizing end-of-surgery Ce-pro levels showed good accuracy (area under the curve (AUC) = 0.75, 95% CI: 0.62-0.89,<i>P</i>= 0.003) in predicting delayed recovery, while the model using end-of-surgery Ce-pro combined with gender, sufentanil dosage, the time from the last administration of sufentanil to the end of surgery, and anesthesia duration demonstrated stronger predicting accuracy (AUC = 0.91, 95% CI: 0.85-0.98,<i>P</i>< 0.001). This study suggests that Ce-pro alone may not reliably predict the depth of anesthesia in clinical practice, but shows promising accuracy in predicting delayed recovery from anesthesia.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1088/1752-7163/ad89ef
Zaid J J Al-Difaie, Max H M C Scheepers, Sanne M E Engelen, Tim Lubbers, Bas Havekes, Nicole D Bouvy
The differentiation between malignant and benign thyroid nodules represents a significant challenge for clinicians globally. The identification of volatile organic compounds (VOCs) has emerged as a novel approach in the field of cancer diagnosis. This prospective pilot study aims to identify VOCs in exhaled breath, blood, and urine that can differentiate benign from malignant thyroid nodules using gas chromatography-ion mobility spectrometry (GC-IMS). Patients with thyroid nodules scheduled for surgery were enrolled at the Maastricht University Medical Center (MUMC+). Breath samples were analyzed using a BreathSpec GC-IMS machine (G.A.S. Dortmund, Germany), specifically designed for breath analysis. All blood and urine samples were analyzed using a separate GC-IMS device, the FlavourSpec® (G.A.S., Dortmund, Germany). In this proof-of-concept study, 70 consecutive patients undergoing thyroid surgery at MUMC+ were included. Of these patients, 29 were confirmed to have thyroid cancer after surgical resection. The overall analysis did not reveal statistically significant differences in VOCs in breath, urine and blood, between patients with benign and malignant thyroid cancer. This proof-of-concept study demonstrated that GC-IMS could not effectively differentiate between the VOC profiles of malignant and benign thyroid nodules. However, due to the small sample size of this study, larger prospective studies are needed to investigate the potential of using VOCs to distinguish between benign and malignant thyroid nodules. Additionally, future research should focus on identifying potential confounding factors that may influence patient VOC profiles. (NCT04883294).
{"title":"Volatile organic compounds in exhaled breath, blood, and urine detected in patients with thyroid carcinoma using gas chromatography-ion mobility spectrometry<i>-</i>a pilot study.","authors":"Zaid J J Al-Difaie, Max H M C Scheepers, Sanne M E Engelen, Tim Lubbers, Bas Havekes, Nicole D Bouvy","doi":"10.1088/1752-7163/ad89ef","DOIUrl":"10.1088/1752-7163/ad89ef","url":null,"abstract":"<p><p>The differentiation between malignant and benign thyroid nodules represents a significant challenge for clinicians globally. The identification of volatile organic compounds (VOCs) has emerged as a novel approach in the field of cancer diagnosis. This prospective pilot study aims to identify VOCs in exhaled breath, blood, and urine that can differentiate benign from malignant thyroid nodules using gas chromatography-ion mobility spectrometry (GC-IMS). Patients with thyroid nodules scheduled for surgery were enrolled at the Maastricht University Medical Center (MUMC+). Breath samples were analyzed using a BreathSpec GC-IMS machine (G.A.S. Dortmund, Germany), specifically designed for breath analysis. All blood and urine samples were analyzed using a separate GC-IMS device, the FlavourSpec® (G.A.S., Dortmund, Germany). In this proof-of-concept study, 70 consecutive patients undergoing thyroid surgery at MUMC+ were included. Of these patients, 29 were confirmed to have thyroid cancer after surgical resection. The overall analysis did not reveal statistically significant differences in VOCs in breath, urine and blood, between patients with benign and malignant thyroid cancer. This proof-of-concept study demonstrated that GC-IMS could not effectively differentiate between the VOC profiles of malignant and benign thyroid nodules. However, due to the small sample size of this study, larger prospective studies are needed to investigate the potential of using VOCs to distinguish between benign and malignant thyroid nodules. Additionally, future research should focus on identifying potential confounding factors that may influence patient VOC profiles. (NCT04883294).</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1088/1752-7163/ad8e7c
