首页 > 最新文献

Journal of Fungi最新文献

英文 中文
Septin Organization and Dynamics for Budding Yeast Cytokinesis 芽殖酵母细胞分裂的蛋白酶组织和动力学
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.3390/jof10090642
Maritzaida Varela Salgado, Simonetta Piatti
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.
细胞分裂是有丝分裂后细胞质分裂生成两个子细胞的过程,是细胞周期的关键阶段。成功的细胞分裂必须与染色体分离相协调,并且需要对多个过程进行精细的协调,例如肌动蛋白环的收缩、膜的重组,以及真菌中细胞壁的沉积。在通常被称为芽殖酵母的酿酒酵母中,隔膜蛋白在细胞分裂的控制过程中扮演着关键的角色,它协助细胞分裂机械在分裂部位的组装并控制其活动。酵母隔膜在分裂部位形成一个环,在细胞周期中会发生重大的动态变化。这篇综述讨论了隔膜在酵母细胞分裂中的功能、它们的调控以及它们的动态重塑对细胞分裂的影响。
{"title":"Septin Organization and Dynamics for Budding Yeast Cytokinesis","authors":"Maritzaida Varela Salgado, Simonetta Piatti","doi":"10.3390/jof10090642","DOIUrl":"https://doi.org/10.3390/jof10090642","url":null,"abstract":"Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Kelch Repeat Protein VdKeR1 Is Essential for Development, Ergosterol Metabolism, and Virulence in Verticillium dahliae Kelch 重复蛋白 VdKeR1 对大丽轮枝菌的发育、麦角甾醇代谢和毒性至关重要
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-09 DOI: 10.3390/jof10090643
Wen-Li Xia, Zhe Zheng, Feng-Mao Chen
Verticillium dahliae is a soil-borne fungal pathogen that can cause severe vascular wilt in many plant species. Kelch repeat proteins are essential for fungal growth, resistance, and virulence. However, the function of the Kelch repeat protein family in V. dahliae is unclear. In this study, a Kelch repeat domain-containing protein DK185_4252 (VdLs.17 VDAG_08647) included in the conserved VdPKS9 gene cluster was identified and named VdKeR1. Phylogenetic analysis demonstrated a high degree of evolutionary conservation of VdKeR1 and its homologs among fungi. The experimental results showed that the absence of VdKeR1 impaired vegetative growth, microsclerotia development, and pathogenicity of V. dahliae. Osmotic and cell wall stress analyses suggested that VdKeR1-deleted mutants were more tolerant to NaCl, sorbitol, CR, and CFW, while more sensitive to H2O2 and SDS. In addition, analyses of the relative expression level of sqe and the content of squalene and ergosterol showed that VdKeR1 mediates the synthesis of squalene and ergosterol by positively regulating the activity of squalene epoxidase. In conclusion, these results indicated that VdKeR1 was involved in the growth, stress resistance, pathogenicity, and ergosterol metabolism of V. dahliae. Investigating VdKeR1 provided theoretical and experimental foundations for subsequent control of Verticillium wilt.
大丽轮枝菌(Verticillium dahliae)是一种土传真菌病原体,可导致多种植物严重维管束枯萎。Kelch 重复蛋白对真菌的生长、抗性和毒力至关重要。然而,Kelch 重复蛋白家族在大丽花病毒中的功能尚不清楚。本研究鉴定了包含在保守的 VdPKS9 基因簇中的含 Kelch 重复结构域的蛋白 DK185_4252 (VdLs.17 VDAG_08647),并将其命名为 VdKeR1。系统进化分析表明,VdKeR1 及其同源物在真菌中具有高度的进化保守性。实验结果表明,VdKeR1的缺失会影响大丽花病毒的无性生长、小硬菌丝的发育和致病性。渗透胁迫和细胞壁胁迫分析表明,缺失 VdKeR1 的突变体对 NaCl、山梨醇、CR 和 CFW 更耐受,而对 H2O2 和 SDS 更敏感。此外,对 sqe 的相对表达水平以及角鲨烯和麦角甾醇含量的分析表明,VdKeR1 通过正向调节角鲨烯环氧化酶的活性来介导角鲨烯和麦角甾醇的合成。总之,这些结果表明,VdKeR1 参与了大丽花病毒的生长、抗逆性、致病性和麦角固醇代谢。对 VdKeR1 的研究为以后防治轮纹枯萎病提供了理论和实验基础。
{"title":"The Kelch Repeat Protein VdKeR1 Is Essential for Development, Ergosterol Metabolism, and Virulence in Verticillium dahliae","authors":"Wen-Li Xia, Zhe Zheng, Feng-Mao Chen","doi":"10.3390/jof10090643","DOIUrl":"https://doi.org/10.3390/jof10090643","url":null,"abstract":"Verticillium dahliae is a soil-borne fungal pathogen that can cause severe vascular wilt in many plant species. Kelch repeat proteins are essential for fungal growth, resistance, and virulence. However, the function of the Kelch repeat protein family in V. dahliae is unclear. In this study, a Kelch repeat domain-containing protein DK185_4252 (VdLs.17 VDAG_08647) included in the conserved VdPKS9 gene cluster was identified and named VdKeR1. Phylogenetic analysis demonstrated a high degree of evolutionary conservation of VdKeR1 and its homologs among fungi. The experimental results showed that the absence of VdKeR1 impaired vegetative growth, microsclerotia development, and pathogenicity of V. dahliae. Osmotic and cell wall stress analyses suggested that VdKeR1-deleted mutants were more tolerant to NaCl, sorbitol, CR, and CFW, while more sensitive to H2O2 and SDS. In addition, analyses of the relative expression level of sqe and the content of squalene and ergosterol showed that VdKeR1 mediates the synthesis of squalene and ergosterol by positively regulating the activity of squalene epoxidase. In conclusion, these results indicated that VdKeR1 was involved in the growth, stress resistance, pathogenicity, and ergosterol metabolism of V. dahliae. Investigating VdKeR1 provided theoretical and experimental foundations for subsequent control of Verticillium wilt.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit 驾驭不确定性:在重症监护病房管理流感相关侵袭性肺曲霉菌病
