首页 > 最新文献

Journal of breath research最新文献

英文 中文
Breath Summit 2024: International CONGRESS FOR BREATH RESEARCH. 呼吸高峰2024:为呼吸研究的国际会议。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-12-04 DOI: 10.1088/1752-7163/ad108e
Joachim Pleil, Michael D Davis
{"title":"Breath Summit 2024: International CONGRESS FOR BREATH RESEARCH.","authors":"Joachim Pleil, Michael D Davis","doi":"10.1088/1752-7163/ad108e","DOIUrl":"10.1088/1752-7163/ad108e","url":null,"abstract":"","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138477833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A clinical proteomics study of exhaled breath condensate and biomarkers for pulmonary embolism. 呼气冷凝物和肺栓塞生物标志物的临床蛋白质组学研究。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-11-17 DOI: 10.1088/1752-7163/ad0aaa
Inger Lise Gade, Signe Juul Riddersholm, Thomas Stilling-Vinther, Rasmus Froberg Brøndum, Tue Bjerg Bennike, Bent Honoré

Pulmonary embolism (PE) can be a diagnostic challenge. Current diagnostic markers for PE are unspecific and new diagnostic tools are needed. The air we exhale is a possible new source for biomarkers which can be tapped into by analysing the exhaled breath condensate (EBC). We analysed the EBC from patients with PE and controls to investigate if the EBC is a useful source for new diagnostic biomarkers of PE. We collected and analysed EBC samples from patients with suspected PE and controls matched on age and sex. Patients in whom PE was ruled out after diagnostic work-up were included in the control group to increase the sensitivity and generalizability of the identified markers. EBC samples were collected using an RTube™. The protein composition of the EBCs were analysed using data dependent label-free quantitative nano liquid chromatography-tandem mass spectrometry. EBC samples from 28 patients with confirmed PE, and 49 controls were analysed. A total of 928 EBC proteins were identified in the 77 EBC samples. As expected, a low protein concentration was determined which resulted in many proteins with unmeasurable levels in several samples. The levels of HSPA5, PEBP1 and SFTPA2 were higher and levels of POF1B, EPPK1, PSMA4, ALDOA, and CFL1 were lower in PE compared with controls. In conclusion, the human EBC contained a variety of endogenous proteins and may be a source for new diagnostic markers of PE and other diseases.

肺栓塞(PE)可能是一个诊断挑战。目前PE的诊断标志物是非特异性的,需要新的诊断工具。我们呼出的空气是生物标志物的一个可能的新来源,可以通过分析呼出的呼吸冷凝物(EBC)来利用它。我们分析了PE患者和对照组的EBC,以研究EBC是否是PE新诊断生物标志物的有用来源。将诊断检查后排除PE的患者纳入对照组,以提高已识别标志物的敏感性和可推广性。使用RTube采集EBC样本™. 使用数据依赖性无标记定量纳米液相色谱-串联质谱法分析EBCs的蛋白质组成。对28名确诊PE患者和49名对照组的EBC样本进行了分析。在77个EBC样品中共鉴定出928个EBC蛋白。正如预期的那样,确定了低蛋白质浓度,这导致在几个样品中许多蛋白质的水平无法测量。与对照组相比,PE中HSPA5、PEBP1和SFTPA2的水平较高,POF1B、EPPK1、PSMA4、ALDOA和CFL1的水平较低。总之,人类EBC含有多种内源性蛋白质,可能是PE和其他疾病新诊断标志物的来源。该项目在ClinicalTrials.gov上注册(标识符NCT04010760)。
{"title":"A clinical proteomics study of exhaled breath condensate and biomarkers for pulmonary embolism.","authors":"Inger Lise Gade, Signe Juul Riddersholm, Thomas Stilling-Vinther, Rasmus Froberg Brøndum, Tue Bjerg Bennike, Bent Honoré","doi":"10.1088/1752-7163/ad0aaa","DOIUrl":"10.1088/1752-7163/ad0aaa","url":null,"abstract":"<p><p>Pulmonary embolism (PE) can be a diagnostic challenge. Current diagnostic markers for PE are unspecific and new diagnostic tools are needed. The air we exhale is a possible new source for biomarkers which can be tapped into by analysing the exhaled breath condensate (EBC). We analysed the EBC from patients with PE and controls to investigate if the EBC is a useful source for new diagnostic biomarkers of PE. We collected and analysed EBC samples from patients with suspected PE and controls matched on age and sex. Patients in whom PE was ruled out after diagnostic work-up were included in the control group to increase the sensitivity and generalizability of the identified markers. EBC samples were collected using an RTube™. The protein composition of the EBCs were analysed using data dependent label-free quantitative nano liquid chromatography-tandem mass spectrometry. EBC samples from 28 patients with confirmed PE, and 49 controls were analysed. A total of 928 EBC proteins were identified in the 77 EBC samples. As expected, a low protein concentration was determined which resulted in many proteins with unmeasurable levels in several samples. The levels of HSPA5, PEBP1 and SFTPA2 were higher and levels of POF1B, EPPK1, PSMA4, ALDOA, and CFL1 were lower in PE compared with controls. In conclusion, the human EBC contained a variety of endogenous proteins and may be a source for new diagnostic markers of PE and other diseases.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71521588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A benchmark study of data normalisation methods for PTR-TOF-MS exhaled breath metabolomics. PTR-TOF-MS呼气代谢组学数据归一化方法的基准研究。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-11-10 DOI: 10.1088/1752-7163/ad08ce
Camille Roquencourt, Elodie Lamy, Emmanuelle Bardin, Philippe Devillier, Stanislas Grassin-Delyle

Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry (MS) technologies such as proton transfer reaction (PTR) MS are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis. We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods. We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were probabilistic quotient normalisation and normalisation using optimal selection of multiple internal standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the receiver operating characteristic (ROC) curve for the diagnosis of COVID-19. Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models.Clinical trials: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21).

背景:Volatilomics是代谢组学的一个分支,专门用于分析呼出气体中的挥发性有机化合物(VOC),用于医学诊断或治疗监测目的。通常使用实时质谱技术,如质子转移反应质谱法(PTR-MS),数据归一化是丢弃非生物来源的不必要变化的重要步骤,因为可能会观察到批次效应和灵敏度随时间的损失。由于实时呼吸分析的归一化方法研究不足,我们旨在对已知的代谢组学数据归一化方法进行基准测试,并将其应用于PTR-MS数据分析。方法:我们在急诊科或重症监护室患者新冠肺炎诊断临床试验的两个数据集上比较了七种标准化方法,其中五种基于统计学,两种使用多种标准代谢物。我们评估了选择标准代谢物的不同特征选择方法,以及使用环境空气的多次重复测量来训练归一化方法。结果:我们表明归一化工具可以校正时间依赖漂移。为两个队列提供最佳校正的方法是概率商归一化和使用多个内部标准的最优选择的归一化。归一化还提高了机器学习模型的诊断性能,显著提高了诊断COVID-19的敏感性、特异性和ROC曲线下面积。结论:我们的结果强调了在PTR-MS数据处理过程中添加适当归一化步骤的重要性,这允许统计模型的预测性能的显著改进 ;临床试验:VOC新冠肺炎诊断(EudraCT 2020-A02682-37);RECORDS试验(EudraCT 2020-000296-21);关键词:数据标准化,PTR-TOF-MS,机器学习,呼气 。
{"title":"A benchmark study of data normalisation methods for PTR-TOF-MS exhaled breath metabolomics.","authors":"Camille Roquencourt, Elodie Lamy, Emmanuelle Bardin, Philippe Devillier, Stanislas Grassin-Delyle","doi":"10.1088/1752-7163/ad08ce","DOIUrl":"10.1088/1752-7163/ad08ce","url":null,"abstract":"<p><p>Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry (MS) technologies such as proton transfer reaction (PTR) MS are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis. We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods. We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were probabilistic quotient normalisation and normalisation using optimal selection of multiple internal standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the receiver operating characteristic (ROC) curve for the diagnosis of COVID-19. Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models.<b>Clinical trials</b>: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21).</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71423955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammatory markers in exhaled breath condensate in nonasthmatic children with food allergy. 食物过敏的非哮喘儿童呼出气体冷凝液中的炎症标志物。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-11-09 DOI: 10.1088/1752-7163/ad02b5
Ozge Yilmaz, Seda Tunca, Adem Yasar, Merve Ocalan, Fatma Taneli, Hasan Yuksel

Allergy is a systemic inflammation; therefore, although the allergic symptom may be seen in a specific organ system, the effects of this inflammation may be seen in other organs. interleukin (IL) IL4, IL5 and IL13 are the major Th2 cytokines and e-cadherin is an epithelial barrier protein. The objective of this research was to assess indicators of inflammation specific to Th2 responses and proteins related to the protective barrier of the airway's inner lining. These assessments were conducted using exhaled breath condensate (EBC), which provides insights into peripheral airway conditions of children suffering from food allergies. The study had 24 patients with food allergy and 24 control individuals younger than three years of age with no history of food reaction. The diagnosis of food allergy was based on food allergen-specific IgE and skin prick test positivity in our clinic and oral food testing in selected cases. EBC samples were obtained by Ecoscreen (Jaegar, Hoechberg, Germany). IL4, IL5, IL13 and E-cadherin levels were measured in these samples by enzyme linked immunoassay. The group of children with food allergies, consisting mainly of 14 girls, had a median age of 16 months, whereas the control group, which included 11 girls, had a median age of 15 months (p= 0.89). Comparing the two groups, children with food allergies exhibited notably lower levels of IL-13 in the EBC compared to the control group (median values of 59.14 and 76.36, respectively,p= 0.02). Conversely, the concentration of IL-4 in the EBC was significantly higher in children with food allergies (median values of 1.94 and 1.29, respectively,p= 0.003). However, the levels of IL-5 and e-cadherin showed no significant differences between the two groups (withp-values of 0.74 and 0.09, respectively) as shown in table1. High level of IL-4 despite the low level of IL-13 in the EBC of children having food allergy may be indicative of an early inflammatory phase that is not yet in the effector phase. Studies about the evolution of this process later in life are needed to assess the role of airway inflammation in children with food allergy who develop asthma.

