Pub Date : 2024-01-25DOI: 10.1088/1752-7163/ad2003
Xiao Xian Qian
Some studies have examined the impact of intra-oral halitosis on quality of life (QOL), but the impact of enterogenous extra-oral halitosis (EOH) on QOL has not been previously studied. We conducted a retrospective analysis of data from 88 patients with enterogenous EOH who visited our online halitosis clinic. A specialized halitosis associated life-quality test (HALT) questionnaire was used to assess QOL of these patients. Spearman correlation analysis was performed to investigate the relationship between HALT score and age. We found that 21 (23.86%) patients were male and 67 (76.14%) patients were female. HALT scores in females were significantly higher than in males (57.6 ± 13.6vs.45.5 ± 11.9,P< 0.001). Additionally, 13 of the 20 items of the HALT questionnaire showed significant differences between the sexes. No correlation was identified between HALT score and age. Therefore, we conclude that: (1) enterogenous EOH has a more severe impact on QOL in females compared to males. (2) More females with EOH visit the offline halitosis clinic compared to males. (3) The QOL of patients with enterogenous EOH does not decline with age.
一些研究探讨了口内口臭对生活质量(QOL)的影响,但此前尚未研究过肠源性口外口臭(EOH)对生活质量的影响。我们对 88 名就诊于在线口臭门诊的肠源性口臭患者的数据进行了回顾性分析。我们使用专门的口臭相关生活质量测试(HALT)问卷来评估这些患者的 QOL。为了研究 HALT 分数与年龄之间的关系,我们进行了斯皮尔曼相关分析。我们发现,21 名(23.86%)患者为男性,67 名(76.14%)患者为女性。女性的 HALT 分数明显高于男性(57.6 ± 13.6 vs. 45.5 ± 11.9,P < 0.001)。此外,在 HALT 问卷的 20 个项目中,有 13 个项目在性别上有显著差异。HALT 分数与年龄之间没有相关性。因此,我们得出以下结论(1) 与男性相比,女性肠源性 EOH 对 QOL 的影响更为严重。(2)与男性相比,更多患有肠源性 EOH 的女性前往线下口臭诊所就诊。(3)肠源性 EOH 患者的 QOL 不会随年龄增长而下降。
{"title":"Enterogenous extra-oral halitosis has a more severe impact on quality of life in females compared to males.","authors":"Xiao Xian Qian","doi":"10.1088/1752-7163/ad2003","DOIUrl":"10.1088/1752-7163/ad2003","url":null,"abstract":"<p><p>Some studies have examined the impact of intra-oral halitosis on quality of life (QOL), but the impact of enterogenous extra-oral halitosis (EOH) on QOL has not been previously studied. We conducted a retrospective analysis of data from 88 patients with enterogenous EOH who visited our online halitosis clinic. A specialized halitosis associated life-quality test (HALT) questionnaire was used to assess QOL of these patients. Spearman correlation analysis was performed to investigate the relationship between HALT score and age. We found that 21 (23.86%) patients were male and 67 (76.14%) patients were female. HALT scores in females were significantly higher than in males (57.6 ± 13.6<i>vs.</i>45.5 ± 11.9,<i>P</i>< 0.001). Additionally, 13 of the 20 items of the HALT questionnaire showed significant differences between the sexes. No correlation was identified between HALT score and age. Therefore, we conclude that: (1) enterogenous EOH has a more severe impact on QOL in females compared to males. (2) More females with EOH visit the offline halitosis clinic compared to males. (3) The QOL of patients with enterogenous EOH does not decline with age.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1088/1752-7163/ad1d65
Xiaoxiao Li, Pan Chang, Xing Liu, Yi Kang, Zhongjun Zhao, Yixiang Duan, Jin Liu, Wensheng Zhang
The correlation between propofol concentration in exhaled breath (CE) and plasma (CP) has been well-established, but its applicability for estimating the concentration in brain tissues (CB) remains unknown. Given the impracticality of directly sampling human brain tissues, rats are commonly used as a pharmacokinetic model due to their similar drug-metabolizing processes to humans. In this study, we measuredCE,CP, andCBin mechanically ventilated rats injected with propofol. Exhaled breath samples from the rats were collected every 20 s and analyzed using our team's developed vacuum ultraviolet time-of-flight mass spectrometry. Additionally, femoral artery blood samples and brain tissue samples at different time points were collected and measured using high-performance liquid chromatography mass spectrometry. The results demonstrated that propofol concentration in exhaled breath exhibited stronger correlations with that in brain tissues compared to plasma levels, suggesting its potential suitability for reflecting anesthetic action sites' concentrations and anesthesia titration. Our study provides valuable animal data supporting future clinical applications.