Sylvia L Santos, Caterina Holz, Kimberly Milleman, Jeffery Milleman, Gu Wenqian, Luis R Mateo
Oral malodor negatively impacts a person's quality of life and may affect up to 50% of the population. The aim of this randomized, placebo and no-product controlled, evaluator-blind, proof-of-concept study was to evaluate the effectiveness and safety of the single use of two experimental lozenges containing the laccase enzyme and green coffee extract (with and without flavor) in reducing intrinsic oral malodor. Following 12-16 h of avoidance of oral hygiene,156 generally healthy subjects presented at screening and baseline visits with a mean organoleptic odor intensity (OI) score of ⩾2 and an OralChromaTMreading of ⩾125 parts per billion (ppb) hydrogen sulfide (H2S) gas and were randomly assigned to receive either one of the two experimental lozenges, a placebo lozenge, or no-product. Following the supervised use of the assigned products, subjects' oral malodor was evaluated using OI assessments and OralChromaTMmeasurement for volatile sulfur compounds (VSCs) immediately following product use (approximately 5 min), and at 30 min, 1 h, 2 h, 3 h and 4 h. The two experimental lozenges, with and without flavor, showed significant reductions in OI scores compared with the placebo and no-product groups at all time points (p< 0.001). At 5 min post-product use, the experimental lozenges, with and without flavor, were significantly better than the no-product group in reducing the VSCs (p< 0.04). The results of individual VSC components (hydrogen sulfide, methyl mercaptan and dimethyl sulfide) were variable; both experimental lozenges notably reduced hydrogen sulfide and methyl mercaptan levels in most post-use assessments. Four minor adverse events were reported, none of which were directly linked to the product. In conclusion, the experimental lozenges, whether flavored or not, were safe and effective in reducing oral malodor over a span of 4 h, based on organoleptic OI scores.Clinical Trial No: NCT05950529.
{"title":"Effectiveness of a combination of laccase and green coffee extract on oral malodor: a comparative, randomized, controlled, evaluator-blind, parallel-group trial.","authors":"Sylvia L Santos, Caterina Holz, Kimberly Milleman, Jeffery Milleman, Gu Wenqian, Luis R Mateo","doi":"10.1088/1752-7163/ad8e7c","DOIUrl":"10.1088/1752-7163/ad8e7c","url":null,"abstract":"<p><p>Oral malodor negatively impacts a person's quality of life and may affect up to 50% of the population. The aim of this randomized, placebo and no-product controlled, evaluator-blind, proof-of-concept study was to evaluate the effectiveness and safety of the single use of two experimental lozenges containing the laccase enzyme and green coffee extract (with and without flavor) in reducing intrinsic oral malodor. Following 12-16 h of avoidance of oral hygiene,156 generally healthy subjects presented at screening and baseline visits with a mean organoleptic odor intensity (OI) score of ⩾2 and an OralChroma<sup>TM</sup>reading of ⩾125 parts per billion (ppb) hydrogen sulfide (H<sub>2</sub>S) gas and were randomly assigned to receive either one of the two experimental lozenges, a placebo lozenge, or no-product. Following the supervised use of the assigned products, subjects' oral malodor was evaluated using OI assessments and OralChroma<sup>TM</sup>measurement for volatile sulfur compounds (VSCs) immediately following product use (approximately 5 min), and at 30 min, 1 h, 2 h, 3 h and 4 h. The two experimental lozenges, with and without flavor, showed significant reductions in OI scores compared with the placebo and no-product groups at all time points (<i>p</i>< 0.001). At 5 min post-product use, the experimental lozenges, with and without flavor, were significantly better than the no-product group in reducing the VSCs (<i>p</i>< 0.04). The results of individual VSC components (hydrogen sulfide, methyl mercaptan and dimethyl sulfide) were variable; both experimental lozenges notably reduced hydrogen sulfide and methyl mercaptan levels in most post-use assessments. Four minor adverse events were reported, none of which were directly linked to the product. In conclusion, the experimental lozenges, whether flavored or not, were safe and effective in reducing oral malodor over a span of 4 h, based on organoleptic OI scores.Clinical Trial No: NCT05950529.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1088/1752-7163/ad8ee7