摘要 ;简介:过敏是一种全身性炎症;因此,尽管过敏症状可能出现在特定的器官系统中,但这种炎症的影响可能出现在其他器官中。IL4、IL5和IL13是主要的Th2细胞因子并且e-粘附素是上皮屏障蛋白。本研究的目的是评估Th2反应特异性炎症指标和与气道内衬保护屏障相关的蛋白质。这些评估是使用呼出的冷凝液进行的,它可以深入了解食物过敏儿童的局部气道状况 ;材料和方法:本研究有24名食物过敏患者和24名三岁以下无食物反应史的对照者。食物过敏的诊断是基于我们诊所的食物过敏原特异性IgE和皮肤点刺试验阳性,以及选定病例的口服食物试验。呼气冷凝物(EBC)样品通过Ecoscreen(Jaegar,Hoechberg,德国)获得。通过ELISA测定这些样品中的IL4-5-13和E-钙粘蛋白水平 ;结果:食物过敏儿童组(主要由14名女孩组成)的中位年龄为16个月,而对照组(包括11名女孩)的中位数年龄为15个月(p=0.89),与对照组相比,食物过敏儿童呼出的呼气冷凝液(EBC)中的IL-13水平显著较低(中值分别为59.14和76.36,p=0.02)。相反,食物过敏的儿童呼出的EBC中的IL-4浓度显著较高(中值分别是1.94和1.29,p=0.003)。然而,IL-5和e-钙粘蛋白的水平在两组之间没有显示出显著差异(p值分别为0.74和0.09),如表1所示;结论:尽管食物过敏儿童的EBC中IL-13水平较低,但IL-4水平较高,这可能表明早期炎症阶段尚未进入效应期。需要对这一过程在以后生活中的演变进行研究,以评估气道炎症在食物过敏儿童哮喘中的作用 ;关键词:IL-4,IL-5,IL-13,E-钙粘蛋白。
{"title":"Inflammatory markers in exhaled breath condensate in nonasthmatic children with food allergy.","authors":"Ozge Yilmaz, Seda Tunca, Adem Yasar, Merve Ocalan, Fatma Taneli, Hasan Yuksel","doi":"10.1088/1752-7163/ad02b5","DOIUrl":"10.1088/1752-7163/ad02b5","url":null,"abstract":"<p><p>Allergy is a systemic inflammation; therefore, although the allergic symptom may be seen in a specific organ system, the effects of this inflammation may be seen in other organs. interleukin (IL) IL4, IL5 and IL13 are the major Th2 cytokines and e-cadherin is an epithelial barrier protein. The objective of this research was to assess indicators of inflammation specific to Th2 responses and proteins related to the protective barrier of the airway's inner lining. These assessments were conducted using exhaled breath condensate (EBC), which provides insights into peripheral airway conditions of children suffering from food allergies. The study had 24 patients with food allergy and 24 control individuals younger than three years of age with no history of food reaction. The diagnosis of food allergy was based on food allergen-specific IgE and skin prick test positivity in our clinic and oral food testing in selected cases. EBC samples were obtained by Ecoscreen (Jaegar, Hoechberg, Germany). IL4, IL5, IL13 and E-cadherin levels were measured in these samples by enzyme linked immunoassay. The group of children with food allergies, consisting mainly of 14 girls, had a median age of 16 months, whereas the control group, which included 11 girls, had a median age of 15 months (<i>p</i>= 0.89). Comparing the two groups, children with food allergies exhibited notably lower levels of IL-13 in the EBC compared to the control group (median values of 59.14 and 76.36, respectively,<i>p</i>= 0.02). Conversely, the concentration of IL-4 in the EBC was significantly higher in children with food allergies (median values of 1.94 and 1.29, respectively,<i>p</i>= 0.003). However, the levels of IL-5 and e-cadherin showed no significant differences between the two groups (with<i>p</i>-values of 0.74 and 0.09, respectively) as shown in table1. High level of IL-4 despite the low level of IL-13 in the EBC of children having food allergy may be indicative of an early inflammatory phase that is not yet in the effector phase. Studies about the evolution of this process later in life are needed to assess the role of airway inflammation in children with food allergy who develop asthma.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41202128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single breath counting technique to assess pulmonary function: a systematic review and meta-analysis. 单次呼吸计数技术评估肺功能:系统回顾和荟萃分析。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-11-03 DOI: 10.1088/1752-7163/ad0647
Glívia Maria Barros Delmondes, Nathália Ferreira Santos Couto, Murilo Gominho Antunes Correia Junior, Amanda Bezerra da Silva Bonifácio, Ricardo de Freitas Dias, Jorge Bezerra, Marcos André de Moura Santos, Mauro Virgílio Gomes de Barros, Emília Chagas Costa, Marco Aurélio de Valois Correia Junior