{"title":"Exhaled breath is found to be better than blood samples for determining propofol concentrations in the brain tissues of rats.","authors":"Xiaoxiao Li, Pan Chang, Xing Liu, Yi Kang, Zhongjun Zhao, Yixiang Duan, Jin Liu, Wensheng Zhang","doi":"10.1088/1752-7163/ad1d65","DOIUrl":"10.1088/1752-7163/ad1d65","url":null,"abstract":"<p><p>The correlation between propofol concentration in exhaled breath (<i>C</i><sub>E</sub>) and plasma (<i>C</i><sub>P</sub>) has been well-established, but its applicability for estimating the concentration in brain tissues (<i>C</i><sub>B</sub>) remains unknown. Given the impracticality of directly sampling human brain tissues, rats are commonly used as a pharmacokinetic model due to their similar drug-metabolizing processes to humans. In this study, we measured<i>C</i><sub>E</sub>,<i>C</i><sub>P</sub>, and<i>C</i><sub>B</sub>in mechanically ventilated rats injected with propofol. Exhaled breath samples from the rats were collected every 20 s and analyzed using our team's developed vacuum ultraviolet time-of-flight mass spectrometry. Additionally, femoral artery blood samples and brain tissue samples at different time points were collected and measured using high-performance liquid chromatography mass spectrometry. The results demonstrated that propofol concentration in exhaled breath exhibited stronger correlations with that in brain tissues compared to plasma levels, suggesting its potential suitability for reflecting anesthetic action sites' concentrations and anesthesia titration. Our study provides valuable animal data supporting future clinical applications.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1088/1752-7163/ad1cf1
Zachary Joseph Sasiene, Erick Scott LeBrun, Eric Schaller, Phillip Michael Mach, Robert Taylor, Lionel Candelaria, Trevor Griffiths Glaros, Justin Baca, Ethan Matthew McBride
The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (p< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.
{"title":"Real-time breath analysis towards a healthy human breath profile.","authors":"Zachary Joseph Sasiene, Erick Scott LeBrun, Eric Schaller, Phillip Michael Mach, Robert Taylor, Lionel Candelaria, Trevor Griffiths Glaros, Justin Baca, Ethan Matthew McBride","doi":"10.1088/1752-7163/ad1cf1","DOIUrl":"10.1088/1752-7163/ad1cf1","url":null,"abstract":"<p><p>The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (<i>p</i>< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1088/1752-7163/ad1d64
Justin D M Martin, Falzone Claudia, Anne-Claude Romain
Comparing electronic nose (e-nose) performance is a challenging task because of a lack of standardised method. This paper proposes a method for defining and quantifying an indicator of the effectiveness of multi-sensor systems in detecting cancers by artificial breath analysis. To build this method, an evaluation of the performances of an array of metal oxide sensors built for use as a lung cancer screening tool was conducted. Breath from 20 healthy volunteers has been sampled in fluorinated ethylene propylene sampling bags. These healthy samples were analysed with and without the addition of nine volatile organic compound (VOC) cancer biomarkers, chosen from literature. The concentration of the VOC added was done in increasing amounts. The more VOC were added, the better the discrimination between 'healthy' samples (breath without additives) and 'cancer' samples (breath with additives) was. By determining at which level of concentration the e-nose fails to reliably discriminate between the two groups, we estimate its ability to well predict the presence of the disease or not in a realistic situation. In this work, a home-made e-nose is put to the test. The results underline that the biomarkers need to be about 5.3 times higher in concentration than in real breath for the home-made nose to tell the difference between groups with a sufficient confidence.