Guangzhao Guan, Vicky Tjhang, Sally Sun, Ajith Polonowita, Li Mei
To investigate the halitosis level in oral lichen planus (OLP) patients and OLP-free participants. This cross-sectional study recruited 70 participants at the New Zealand's National Centre for Dentistry. Halitosis was determined using the objective measurements (parts per billion (ppb) volatile sulphur compounds (VSCs) in the exhaled air) and subjective measurement (self-reported halitosis questionnaire). The VSCs values of OLP participants (mean ± SD: 144.64 ± 23.85 ppb) were significantly greater than that in the OLP-free participants (105.52 ± 22.31ppb) (mean difference: 39.12 ppb;p< 0.05; 95% CI: 27.95, 50.29). The VSCs value of hyperplastic (mean difference: 34.11; 95% CI: 20.07, 48.15;p< 0.05) and erosive/ulcerative (mean difference: 57.47; 95% CI: 34.19, 80.76;p< 0.05) OLP participants were statistically greater than that of OLP-free participants. No statistical significance was found between hyperplastic and erosive/ulcerative OLP (p> 0.05). 'Type (OLP-free/OLP)' has a significant effect on the dependent variable VSCs. 78.6% of OLP and 90.5% of OLP-free brushed their teeth at least twice daily, with a statistically significant observation (Mean square: 1.61; F: 13.13;p< 0.05). The levels of VSCs were greater in participants with hyperplastic and erosive/ulcerative OLP than that in the OLP-free participants.
{"title":"Halitosis in oral lichen planus patients.","authors":"Guangzhao Guan, Vicky Tjhang, Sally Sun, Ajith Polonowita, Li Mei","doi":"10.1088/1752-7163/ad8ee7","DOIUrl":"10.1088/1752-7163/ad8ee7","url":null,"abstract":"<p><p>To investigate the halitosis level in oral lichen planus (OLP) patients and OLP-free participants. This cross-sectional study recruited 70 participants at the New Zealand's National Centre for Dentistry. Halitosis was determined using the objective measurements (parts per billion (ppb) volatile sulphur compounds (VSCs) in the exhaled air) and subjective measurement (self-reported halitosis questionnaire). The VSCs values of OLP participants (mean ± SD: 144.64 ± 23.85 ppb) were significantly greater than that in the OLP-free participants (105.52 ± 22.31ppb) (mean difference: 39.12 ppb;<i>p</i>< 0.05; 95% CI: 27.95, 50.29). The VSCs value of hyperplastic (mean difference: 34.11; 95% CI: 20.07, 48.15;<i>p</i>< 0.05) and erosive/ulcerative (mean difference: 57.47; 95% CI: 34.19, 80.76;<i>p</i>< 0.05) OLP participants were statistically greater than that of OLP-free participants. No statistical significance was found between hyperplastic and erosive/ulcerative OLP (<i>p</i>> 0.05). 'Type (OLP-free/OLP)' has a significant effect on the dependent variable VSCs. 78.6% of OLP and 90.5% of OLP-free brushed their teeth at least twice daily, with a statistically significant observation (Mean square: 1.61; F: 13.13;<i>p</i>< 0.05). The levels of VSCs were greater in participants with hyperplastic and erosive/ulcerative OLP than that in the OLP-free participants.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1088/1752-7163/ad8e7d
Michal Wagner, Saliha Saad, Anthony J Killard
The measurement of trace breath gases is of growing interest for its potential to provide non-invasive physiological information in health and disease. While instrumental techniques such as selected-ion flow-tube mass spectrometry (SIFT-MS) can achieve this, these are less suitable for clinical application. Sensitive sensor-based systems for breath ammonia could be more widely deployed, but have proven challenging to develop. This work demonstrates the sequential analytical validation of an electrochemical impedance-based sensor system for the measurement of ammonia in breath using SIFT-MS. Qualitative and relative responses between the two methods were comparable, although there were consistent differences in absolute concentration. When tested in artificial breath ammonia, sensors had a relative impedance sensitivity of 3.43 × 10-5ppbv-1for each breath in the range of 249-1653 ppbv (r2= 0.87,p< 0.05). When correlated with SIFT-MS using human breath (n= 14), ammonia was detected in the range of 100-700 ppbv (r= 0.78,p< 0.001), demonstrating acceptable sensitivity, reproducibility and dynamic range for clinical application.