Pulmonary function is usually assessed by measuring Vital Capacity (VC) using equipment such as a spirometer or ventilometer, but these are not always available to the population, as they are relatively expensive tests, difficult to transport and require trained professionals. However, the single breath counting technique (SBCT) appears as a possible alternative to respiratory function tests, to help in the pathophysiological understanding of lung diseases. The objective is to verify the applicability of the SBCT as a parameter for evaluating VC. This is a systematic review registered in the International Prospective Register of Systematic Reviews (CRD42023383706) and used for PubMed®, Scientific Electronic Library Online, LILACS, EMBASE, and Web of Science databases of articles published until January 2023. Methodological quality regarding the risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 and National Institutes of Health tools. Eleven of a total of 574 studies were included, of these, nine showed a correlation between VC and SBCT (weak in healthy, moderate in neuromuscular and strong in hospitalized patients). One study of hospitalized patients accurately identified a count value of 21 for a VC of 20 ml kg-1(Sensitivity = 94% and Specificity = 77%), and another estimated a count lower than 41 for a VC below 80% of predicted in patients with neuromuscular dystrophy (Sensitivity = 89% and Specificity = 62%), and another showed good intra and inter-examiner reproducibility in young, adult, and elderly populations. A meta-analysis of three studies showed a moderate correlation in subjects with neuromuscular diseases (r= 0.62, 95% CI = 0.52-0.71,p< 0.01). A high risk of bias was identified regarding the justification of the sample size and blinding of the evaluators. SBCT has been presented as an alternative to assess VC in the absence of specific equipment. There is a clear relationship between SBCT and VC, especially in neuromuscular and hospitalized individuals. New validation studies conducted with greater control of potential bias risks are necessary.

肺功能通常通过使用肺活量计或肺活量表等设备测量肺活量(VC)来评估,但这些设备并不总是适用于人群,因为它们是相对昂贵的测试,难以运输,并且需要训练有素的专业人员。然而,单次呼吸计数技术(SBCT)似乎是呼吸功能测试的一种可能的替代方法,有助于对肺部疾病的病理生理学理解。目的是验证SBCT作为评估VC参数的适用性。这是一项在国际前瞻性系统评价登记册(CRD42023383706)中注册的系统评价,用于PubMed®、SciELO、LILACS、EMBASE和Web of Science数据库中截至2023年1月发表的文章。使用QUADAS-2和NIH工具评估关于偏倚风险的方法学质量。共纳入574项研究中的11项,其中9项显示VC和SBCT之间存在相关性(健康患者较弱,神经肌肉患者中等,住院患者较强)。一项针对住院患者的研究准确地确定了20ml/kg VC的计数值为21(敏感性=94%,特异性=77%),另一项估计神经肌肉营养不良患者中VC低于预测值80%的计数值低于41(敏感性=89%,特异性=62%),而另一项研究在年轻、成年和老年人群中显示出良好的检查者内和检查者间再现性。一项对三项研究的荟萃分析显示,患有神经肌肉疾病的受试者之间存在中度相关性(r=0.62,95%CI=0.52-0.71,p
{"title":"Single breath counting technique to assess pulmonary function: a systematic review and meta-analysis.","authors":"Glívia Maria Barros Delmondes, Nathália Ferreira Santos Couto, Murilo Gominho Antunes Correia Junior, Amanda Bezerra da Silva Bonifácio, Ricardo de Freitas Dias, Jorge Bezerra, Marcos André de Moura Santos, Mauro Virgílio Gomes de Barros, Emília Chagas Costa, Marco Aurélio de Valois Correia Junior","doi":"10.1088/1752-7163/ad0647","DOIUrl":"10.1088/1752-7163/ad0647","url":null,"abstract":"<p><p>Pulmonary function is usually assessed by measuring Vital Capacity (VC) using equipment such as a spirometer or ventilometer, but these are not always available to the population, as they are relatively expensive tests, difficult to transport and require trained professionals. However, the single breath counting technique (SBCT) appears as a possible alternative to respiratory function tests, to help in the pathophysiological understanding of lung diseases. The objective is to verify the applicability of the SBCT as a parameter for evaluating VC. This is a systematic review registered in the International Prospective Register of Systematic Reviews (CRD42023383706) and used for PubMed<sup>®</sup>, Scientific Electronic Library Online, LILACS, EMBASE, and Web of Science databases of articles published until January 2023. Methodological quality regarding the risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 and National Institutes of Health tools. Eleven of a total of 574 studies were included, of these, nine showed a correlation between VC and SBCT (weak in healthy, moderate in neuromuscular and strong in hospitalized patients). One study of hospitalized patients accurately identified a count value of 21 for a VC of 20 ml kg<sup>-1</sup>(Sensitivity = 94% and Specificity = 77%), and another estimated a count lower than 41 for a VC below 80% of predicted in patients with neuromuscular dystrophy (Sensitivity = 89% and Specificity = 62%), and another showed good intra and inter-examiner reproducibility in young, adult, and elderly populations. A meta-analysis of three studies showed a moderate correlation in subjects with neuromuscular diseases (<i>r</i>= 0.62, 95% CI = 0.52-0.71,<i>p</i>< 0.01). A high risk of bias was identified regarding the justification of the sample size and blinding of the evaluators. SBCT has been presented as an alternative to assess VC in the absence of specific equipment. There is a clear relationship between SBCT and VC, especially in neuromuscular and hospitalized individuals. New validation studies conducted with greater control of potential bias risks are necessary.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A feasibility study on exhaled breath analysis using UV spectroscopy to detect COVID-19. 紫外光谱呼气分析检测新冠肺炎的可行性研究
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-11-02 DOI: 10.1088/1752-7163/ad0646
Saurin R Sutaria, James D Morris, Zhenzhen Xie, Elizabeth A Cooke, Shavonne M Silvers, Grace A Long, Dawn Balcom, Subathra Marimuthu, Leslie W Parrish, Holly Aliesky, Forest W Arnold, Jiapeng Huang, Xiao-An Fu, Michael H Nantz