{"title":"How well does your e-nose detect cancer? Application of artificial breath analysis for performance assessment.","authors":"Justin D M Martin, Falzone Claudia, Anne-Claude Romain","doi":"10.1088/1752-7163/ad1d64","DOIUrl":"10.1088/1752-7163/ad1d64","url":null,"abstract":"<p><p>Comparing electronic nose (e-nose) performance is a challenging task because of a lack of standardised method. This paper proposes a method for defining and quantifying an indicator of the effectiveness of multi-sensor systems in detecting cancers by artificial breath analysis. To build this method, an evaluation of the performances of an array of metal oxide sensors built for use as a lung cancer screening tool was conducted. Breath from 20 healthy volunteers has been sampled in fluorinated ethylene propylene sampling bags. These healthy samples were analysed with and without the addition of nine volatile organic compound (VOC) cancer biomarkers, chosen from literature. The concentration of the VOC added was done in increasing amounts. The more VOC were added, the better the discrimination between 'healthy' samples (breath without additives) and 'cancer' samples (breath with additives) was. By determining at which level of concentration the e-nose fails to reliably discriminate between the two groups, we estimate its ability to well predict the presence of the disease or not in a realistic situation. In this work, a home-made e-nose is put to the test. The results underline that the biomarkers need to be about 5.3 times higher in concentration than in real breath for the home-made nose to tell the difference between groups with a sufficient confidence.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139424823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1088/1752-7163/ad1b19
Seonggyu Choi, Minsuk Oh, Okimitsu Oyama, Dong-Hyuk Park, Sunghyun Hong, Tae Ho Lee, Junho Hwang, Hyun-Sook Lee, Yong-Sahm Choe, Wooyoung Lee, Justin Y Jeon
When attempts to lose body fat mass frequently fail, breath acetone (BA) monitoring may assist fat mass loss during a low-carbohydrate diet as it can provide real-time body fat oxidation levels. This randomized controlled study aimed to evaluate the effectiveness of monitoring BA levels and providing feedback on fat oxidation during a three-week low-carbohydrate diet intervention. Forty-seven participants (mean age = 27.8 ± 4.4 years, 53.3% females, body mass index = 24.1 ± 3.4 kg m-2) were randomly assigned to three groups (1:1:1 ratio): daily BA assessment with a low-carbohydrate diet, body weight assessment (body scale (BS)) with a low-carbohydrate diet, and low-carbohydrate diet only. Primary outcome was the change in fat mass and secondary outcomes were the changes in body weight and body composition. Forty-five participants completed the study (compliance rate: 95.7%). Fat mass was significantly reduced in all three groups (allP< 0.05); however, the greatest reduction in fat mass was observed in the BA group compared to the BS (differences in changes in fat mass, -1.1 kg; 95% confidence interval: -2.3, -0.2;P= 0.040) and control (differences in changes in fat mass, -1.3 kg; 95% confidence interval: -2.1, -0.4;P= 0.013) groups. The BA group showed significantly greater reductions in body weight and visceral fat mass than the BS and control groups (allP< 0.05). In addition, the percent body fat and skeletal muscle mass were significantly reduced in both BA and BS groups (allP< 0.05). However, no significant differences were found in changes in body fat percentage and skeletal muscle mass between the study groups. Monitoring BA levels, which could have motivated participants to adhere more closely to the low-carbohydrate diet, to assess body fat oxidation rates may be an effective intervention for reducing body fat mass (compared to body weight assessment or control conditions). This approach could be beneficial for individuals seeking to manage body fat and prevent obesity.