{"title":"Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry.","authors":"Michal Wagner, Saliha Saad, Anthony J Killard","doi":"10.1088/1752-7163/ad8e7d","DOIUrl":"10.1088/1752-7163/ad8e7d","url":null,"abstract":"<p><p>The measurement of trace breath gases is of growing interest for its potential to provide non-invasive physiological information in health and disease. While instrumental techniques such as selected-ion flow-tube mass spectrometry (SIFT-MS) can achieve this, these are less suitable for clinical application. Sensitive sensor-based systems for breath ammonia could be more widely deployed, but have proven challenging to develop. This work demonstrates the sequential analytical validation of an electrochemical impedance-based sensor system for the measurement of ammonia in breath using SIFT-MS. Qualitative and relative responses between the two methods were comparable, although there were consistent differences in absolute concentration. When tested in artificial breath ammonia, sensors had a relative impedance sensitivity of 3.43 × 10<sup>-5</sup>ppbv<sup>-1</sup>for each breath in the range of 249-1653 ppbv (<i>r</i><sup>2</sup>= 0.87,<i>p</i>< 0.05). When correlated with SIFT-MS using human breath (<i>n</i>= 14), ammonia was detected in the range of 100-700 ppbv (<i>r</i>= 0.78,<i>p</i>< 0.001), demonstrating acceptable sensitivity, reproducibility and dynamic range for clinical application.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1088/1752-7163/ad8e7e
Ye Kan Li, Fu Yuan Mou, Xiao Xian Qian
Idiopathic halitosis is an unusual condition of unclear causes, which has never been thoroughly investigated. We aimed to explore the role of small intestinal bacterial overgrowth (SIBO) in the pathogenesis of idiopathic halitosis, and to evaluate the therapeutic efficacy of a probiotic preparation on this condition. This retrospective observational study included 162 idiopathic halitosis patients and 198 healthy controls (HCs). Halitosis was diagnosed using the organoleptic test, and idiopathic halitosis was diagnosed by excluding known causes. SIBO was identified through the hydrogen/methane lactulose breath test, and accordingly, patients were identified as SIBO-positive or SIBO-negative. Idiopathic halitosis patients were treated with the probiotic preparationBifidobacteriumtriple viable capsule for two months, followed by re-evaluation of halitosis and SIBO. This study found that all cases of idiopathic halitosis were extra-oral. The SIBO positivity rate in idiopathic halitosis patients was significantly higher than that in HCs (74.69% [121/162] vs 3.03% [6/198],P< 0.001), with an odds ratio of 94.44% (95% CI: 39.99%-211.35%). After treatment, 80.17% (97/121) of the SIBO-positive patients became SIBO-negative. Moreover, 87.60% (106/121) of the SIBO-positive patients experienced improved halitosis, a rate significantly higher than that observed in SIBO-negative patients (2.75%, 3/41) (P< 0.001). In addition, 98.97% (96/97) of the post-treatment SIBO-negative patients experienced improved halitosis, a rate significantly higher than that of post-treatment sustained SIBO-positive patients (41.67%, 10/24) (P< 0.001). Our findings suggest that idiopathic halitosis is an extra-oral condition which mostly originates from the small intestine. SIBO is one of its underlying causes. The probiotic preparation can effectively improve idiopathic halitosis, probably through its impact on SIBO.