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-07 DOI: 10.3390/jof10090639
Giacomo Casalini, Andrea Giacomelli, Laura Galimberti, Riccardo Colombo, Laura Milazzo, Dario Cattaneo, Antonio Castelli, Spinello Antinori
We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections.
我们介绍了一例因流感相关肺曲霉菌病(IAPA)入住重症监护病房的棘手病例。患者的临床病程主要表现为难治性真菌肺炎和气管支气管炎、三唑类抗真菌药物引起的疑似药物性肝损伤以及耐多药微生物引起的继发性细菌感染,尽管通过治疗药物监测对抗真菌治疗进行了优化,但患者仍最终死亡。该病例凸显了临床医生在管理患有侵袭性真菌感染的重症患者时所面临的复杂性。
{"title":"Navigating Uncertainty: Managing Influenza-Associated Invasive Pulmonary Aspergillosis in an Intensive Care Unit","authors":"Giacomo Casalini, Andrea Giacomelli, Laura Galimberti, Riccardo Colombo, Laura Milazzo, Dario Cattaneo, Antonio Castelli, Spinello Antinori","doi":"10.3390/jof10090639","DOIUrl":"https://doi.org/10.3390/jof10090639","url":null,"abstract":"We present a challenging case of a patient admitted to an intensive care unit with influenza-associated pulmonary aspergillosis (IAPA). The clinical course was characterised by refractory fungal pneumonia and tracheobronchitis, suspected drug-induced liver injury due to triazole antifungals, and secondary bacterial infections with multidrug-resistant microorganisms, resulting in a fatal outcome despite the optimisation of antifungal treatment through therapeutic drug monitoring. This case underscores the complexity that clinicians face in managing critically ill patients with invasive fungal infections.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three New Truffle Species (Tuber, Tuberaceae, Pezizales, and Ascomycota) from Yunnan, China, and Multigen Phylogenetic Arrangement within the Melanosporum Group 中国云南的三个松露新种(块菌目、块菌科、子囊菌目和子囊菌科)以及黑孢菌组内的多基因系统发育排列
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-07 DOI: 10.3390/jof10090640
Rui Wang, Gangqiang Dong, Yupin Li, Ruixue Wang, Shimei Yang, Jing Yuan, Xuedan Xie, Xiaofei Shi, Juanbing Yu, Jesús Pérez-Moreno, Fuqiang Yu, Shanping Wan
Based on a multi-locus phylogeny of a combined dataset of ITS, LSU, tef1-α, and rpb2 and comprehensive morphological analyses, we describe three new species from the Melanosporum group of genus Tuber and synonymize T. pseudobrumale and T. melanoexcavatum. Phylogenetically, the three newly described species, T. yunnanense, T. melanoumbilicatum and T. microexcavatum, differ significantly in genetic distance from any previously known species. Morphologically, T. yunnanense is distinctly different from its closest phylogenetically related species, T. longispinosum, due to its long shuttle-shape spores (average the ratio of spore length to spore width for all spores (Qm) = 1.74). Tuber melanoumbilicatum differs from the other species in having a cavity and long shuttle-shaped spores (Qm = 1.65). Although T. microexcavatum sampled ascomata have relatively low maturity, they can be distinguished from its closely related species T. pseudobrumale by the ascomata size, surface warts, and spore number per asci; additionally, phylogenetic analysis supports it as a new species. In addition, molecular analysis from 22 newly collected specimens and Genebank data indicate that T. pseudobrumale and T. melanoexcavatum are clustered into a single well-supported clade (Bootstrap (BS) = 100, posterior probabilities (PP) = 1.0); and morphological characteristics do not differ. Therefore, based on the above evidence and publication dates, we conclude that T. melanoexcavatum is a synonym of T. pseudobrumale. By taking into account current knowledge and combining the molecular, multigene phylogenetic clade arrangement and morphological data, we propose that the Melanosporum group should be divided into four subgroups. Diagnostic morphological features and an identification key of all known species in the Melanosporum group are also included. Finally, we also provide some additions to the knowledge of the characterization of T. pseudobrumale, T. variabilisporum, and T. pseudohimalayense included in subgroup 1 of the Melanosporum group.