{"title":"Effectiveness of breath acetone monitoring in reducing body fat and improving body composition: a randomized controlled study.","authors":"Seonggyu Choi, Minsuk Oh, Okimitsu Oyama, Dong-Hyuk Park, Sunghyun Hong, Tae Ho Lee, Junho Hwang, Hyun-Sook Lee, Yong-Sahm Choe, Wooyoung Lee, Justin Y Jeon","doi":"10.1088/1752-7163/ad1b19","DOIUrl":"10.1088/1752-7163/ad1b19","url":null,"abstract":"<p><p>When attempts to lose body fat mass frequently fail, breath acetone (BA) monitoring may assist fat mass loss during a low-carbohydrate diet as it can provide real-time body fat oxidation levels. This randomized controlled study aimed to evaluate the effectiveness of monitoring BA levels and providing feedback on fat oxidation during a three-week low-carbohydrate diet intervention. Forty-seven participants (mean age = 27.8 ± 4.4 years, 53.3% females, body mass index = 24.1 ± 3.4 kg m<sup>-2</sup>) were randomly assigned to three groups (1:1:1 ratio): daily BA assessment with a low-carbohydrate diet, body weight assessment (body scale (BS)) with a low-carbohydrate diet, and low-carbohydrate diet only. Primary outcome was the change in fat mass and secondary outcomes were the changes in body weight and body composition. Forty-five participants completed the study (compliance rate: 95.7%). Fat mass was significantly reduced in all three groups (all<i>P</i>< 0.05); however, the greatest reduction in fat mass was observed in the BA group compared to the BS (differences in changes in fat mass, -1.1 kg; 95% confidence interval: -2.3, -0.2;<i>P</i>= 0.040) and control (differences in changes in fat mass, -1.3 kg; 95% confidence interval: -2.1, -0.4;<i>P</i>= 0.013) groups. The BA group showed significantly greater reductions in body weight and visceral fat mass than the BS and control groups (all<i>P</i>< 0.05). In addition, the percent body fat and skeletal muscle mass were significantly reduced in both BA and BS groups (all<i>P</i>< 0.05). However, no significant differences were found in changes in body fat percentage and skeletal muscle mass between the study groups. Monitoring BA levels, which could have motivated participants to adhere more closely to the low-carbohydrate diet, to assess body fat oxidation rates may be an effective intervention for reducing body fat mass (compared to body weight assessment or control conditions). This approach could be beneficial for individuals seeking to manage body fat and prevent obesity.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-05DOI: 10.1088/1752-7163/ad15fb
Manoj Khokhar
Breath biomarkers are substances found in exhaled breath that can be used for non-invasive diagnosis and monitoring of medical conditions, including kidney disease. Detection techniques include mass spectrometry (MS), gas chromatography (GC), and electrochemical sensors. Biosensors, such as GC-MS or electronic nose (e-nose) devices, can be used to detect volatile organic compounds (VOCs) in exhaled breath associated with metabolic changes in the body, including the kidneys. E-nose devices could provide an early indication of potential kidney problems through the detection of VOCs associated with kidney dysfunction. This review discusses the sources of breath biomarkers for monitoring renal disease during dialysis and different biosensor approaches for detecting exhaled breath biomarkers. The future of using various types of biosensor-based real-time breathing diagnosis for renal failure is also discussed.