{"title":"Therapeutic efficacy of a probiotic preparation on idiopathic halitosis: a retrospective observational study.","authors":"Ye Kan Li, Fu Yuan Mou, Xiao Xian Qian","doi":"10.1088/1752-7163/ad8e7e","DOIUrl":"10.1088/1752-7163/ad8e7e","url":null,"abstract":"<p><p>Idiopathic halitosis is an unusual condition of unclear causes, which has never been thoroughly investigated. We aimed to explore the role of small intestinal bacterial overgrowth (SIBO) in the pathogenesis of idiopathic halitosis, and to evaluate the therapeutic efficacy of a probiotic preparation on this condition. This retrospective observational study included 162 idiopathic halitosis patients and 198 healthy controls (HCs). Halitosis was diagnosed using the organoleptic test, and idiopathic halitosis was diagnosed by excluding known causes. SIBO was identified through the hydrogen/methane lactulose breath test, and accordingly, patients were identified as SIBO-positive or SIBO-negative. Idiopathic halitosis patients were treated with the probiotic preparation<i>Bifidobacterium</i>triple viable capsule for two months, followed by re-evaluation of halitosis and SIBO. This study found that all cases of idiopathic halitosis were extra-oral. The SIBO positivity rate in idiopathic halitosis patients was significantly higher than that in HCs (74.69% [121/162] vs 3.03% [6/198],<i>P</i>< 0.001), with an odds ratio of 94.44% (95% CI: 39.99%-211.35%). After treatment, 80.17% (97/121) of the SIBO-positive patients became SIBO-negative. Moreover, 87.60% (106/121) of the SIBO-positive patients experienced improved halitosis, a rate significantly higher than that observed in SIBO-negative patients (2.75%, 3/41) (<i>P</i>< 0.001). In addition, 98.97% (96/97) of the post-treatment SIBO-negative patients experienced improved halitosis, a rate significantly higher than that of post-treatment sustained SIBO-positive patients (41.67%, 10/24) (<i>P</i>< 0.001). Our findings suggest that idiopathic halitosis is an extra-oral condition which mostly originates from the small intestine. SIBO is one of its underlying causes. The probiotic preparation can effectively improve idiopathic halitosis, probably through its impact on SIBO.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1088/1752-7163/ad89f0
E Sanmark, P Marjanen, J Virtanen, K Aaltonen, S Tauriainen, P Österlund, M Mäkelä, S Saari, A Roine, T Rönkkö, V A Vartiainen
Volatile organic compounds (VOCs) produced by human respiratory cells reflect metabolic and pathophysiological processes which can be detected with the use of modern technology. Analysis of exhaled breath or indoor air may potentially play an important role in screening of upper respiratory tract infections such as COVID-19 or influenza in the future. In this experimental study, air samples were collected and analyzed from the headspace of anin vitrocell culture infected by selected pathogens (influenza A H1N1 and seasonal coronaviruses OC43 and NL63). VOCs were measured with a real-time proton-transfer-reaction time-of-flight mass spectrometer and a differential mobility spectrometer. Measurements were performed every 12 h for 7 d. Non-infected cells and cell culture media served as references. In H1N1 and OC43 we observed four different VOCs which peaked during the infection. Different, individual VOCs were also observed in both infections. Activity began to clearly increase after 2 d in all analyses. We did not see increased VOC production in cells infected with NL63. VOC analysis seems to be suitable to differentiate the infected cells from those which are not infected as well as different viruses, from another. In the future, this could have practical value in both individual diagnostics and indoor environment screening.