A 23-subject feasibility study is reported to assess how UV absorbance measurements on exhaled breath samples collected from silicon microreactors can be used to detect COVID-19. The silicon microreactor technology chemoselectively preconcentrates exhaled carbonyl volatile organic compounds and subsequent methanol elution provides samples for analysis. The underlying scientific rationale that viral infection will induce an increase in exhaled carbonyls appears to be supported by the results of the feasibility study. The data indicate statistically significant differences in measured UV absorbance values between healthy and symptomatic COVID-19 positive subjects in the wavelength range from 235 nm to 305 nm. Factors such as subject age were noted as potential confounding variables.

据报道,一项23名受试者的可行性研究旨在评估从硅微反应器收集的呼出气体样本的紫外线吸收率测量如何用于检测新冠肺炎。硅微反应器技术化学选择性地预浓缩呼出的羰基挥发性有机物,随后的甲醇洗脱为分析提供了样品。可行性研究的结果似乎支持了病毒感染会导致呼出羰基化合物增加的基本科学原理。数据表明,在235 nm至305 nm的波长范围内,健康和有症状的新冠肺炎阳性受试者之间测量的紫外线吸收值存在统计学显著差异。受试者年龄等因素被认为是潜在的混杂变量。
{"title":"A feasibility study on exhaled breath analysis using UV spectroscopy to detect COVID-19.","authors":"Saurin R Sutaria, James D Morris, Zhenzhen Xie, Elizabeth A Cooke, Shavonne M Silvers, Grace A Long, Dawn Balcom, Subathra Marimuthu, Leslie W Parrish, Holly Aliesky, Forest W Arnold, Jiapeng Huang, Xiao-An Fu, Michael H Nantz","doi":"10.1088/1752-7163/ad0646","DOIUrl":"10.1088/1752-7163/ad0646","url":null,"abstract":"<p><p>A 23-subject feasibility study is reported to assess how UV absorbance measurements on exhaled breath samples collected from silicon microreactors can be used to detect COVID-19. The silicon microreactor technology chemoselectively preconcentrates exhaled carbonyl volatile organic compounds and subsequent methanol elution provides samples for analysis. The underlying scientific rationale that viral infection will induce an increase in exhaled carbonyls appears to be supported by the results of the feasibility study. The data indicate statistically significant differences in measured UV absorbance values between healthy and symptomatic COVID-19 positive subjects in the wavelength range from 235 nm to 305 nm. Factors such as subject age were noted as potential confounding variables.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why have only a handful of breath tests made the transition from R&D to clinical practice? 为什么只有少数呼吸测试从研发过渡到临床实践?
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-10-18 DOI: 10.1088/1752-7163/acff7d
Anil S Modak
{"title":"Why have only a handful of breath tests made the transition from R&D to clinical practice?","authors":"Anil S Modak","doi":"10.1088/1752-7163/acff7d","DOIUrl":"10.1088/1752-7163/acff7d","url":null,"abstract":"","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41235679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased breath naphthalene in children with asthma and wheeze of the All Age Asthma Cohort (ALLIANCE). 全年龄哮喘队列(ALLIANCE)哮喘和喘息儿童的呼吸萘增加。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-10-12 DOI: 10.1088/1752-7163/acf23e
Pedram Shahrokny, Nicole Maison, Lennart Riemann, Maximilian Ehrmann, David DeLuca, Sven Schuchardt, Dominik Thiele, Markus Weckmann, Anna-Maria Dittrich, Bianca Schaub, Folke Brinkmann, Gesine Hansen, Matthias Kopp, Erika von Mutius, Klaus Rabe, Thomas Bahmer, Jens Hohlfeld, Ruth Grychtol, Olaf Holz

Exhaled breath contains numerous volatile organic compounds (VOCs) known to be related to lung disease like asthma. Its collection is non-invasive, simple to perform and therefore an attractive method for the use even in young children. We analysed breath in children of the multicenter All Age Asthma Cohort (ALLIANCE) to evaluate if 'breathomics' have the potential to phenotype patients with asthma and wheeze, and to identify extrinsic risk factors for underlying disease mechanisms. A breath sample was collected from 142 children (asthma: 51, pre-school wheezers: 55, healthy controls: 36) and analysed using gas chromatography-mass spectrometry (GC/MS). Children were diagnosed according to Global Initiative for Asthma guidelines and comprehensively examined each year over up to seven years. Forty children repeated the breath collection after 24 or 48 months. Most breath VOCs differing between groups reflect the exposome of the children. We observed lower levels of lifestyle-related VOCs and higher levels of the environmental pollutants, especially naphthalene, in children with asthma or wheeze. Naphthalene was also higher in symptomatic patients and in wheezers with recent inhaled corticosteroid use. No relationships with lung function or TH2 inflammation were detected. Increased levels of naphthalene in asthmatics and wheezers and the relationship to disease severity could indicate a role of environmental or indoor air pollution for the development or progress of asthma. Breath VOCs might help to elucidate the role of the exposome for the development of asthma. The study was registered at ClinicalTrials.gov (NCT02496468).