{"title":"Non-invasive detection of renal disease biomarkers through breath analysis.","authors":"Manoj Khokhar","doi":"10.1088/1752-7163/ad15fb","DOIUrl":"10.1088/1752-7163/ad15fb","url":null,"abstract":"<p><p>Breath biomarkers are substances found in exhaled breath that can be used for non-invasive diagnosis and monitoring of medical conditions, including kidney disease. Detection techniques include mass spectrometry (MS), gas chromatography (GC), and electrochemical sensors. Biosensors, such as GC-MS or electronic nose (e-nose) devices, can be used to detect volatile organic compounds (VOCs) in exhaled breath associated with metabolic changes in the body, including the kidneys. E-nose devices could provide an early indication of potential kidney problems through the detection of VOCs associated with kidney dysfunction. This review discusses the sources of breath biomarkers for monitoring renal disease during dialysis and different biosensor approaches for detecting exhaled breath biomarkers. The future of using various types of biosensor-based real-time breathing diagnosis for renal failure is also discussed.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138804128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exhaled breath analysis is evolving into an increasingly important non-invasive diagnostic tool. Volatile organic compounds (VOCs) in breath contain information about health status and are promising biomarkers for several diseases, including respiratory infections caused by bacteria. To monitor the composition of VOCs in breath or the emission of VOCs from bacteria, sensitive analytical techniques are required. Next to mass spectrometry, ion mobility spectrometry (IMS) is considered a promising analytical tool for detecting gaseous analytes in the parts per billion by volume to parts per trillion by volume range. This work presents a new, dual coupling of thermal desorption gas chromatography to a quadrupole mass spectrometer (MS) and an IMS by operating a simple splitter. Nearly identical retention times can be reached in the range of up to 30 min with slight deviations of 0.06 min-0.24 min. This enables the identification of unknown compounds in the IMS chromatogram using unambiguous mass spectral identification, as there are still no commercially available databases for IMS. It is also possible to discriminate one of the detectors using the splitter to improve detection limits. Using a test liquid mixture of seven ketones, namely 2-butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, and 2-decanone with a concentration of 0.01 g l-1reproducibilities ranging from 3.0% to 7.6% for MS and 2.2%-5.3%, for IMS were obtained, respectively. In order to test the system optimized here for the field of breath analysis, characteristic VOCs such as ethanol, isoprene, acetone, 2-propanol, and 1-propanol were successfully identified in exhaled air using the dual detector system due to the match of the corresponding IMS, and MS spectra. The presented results may be considered to be a starting point for the greater use of IMS in combination with MS within the medical field.
{"title":"A novel coupling technique based on thermal desorption gas chromatography with mass spectrometry and ion mobility spectrometry for breath analysis.","authors":"Hannah Schanzmann, Veronika Ruzsanyi, Parviz Ahmad-Nejad, Ursula Telgheder, Stefanie Sielemann","doi":"10.1088/1752-7163/ad1615","DOIUrl":"10.1088/1752-7163/ad1615","url":null,"abstract":"<p><p>Exhaled breath analysis is evolving into an increasingly important non-invasive diagnostic tool. Volatile organic compounds (VOCs) in breath contain information about health status and are promising biomarkers for several diseases, including respiratory infections caused by bacteria. To monitor the composition of VOCs in breath or the emission of VOCs from bacteria, sensitive analytical techniques are required. Next to mass spectrometry, ion mobility spectrometry (IMS) is considered a promising analytical tool for detecting gaseous analytes in the parts per billion by volume to parts per trillion by volume range. This work presents a new, dual coupling of thermal desorption gas chromatography to a quadrupole mass spectrometer (MS) and an IMS by operating a simple splitter. Nearly identical retention times can be reached in the range of up to 30 min with slight deviations of 0.06 min-0.24 min. This enables the identification of unknown compounds in the IMS chromatogram using unambiguous mass spectral identification, as there are still no commercially available databases for IMS. It is also possible to discriminate one