{"title":"Identifying viral infections through analysis of head space volatile organic compounds.","authors":"E Sanmark, P Marjanen, J Virtanen, K Aaltonen, S Tauriainen, P Österlund, M Mäkelä, S Saari, A Roine, T Rönkkö, V A Vartiainen","doi":"10.1088/1752-7163/ad89f0","DOIUrl":"10.1088/1752-7163/ad89f0","url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) produced by human respiratory cells reflect metabolic and pathophysiological processes which can be detected with the use of modern technology. Analysis of exhaled breath or indoor air may potentially play an important role in screening of upper respiratory tract infections such as COVID-19 or influenza in the future. In this experimental study, air samples were collected and analyzed from the headspace of an<i>in vitro</i>cell culture infected by selected pathogens (influenza A H1N1 and seasonal coronaviruses OC43 and NL63). VOCs were measured with a real-time proton-transfer-reaction time-of-flight mass spectrometer and a differential mobility spectrometer. Measurements were performed every 12 h for 7 d. Non-infected cells and cell culture media served as references. In H1N1 and OC43 we observed four different VOCs which peaked during the infection. Different, individual VOCs were also observed in both infections. Activity began to clearly increase after 2 d in all analyses. We did not see increased VOC production in cells infected with NL63. VOC analysis seems to be suitable to differentiate the infected cells from those which are not infected as well as different viruses, from another. In the future, this could have practical value in both individual diagnostics and indoor environment screening.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1088/1752-7163/ad80b6
Lutea A A de Jong, Erik J H Olyslager, Jan A Wieferink, Maarten Keizer, Tobias Cornielje, Robbert P Zuidema
For decades, intake monitoring of drugs using urine as the matrix of choice is the gold standard in drug treatment centers. A properly conducted urine drug test can identify recent use of prescribed, non-prescribed and illicit drugs. However, issues like adulteration, substitution and privacy issues have driven the search for alternative matrices. This prospective pilot study evaluates the use of an impaction-based breath sampling device, Breath Explor®, as an alternative to traditional urine-based drug monitoring. Breath samples were analyzed using a validated 32-component liquid chromatography-tandem mass spectrometry method. Recovery data represent the efficiency of extracting the analytes from the breath devices. Both automated and manual processing of the Breath Explor® devices showed mean recovery rates ranging from 39.5% to 55.4% for the 32 analytes. Despite the small number of subjects, breath analysis proved to be a convenient and easy-to-use methodology. An overall kappa-values of 0.5 indicated a moderate level of agreement with urine analysis, underscoring its potential as a complementary diagnostic tool. All participants tested positive in their breath sample for methadone (70% methadone and 100% EDDP), while a significant portion (90%) tested positive for 6-monoacetylmorphine. This innovative approach offers several advantages, including non-invasiveness, reduced risk of adulteration, and the ability to perfom repeated automated sampling and confirmation testing. These findings suggest that breath-based substance monitoring could complement or even replace traditional urine-based methods in clinical practice.