呼气中含有大量挥发性有机化合物(VOC),已知与哮喘等肺部疾病有关。它的收集是非侵入性的,操作简单,因此即使在幼儿中也很有吸引力。我们分析了多中心全年龄哮喘队列(ALLIANCE)儿童的呼吸,以评估“呼吸困难”是否有可能使哮喘和喘息患者表型,并确定潜在疾病机制的外部风险因素。从142名儿童(哮喘:51名,学龄前喘息者:55名,健康对照组:36名)采集呼吸样本,并使用气相色谱-质谱法(GC/MS)进行分析。儿童根据全球哮喘倡议指南进行诊断,并在长达七年的时间里每年进行全面检查。40名儿童在24或48个月后重复呼吸采集。大多数不同组的呼吸挥发性有机物反映了儿童的暴露情况。我们观察到,在哮喘或喘息的儿童中,与生活方式相关的挥发性有机物含量较低,环境污染物含量较高,尤其是萘。萘在有症状的患者和最近吸入皮质类固醇的喘息者中也较高。未检测到与肺功能或TH2炎症的关系。哮喘患者和喘息者萘含量的增加以及与疾病严重程度的关系可能表明环境或室内空气污染在哮喘的发展或进展中发挥了作用。呼吸挥发性有机物可能有助于阐明暴露体在哮喘发展中的作用。该研究已在ClinicalTrials.gov上注册(NCT02496468)。
{"title":"Increased breath naphthalene in children with asthma and wheeze of the All Age Asthma Cohort (ALLIANCE).","authors":"Pedram Shahrokny,&nbsp;Nicole Maison,&nbsp;Lennart Riemann,&nbsp;Maximilian Ehrmann,&nbsp;David DeLuca,&nbsp;Sven Schuchardt,&nbsp;Dominik Thiele,&nbsp;Markus Weckmann,&nbsp;Anna-Maria Dittrich,&nbsp;Bianca Schaub,&nbsp;Folke Brinkmann,&nbsp;Gesine Hansen,&nbsp;Matthias Kopp,&nbsp;Erika von Mutius,&nbsp;Klaus Rabe,&nbsp;Thomas Bahmer,&nbsp;Jens Hohlfeld,&nbsp;Ruth Grychtol,&nbsp;Olaf Holz","doi":"10.1088/1752-7163/acf23e","DOIUrl":"10.1088/1752-7163/acf23e","url":null,"abstract":"<p><p>Exhaled breath contains numerous volatile organic compounds (VOCs) known to be related to lung disease like asthma. Its collection is non-invasive, simple to perform and therefore an attractive method for the use even in young children. We analysed breath in children of the multicenter All Age Asthma Cohort (ALLIANCE) to evaluate if 'breathomics' have the potential to phenotype patients with asthma and wheeze, and to identify extrinsic risk factors for underlying disease mechanisms. A breath sample was collected from 142 children (asthma: 51, pre-school wheezers: 55, healthy controls: 36) and analysed using gas chromatography-mass spectrometry (GC/MS). Children were diagnosed according to Global Initiative for Asthma guidelines and comprehensively examined each year over up to seven years. Forty children repeated the breath collection after 24 or 48 months. Most breath VOCs differing between groups reflect the exposome of the children. We observed lower levels of lifestyle-related VOCs and higher levels of the environmental pollutants, especially naphthalene, in children with asthma or wheeze. Naphthalene was also higher in symptomatic patients and in wheezers with recent inhaled corticosteroid use. No relationships with lung function or TH2 inflammation were detected. Increased levels of naphthalene in asthmatics and wheezers and the relationship to disease severity could indicate a role of environmental or indoor air pollution for the development or progress of asthma. Breath VOCs might help to elucidate the role of the exposome for the development of asthma. The study was registered at ClinicalTrials.gov (NCT02496468).</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10413949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D computational fluid and particle dynamics simulations: metrics of aerosol capture by impaction filters. 三维计算流体和粒子动力学模拟:冲击过滤器捕获气溶胶的指标。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-10-10 DOI: 10.1088/1752-7163/acfe32
Veruska Malavé, Kavita Jeerage, Edward Garboczi, Tara Lovestead