of the detectors using the splitter to improve detection limits. Using a test liquid mixture of seven ketones, namely 2-butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, and 2-decanone with a concentration of 0.01 g l<sup>-1</sup>reproducibilities ranging from 3.0% to 7.6% for MS and 2.2%-5.3%, for IMS were obtained, respectively. In order to test the system optimized here for the field of breath analysis, characteristic VOCs such as ethanol, isoprene, acetone, 2-propanol, and 1-propanol were successfully identified in exhaled air using the dual detector system due to the match of the corresponding IMS, and MS spectra. The presented results may be considered to be a starting point for the greater use of IMS in combination with MS within the medical field.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138804203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.1088/1752-7163/ad15a3
Anne E Jung, Christina N Davidson, Christopher J Land, Aubrianne I Dash, Barlow T Guess, Heidi S Edmonds, Rhonda L Pitsch, Sean W Harshman
Due to the overall low abundance of volatile compounds in exhaled breath, it is necessary to preconcentrate the sample prior to traditional thermal desorption (TD) gas chromatography mass spectrometry analysis. While certain aspects of TD tubes, such as volatile storage, have been evaluated, many aspects remain uncharacterized. Two common TD tubes, Tenax TA and Biomonitoring 5TD tubes, were evaluated for background content and flow rate variability. The data illustrate that the Biomonitoring 5TD tubes have the highest number (23) and abundance of background contamination greater than 3x the mean noise when compared to Tenax TA (13) and empty tubes (9). Tentative identifications of the compounds in the background contamination experiment show that greater than 59% (16/27) of the compounds identified have been reported in the breath literature. The data illustrate the TD tube background abundance could account for more than 70% of the chromatographic signal from exhaled breath for these select compounds. Flow rate measurements of 200 Tenax TA and 200 Biomonitoring 5TD tubes show a large range in measured flow rates among the TD tubes (Tenax: 252.9-284.0 ml min-1, 5TD: 220.6-255.1 ml min-1). Finally, TD tubes of each type, Tenax TA and Biomonitoring 5TD, previously established to have high, medium, and low flow rates, show insignificant differences (p> 0.05) among the tubes of different flow rates, using both gas standards and an exhaled breath from a peppermint experiment. Collectively, these results establish overall background compounds attributed to each TD tube type tested. Additionally, while measured flow rate variability is present and plausibly impacts exhaled breath results, the data demonstrate no statistically significant difference was observed between tubes showing high, medium, and low flow rates from two separate sample types.
{"title":"Impact of thermal desorption tubes on the variability of exhaled breath data.","authors":"Anne E Jung, Christina N Davidson, Christopher J Land, Aubrianne I Dash, Barlow T Guess, Heidi S Edmonds, Rhonda L Pitsch, Sean W Harshman","doi":"10.1088/1752-7163/ad15a3","DOIUrl":"10.1088/1752-7163/ad15a3","url":null,"abstract":"<p><p>Due to the overall low abundance of volatile compounds in exhaled breath, it is necessary to preconcentrate the sample prior to traditional thermal desorption (TD) gas chromatography mass spectrometry analysis. While certain aspects of TD tubes, such as volatile storage, have been evaluated, many aspects remain uncharacterized. Two common TD tubes, Tenax TA and Biomonitoring 5TD tubes, were evaluated for background content and flow rate variability. The data illustrate that the Biomonitoring 5TD tubes have the highest number (23) and abundance of background contamination greater than 3x the mean noise when compared to Tenax TA (13) and empty tubes (9). Tentative identifications of the compounds in the background contamination experiment show that greater than 59% (16/27) of the compounds identified have been reported in the breath literature. The data illustrate the TD tube background abundance could account for more than 70% of the chromatographic signal from exhaled breath for these select compounds. Flow rate measurements of 200 Tenax TA and 200 Biomonitoring 5TD tubes show a large range in measured flow rates among the TD tubes (Tenax: 252.9-284.0 ml min<sup>-1</sup>, 5TD: 220.6-255.1 ml min<sup>-1</sup>). Finally, TD tubes of each type, Tenax TA and Biomonitoring 5TD, previously established to have high, medium, and low flow rates, show insignificant differences (<i>p</i>> 0.05) among the tubes of different flow rates, using both gas standards and an exhaled breath from a peppermint experiment. Collectively, these results establish overall background compounds attributed to each TD tube type tested. Additionally, while measured flow rate variability is present and plausibly impacts exhaled breath results, the data demonstrate no statistically significant difference was observed between tubes showing high, medium, and low flow rates from two separate sample types.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138804124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1088/1752-7163/ad10e1