{"title":"Impaction-based exhaled breath sampling for substance monitoring: a prospective pilot study (Drugxhale).","authors":"Lutea A A de Jong, Erik J H Olyslager, Jan A Wieferink, Maarten Keizer, Tobias Cornielje, Robbert P Zuidema","doi":"10.1088/1752-7163/ad80b6","DOIUrl":"10.1088/1752-7163/ad80b6","url":null,"abstract":"<p><p>For decades, intake monitoring of drugs using urine as the matrix of choice is the gold standard in drug treatment centers. A properly conducted urine drug test can identify recent use of prescribed, non-prescribed and illicit drugs. However, issues like adulteration, substitution and privacy issues have driven the search for alternative matrices. This prospective pilot study evaluates the use of an impaction-based breath sampling device, Breath Explor<sup>®</sup>, as an alternative to traditional urine-based drug monitoring. Breath samples were analyzed using a validated 32-component liquid chromatography-tandem mass spectrometry method. Recovery data represent the efficiency of extracting the analytes from the breath devices. Both automated and manual processing of the Breath Explor® devices showed mean recovery rates ranging from 39.5% to 55.4% for the 32 analytes. Despite the small number of subjects, breath analysis proved to be a convenient and easy-to-use methodology. An overall kappa-values of 0.5 indicated a moderate level of agreement with urine analysis, underscoring its potential as a complementary diagnostic tool. All participants tested positive in their breath sample for methadone (70% methadone and 100% EDDP), while a significant portion (90%) tested positive for 6-monoacetylmorphine. This innovative approach offers several advantages, including non-invasiveness, reduced risk of adulteration, and the ability to perfom repeated automated sampling and confirmation testing. These findings suggest that breath-based substance monitoring could complement or even replace traditional urine-based methods in clinical practice.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1088/1752-7163/ad7eef
Tao Chen, Mengqi Jin, Liqing Chen, Xi Xuan Cai, Yilin Huang, Keqing Shen, Yi Li, Xing Chen, Liying Chen
Depression is a pervasive and often undetected mental health condition, which poses significant challenges for early diagnosis due to its silent and subtle nature. To evaluate exhaled volatile organic compounds (VOCs) as non-invasive biomarkers for the detection of depression using a virtual surface acoustic wave sensors array (VSAW-SA). A total of 245 participants were recruited from the Hangzhou Community Health Service Center, including 38 individuals diagnosed with depression and 207 control subjects. Breath samples were collected from all participants and subjected to analysis using VSAW-SA. Univariate and multivariate analyses were employed to assess the relationship between VOCs and depression. The findings revealed that the responses of virtual sensor ID 14, 44, 59, and 176, which corresponded respectively to ethanol, trichloroethylene or isoleucine, octanoic acid or lysine, and an unidentified compound, were sensitive to depression. Taking into account potential confounders, these sensor responses were utilized to calculate a depression detection indicator. It has a sensitivity of 81.6% and a specificity of 81.6%, with an area under the curve of 0.870 (95% CI = 0.816-0.923). Conclusions: exhaled VOCs as non-invasive biomarkers of depression could be detected by a VSAW-SA. Large-scale cohort studies should be conducted to confirm the potential ability of the VSAW-SA to diagnose depression.
{"title":"Rapid detection of depression by volatile organic compounds from exhalation.","authors":"Tao Chen, Mengqi Jin, Liqing Chen, Xi Xuan Cai, Yilin Huang, Keqing Shen, Yi Li, Xing Chen, Liying Chen","doi":"10.1088/1752-7163/ad7eef","DOIUrl":"10.1088/1752-7163/ad7eef","url":null,"abstract":"<p><p>Depression is a pervasive and often undetected mental health condition, which poses significant challenges for early diagnosis due to its silent and subtle nature. To evaluate exhaled volatile organic compounds (VOCs) as non-invasive biomarkers for the detection of depression using a virtual surface acoustic wave sensors array (VSAW-SA). A total of 245 participants were recruited from the Hangzhou Community Health Service Center, including 38 individuals diagnosed with depression and 207 control subjects. Breath samples were collected from all participants and subjected to analysis using VSAW-SA. Univariate and multivariate analyses were employed to assess the relationship between VOCs and depression. The findings revealed that the responses of virtual sensor ID 14, 44, 59, and 176, which corresponded respectively to ethanol, trichloroethylene or isoleucine, octanoic acid or lysine, and an unidentified compound, were sensitive to depression. Taking into account potential confounders, these sensor responses were utilized to calculate a depression detection indicator. It has a sensitivity of 81.6% and a specificity of 81.6%, with an area under the curve of 0.870 (95% CI = 0.816-0.923). Conclusions: exhaled VOCs as non-invasive biomarkers of depression could be detected by a VSAW-SA. Large-scale cohort studies should be conducted to confirm the potential ability of the VSAW-SA to diagnose depression.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}