Human studies provide valuable information on components or analytes recovered from exhaled breath, but there are limitations due to inter-individual and intra-individual variation. Future development and implementation of breath tests based on aerosol analysis require a clear understanding of how human factors interact with device geometry to influence particle transport and deposition. The computational fluid and particle dynamics (CFPD) algorithm combines (i) the Eulerian approach to fluid dynamics and (ii) the Lagrangian approach to single particle transport and deposition to predict how particles are carried in fluids and deposited on surfaces. In this work, we developed a 3D multiscale CFPD model to provide insight into human factors that could be important to control or measure during sampling. We designed the model to characterize the local transport, spatial distribution, and deposition of polydisperse particles in a single impaction filter of a commercial aerosol collection device. We highlight the use of decoupling numerical strategies to simultaneously quantify the influence of filter geometry, fluid flowrate, and particle size. Our numerical models showed the remarkable effect of flowrate on aerosol dynamics. Specifically, aerosol mass deposition, spatial distribution, and deposition mechanisms inside the filter. This work as well as future studies on the effect of filter geometry and human factors on aerosol collection will guide the development, standardization, and validation of breath sampling protocols for current and emerging breath tests for forensic and clinical applications.

人体研究提供了从呼出气体中回收的成分或分析物的宝贵信息,但由于个体间和个体内的差异,存在局限性。未来基于气溶胶分析的呼吸测试的开发和实施需要清楚地了解人为因素如何与设备几何形状相互作用,以影响颗粒的传输和沉积。计算流体和粒子动力学(CFPD)算法结合了(i)流体动力学的欧拉方法和(ii)单粒子传输和沉积的拉格朗日方法,以预测粒子如何在流体中携带和沉积在表面上。在这项工作中,我们开发了一个三维多尺度CFPD模型,以深入了解采样过程中可能对控制或测量很重要的人为因素。我们设计了该模型来表征商业气溶胶收集装置的单个冲击过滤器中多分散颗粒的局部传输、空间分布和沉积。我们强调使用解耦数值策略来同时量化过滤器几何形状、流体流量和颗粒尺寸的影响。我们的数值模型显示了流量对气溶胶动力学的显著影响。具体而言,气溶胶质量沉积、空间分布和过滤器内部的沉积机制。这项工作以及未来关于过滤器几何形状和人为因素对气溶胶收集影响的研究,将指导当前和新兴的法医和临床应用呼吸测试呼吸采样协议的开发、标准化和验证。
{"title":"3D computational fluid and particle dynamics simulations: metrics of aerosol capture by impaction filters<sup />.","authors":"Veruska Malavé,&nbsp;Kavita Jeerage,&nbsp;Edward Garboczi,&nbsp;Tara Lovestead","doi":"10.1088/1752-7163/acfe32","DOIUrl":"https://doi.org/10.1088/1752-7163/acfe32","url":null,"abstract":"<p><p>Human studies provide valuable information on components or analytes recovered from exhaled breath, but there are limitations due to inter-individual and intra-individual variation. Future development and implementation of breath tests based on aerosol analysis require a clear understanding of how human factors interact with device geometry to influence particle transport and deposition. The computational fluid and particle dynamics (CFPD) algorithm combines (i) the Eulerian approach to fluid dynamics and (ii) the Lagrangian approach to single particle transport and deposition to predict how particles are carried in fluids and deposited on surfaces. In this work, we developed a 3D multiscale CFPD model to provide insight into human factors that could be important to control or measure during sampling. We designed the model to characterize the local transport, spatial distribution, and deposition of polydisperse particles in a single impaction filter of a commercial aerosol collection device. We highlight the use of decoupling numerical strategies to simultaneously quantify the influence of filter geometry, fluid flowrate, and particle size. Our numerical models showed the remarkable effect of flowrate on aerosol dynamics. Specifically, aerosol mass deposition, spatial distribution, and deposition mechanisms inside the filter. This work as well as future studies on the effect of filter geometry and human factors on aerosol collection will guide the development, standardization, and validation of breath sampling protocols for current and emerging breath tests for forensic and clinical applications.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SNPs inFAM13AandIL2RBgenes are associated with FeNO in adult subjects with asthma. 在患有哮喘的成年受试者中,FAM13AA和IL2RB基因中的SNPs与FeNO相关。
IF 3.8 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2023-10-06 DOI: 10.1088/1752-7163/acfbf1
Simone Accordini, Valentina Lando, Lucia Calciano, Cristina Bombieri, Giovanni Malerba, Antonino Margagliotti, Cosetta Minelli, James Potts, Diana A van der Plaat, Mario Olivieri

Nitric oxide has different roles in asthma as both an endogenous modulator of airway function and a pro-inflammatory mediator. Fractional exhaled nitric oxide (FeNO) is a reliable, quantitative, non-invasive, simple, and safe biomarker for assessing airways inflammation in asthma. Previous genome-wide and genetic association studies have shown that different genes and single nucleotide polymorphisms (SNPs) are linked to FeNO. We aimed at identifying SNPs in candidate genes or gene regions that are associated with FeNO in asthma. We evaluated 264 asthma cases (median age 42.8 years, female 47.7%) who had been identified in the general adult population within the Gene Environment Interactions in Respiratory Diseases survey in Verona (Italy; 2008-2010). Two hundred and twenty-one tag-SNPs, which are representative of 50 candidate genes, were genotyped by a custom GoldenGate Genotyping Assay. A two-step association analysis was performed without assuming ana priorigenetic model: step (1) a machine learning technique [gradient boosting machine (GBM)] was used to select the 15 SNPs with the highest variable importance measure; step (2) the GBM-selected SNPs were jointly tested in a linear regression model with natural log-transformed FeNO as the normally distributed outcome and with age, sex, and the SNPs as covariates. We replicated our results within an independent sample of 296 patients from the European Community Respiratory Health Survey III. We found that SNP rs987314 in family with sequence similarity 13 member A (FAM13A) and SNP rs3218258 in interleukin 2 receptor subunit beta (IL2RB) gene regions are significantly associated with FeNO in adult subjects with asthma. These genes are involved in different mechanisms that affect smooth muscle constriction and endothelial barrier function responses (FAM13A), or in immune response processes (IL2RB). Our findings contribute to the current knowledge on FeNO in asthma by identifying two novel SNPs associated with this biomarker of airways inflammation.