Rosa A Sola-Martínez, Jiafa Zeng, Mo Awchi, Amanda Gisler, Kim Arnold, Kapil Dev Singh, Urs Frey, Manuel Cánovas Díaz, Teresa de Diego Puente, Pablo Sinues
Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) is an established technique in the field of breath analysis characterized by its short analysis time, as well as high levels of sensitivity and selectivity. Traditionally, SESI-HRMS has been used for real-time breath analysis, which requires subjects to be at the location of the analytical platform. Therefore, it limits the possibilities for an introduction of this methodology in day-to-day clinical practice. However, recent methodological developments have shown feasibility on the remote sampling of exhaled breath in Nalophan® bags prior to measurement using SESI-HRMS. To further explore the range of applications of this method, we conducted a proof-of-concept study to assess the impact of the storage time of exhaled breath in Nalophan® bags at different temperatures (room temperature and dry ice) on the relative intensities of the compounds. In addition, we performed a detailed study of the storage effect of 27 aldehydes related to oxidative stress. After 2 h of storage, the mean of intensity of allm/zsignals relative to the samples analyzed without prior storage remained above 80% at both room temperature and dry ice. For the 27 aldehydes, the mean relative intensity losses were lower than 20% at 24 h of storage, remaining practically stable since the first hour of storage following sample collection. Furthermore, the mean relative intensity of most aldehydes in samples stored at room temperature was higher than those stored in dry ice, which could be related to water vapor condensation issues. These findings indicate that the exhaled breath samples could be preserved for hours with a low percentage of mean relative intensity loss, thereby allowing more flexibility in the logistics of off-line SESI-HRMS studies.
{"title":"Preservation of exhaled breath samples for analysis by off-line SESI-HRMS: proof-of-concept study.","authors":"Rosa A Sola-Martínez, Jiafa Zeng, Mo Awchi, Amanda Gisler, Kim Arnold, Kapil Dev Singh, Urs Frey, Manuel Cánovas Díaz, Teresa de Diego Puente, Pablo Sinues","doi":"10.1088/1752-7163/ad10e1","DOIUrl":"10.1088/1752-7163/ad10e1","url":null,"abstract":"<p><p>Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) is an established technique in the field of breath analysis characterized by its short analysis time, as well as high levels of sensitivity and selectivity. Traditionally, SESI-HRMS has been used for real-time breath analysis, which requires subjects to be at the location of the analytical platform. Therefore, it limits the possibilities for an introduction of this methodology in day-to-day clinical practice. However, recent methodological developments have shown feasibility on the remote sampling of exhaled breath in Nalophan® bags prior to measurement using SESI-HRMS. To further explore the range of applications of this method, we conducted a proof-of-concept study to assess the impact of the storage time of exhaled breath in Nalophan® bags at different temperatures (room temperature and dry ice) on the relative intensities of the compounds. In addition, we performed a detailed study of the storage effect of 27 aldehydes related to oxidative stress. After 2 h of storage, the mean of intensity of all<i>m/z</i>signals relative to the samples analyzed without prior storage remained above 80% at both room temperature and dry ice. For the 27 aldehydes, the mean relative intensity losses were lower than 20% at 24 h of storage, remaining practically stable since the first hour of storage following sample collection. Furthermore, the mean relative intensity of most aldehydes in samples stored at room temperature was higher than those stored in dry ice, which could be related to water vapor condensation issues. These findings indicate that the exhaled breath samples could be preserved for hours with a low percentage of mean relative intensity loss, thereby allowing more flexibility in the logistics of off-line SESI-HRMS studies.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138460137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1088/1752-7163/ad10f9
Nils Oskar Jõgi, Karin Ersson, Kjell Alving, Christina Krantz, Andrei Malinovschi
Primary ciliary dyskinesia (PCD) is a genetic respiratory disease characterized by chronic cough, recurrent respiratory infections, and rhinosinusitis. The measurement of nasal nitric oxide (nNO) against resistance has been suggested as a sensitive screening method. However, current recommendations argue for the use of expensive, chemiluminescence devices to measure nNO. This study aimed to compare nNO measurement using three different devices in distinguishing PCD patients from healthy controls and cystic fibrosis (CF) patients and to evaluate their diagnostic precision. The study included 16 controls, 16 PCD patients, and 12 CF patients matched for age and sex. nNO measurements were performed using a chemiluminescence device (Eco Medics CLD 88sp), and two devices based on electrochemical sensors (Medisoft FeNO+ and NIOX Vero) following standardized guidelines. Correlation estimation, Bland–Altman, ROC curve, and one-way ANOVA were used to assess device differences and diagnostic performance. Significantly lower nNO output values were observed in PCD and CF patients compared to controls during exhalation against resistance. The correlation analysis showed high agreement among the three devices. ROC curve analysis demonstrated 100% sensitivity and specificity at different cut-off values for all devices in distinguishing PCD patients from controls (optimal cut-offs: EcoMedics 73, Medisoft 92 and NIOX 87 (nl min−1 )). Higher nNO output values were obtained with the Medisoft and NIOX devices as compared to the EcoMedics device, with a bias of−19 nl min−1 (95% CI: −73–35) and −21 nl min−1 (−73–31) accordingly. These findings indicate that all three tested devices can potentially serve as diagnostic tools for PCD if device specific cut-off values are used. This last-mentioned aspect warrants further studies and consideration in defining optimal cut-offs for individual device.
{"title":"Device comparison study to measure nasal nitric oxide in relation to primary ciliary dyskinesia","authors":"Nils Oskar Jõgi, Karin Ersson, Kjell Alving, Christina Krantz, Andrei Malinovschi","doi":"10.1088/1752-7163/ad10f9","DOIUrl":"https://doi.org/10.1088/1752-7163/ad10f9","url":null,"abstract":"Primary ciliary dyskinesia (PCD) is a genetic respiratory disease characterized by chronic cough, recurrent respiratory infections, and rhinosinusitis. The measurement of nasal nitric oxide (nNO) against resistance has been suggested as a sensitive screening method. However, current recommendations argue for the use of expensive, chemiluminescence devices to measure nNO. This study aimed to compare nNO measurement using three different devices in distinguishing PCD patients from healthy controls and cystic fibrosis (CF) patients and to evaluate their diagnostic precision. The study included 16 controls, 16 PCD patients, and 12 CF patients matched for age and sex. nNO measurements were performed using a chemiluminescence device (Eco Medics CLD 88sp), and two devices based on electrochemical sensors (Medisoft FeNO+ and NIOX Vero) following standardized guidelines. Correlation estimation, Bland–Altman, ROC curve, and one-way ANOVA were used to assess device differences and diagnostic performance. Significantly lower nNO output values were observed in PCD and CF patients compared to controls during exhalation against resistance. The correlation analysis showed high agreement among the three devices. ROC curve analysis demonstrated 100% sensitivity and specificity at different cut-off values for all devices in distinguishing PCD patients from controls (optimal cut-offs: EcoMedics 73, Medisoft 92 and NIOX 87 (nl min<sup>−1</sup> )). Higher nNO output values were obtained with the Medisoft and NIOX devices as compared to the EcoMedics device, with a bias of−19 nl min<sup>−1</sup> (95% CI: −73–35) and −21 nl min<sup>−1</sup> (−73–31) accordingly. These findings indicate that all three tested devices can potentially serve as diagnostic tools for PCD if device specific cut-off values are used. This last-mentioned aspect warrants further studies and consideration in defining optimal cut-offs for individual device.","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"25 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}