一氧化氮作为气道功能的内源性调节剂和促炎介质在哮喘中具有不同的作用。部分呼出一氧化氮(FeNO)是一种可靠、定量、无创、简单、安全的评估哮喘气道炎症的生物标志物。先前的全基因组和遗传关联研究表明,不同的基因和单核苷酸多态性(SNPs)与FeNO有关。我们旨在鉴定哮喘中与FeNO相关的候选基因或基因区域中的SNPs。我们评估了264例哮喘病例(中位年龄42.8岁,女性47.7%),这些病例是在维罗纳(意大利;2008-2010年)的呼吸系统疾病基因-环境相互作用调查中在普通成年人群中发现的。代表50个候选基因的221个标签SNPs通过定制的GoldenGate基因分型分析进行基因分型。在不假设先验模型的情况下进行了两步关联分析:步骤(1)使用机器学习技术[梯度提升机(GBM)]来选择具有最高变量重要性测度的15个SNP;步骤(2)在线性回归模型中联合测试GBM选择的SNPs,以自然对数转换的FeNO作为正态分布结果,并以年龄、性别和SNPs作为协变量。我们在欧洲社区呼吸健康调查III的296名患者的独立样本中复制了我们的结果。我们发现,具有序列相似性的家族13成员A(FAM13A)中的SNP rs987314和白细胞介素2受体亚单位β(IL2RB)基因区中的SNPs rs3218258与成年哮喘受试者的FeNO显著相关。这些基因参与影响平滑肌收缩和内皮屏障功能反应(FAM13A)或免疫反应过程(IL2RB)的不同机制。我们的发现通过鉴定与气道炎症生物标志物相关的两个新的SNP,为目前对哮喘中FeNO的了解做出了贡献。
{"title":"SNPs in<i>FAM13A</i>and<i>IL2RB</i>genes are associated with FeNO in adult subjects with asthma.","authors":"Simone Accordini,&nbsp;Valentina Lando,&nbsp;Lucia Calciano,&nbsp;Cristina Bombieri,&nbsp;Giovanni Malerba,&nbsp;Antonino Margagliotti,&nbsp;Cosetta Minelli,&nbsp;James Potts,&nbsp;Diana A van der Plaat,&nbsp;Mario Olivieri","doi":"10.1088/1752-7163/acfbf1","DOIUrl":"https://doi.org/10.1088/1752-7163/acfbf1","url":null,"abstract":"<p><p>Nitric oxide has different roles in asthma as both an endogenous modulator of airway function and a pro-inflammatory mediator. Fractional exhaled nitric oxide (FeNO) is a reliable, quantitative, non-invasive, simple, and safe biomarker for assessing airways inflammation in asthma. Previous genome-wide and genetic association studies have shown that different genes and single nucleotide polymorphisms (SNPs) are linked to FeNO. We aimed at identifying SNPs in candidate genes or gene regions that are associated with FeNO in asthma. We evaluated 264 asthma cases (median age 42.8 years, female 47.7%) who had been identified in the general adult population within the Gene Environment Interactions in Respiratory Diseases survey in Verona (Italy; 2008-2010). Two hundred and twenty-one tag-SNPs, which are representative of 50 candidate genes, were genotyped by a custom GoldenGate Genotyping Assay. A two-step association analysis was performed without assuming an<i>a priori</i>genetic model: step (1) a machine learning technique [gradient boosting machine (GBM)] was used to select the 15 SNPs with the highest variable importance measure; step (2) the GBM-selected SNPs were jointly tested in a linear regression model with natural log-transformed FeNO as the normally distributed outcome and with age, sex, and the SNPs as covariates. We replicated our results within an independent sample of 296 patients from the European Community Respiratory Health Survey III. We found that SNP rs987314 in family with sequence similarity 13 member A (<i>FAM13A</i>) and SNP rs3218258 in interleukin 2 receptor subunit beta (<i>IL2RB</i>) gene regions are significantly associated with FeNO in adult subjects with asthma. These genes are involved in different mechanisms that affect smooth muscle constriction and endothelial barrier function responses (<i>FAM13A</i>), or in immune response processes (<i>IL2RB</i>). Our findings contribute to the current knowledge on FeNO in asthma by identifying two novel SNPs associated with this biomarker of airways inflammation.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41145748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of breath research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1