基于ITS、LSU、tef1-α和rpb2组合数据集的多焦点系统发生以及综合形态学分析,我们描述了块茎属Melanosporum组的3个新种,并将T. pseudobrumale和T. melanoexcavatum同名。在系统发育上,这三个新描述的物种(T. yunnanense、T. melanoumbilicatum和T. microexcavatum)与之前已知的任何物种在遗传距离上都有显著差异。从形态上看,云南块菌(T. yunnanense)与其系统发育关系最密切的种--长梭形块菌(T. longispinosum)明显不同,因为它的孢子呈长梭形(所有孢子的平均孢子长度与孢子宽度之比(Qm)= 1.74)。Tuber melanoumbilicatum 与其他物种的不同之处在于它有一个空腔和长梭形孢子(Qm = 1.65)。虽然取样的 T. microexcavatum 的子囊成熟度相对较低,但可通过子囊大小、表面疣和每个子囊的孢子数将其与近缘种 T. pseudobrumale 区分开来;此外,系统发育分析也支持将其作为一个新种。此外,对 22 份新采集标本的分子分析和基因库数据表明,T. pseudobrumale 和 T. melanoexcavatum 被聚类为一个支持良好的支系(Bootstrap (BS) = 100, posterior probabilities (PP) = 1.0);且形态特征无差异。因此,根据上述证据和发表日期,我们认为 T. melanoexcavatum 是 T. pseudobrumale 的异名。考虑到现有知识,并结合分子、多基因系统发生支系排列和形态学数据,我们建议将 Melanosporum 组划分为四个亚组。此外,我们还提供了所有已知 Melanosporum 类物种的形态诊断特征和鉴定检索表。最后,我们还对 Melanosporum 组 1 亚群中的 T. pseudobrumale、T. variabilisporum 和 T. pseudohimalayense 的特征进行了补充。
{"title":"Three New Truffle Species (Tuber, Tuberaceae, Pezizales, and Ascomycota) from Yunnan, China, and Multigen Phylogenetic Arrangement within the Melanosporum Group","authors":"Rui Wang, Gangqiang Dong, Yupin Li, Ruixue Wang, Shimei Yang, Jing Yuan, Xuedan Xie, Xiaofei Shi, Juanbing Yu, Jesús Pérez-Moreno, Fuqiang Yu, Shanping Wan","doi":"10.3390/jof10090640","DOIUrl":"https://doi.org/10.3390/jof10090640","url":null,"abstract":"Based on a multi-locus phylogeny of a combined dataset of ITS, LSU, tef1-α, and rpb2 and comprehensive morphological analyses, we describe three new species from the Melanosporum group of genus Tuber and synonymize T. pseudobrumale and T. melanoexcavatum. Phylogenetically, the three newly described species, T. yunnanense, T. melanoumbilicatum and T. microexcavatum, differ significantly in genetic distance from any previously known species. Morphologically, T. yunnanense is distinctly different from its closest phylogenetically related species, T. longispinosum, due to its long shuttle-shape spores (average the ratio of spore length to spore width for all spores (Qm) = 1.74). Tuber melanoumbilicatum differs from the other species in having a cavity and long shuttle-shaped spores (Qm = 1.65). Although T. microexcavatum sampled ascomata have relatively low maturity, they can be distinguished from its closely related species T. pseudobrumale by the ascomata size, surface warts, and spore number per asci; additionally, phylogenetic analysis supports it as a new species. In addition, molecular analysis from 22 newly collected specimens and Genebank data indicate that T. pseudobrumale and T. melanoexcavatum are clustered into a single well-supported clade (Bootstrap (BS) = 100, posterior probabilities (PP) = 1.0); and morphological characteristics do not differ. Therefore, based on the above evidence and publication dates, we conclude that T. melanoexcavatum is a synonym of T. pseudobrumale. By taking into account current knowledge and combining the molecular, multigene phylogenetic clade arrangement and morphological data, we propose that the Melanosporum group should be divided into four subgroups. Diagnostic morphological features and an identification key of all known species in the Melanosporum group are also included. Finally, we also provide some additions to the knowledge of the characterization of T. pseudobrumale, T. variabilisporum, and T. pseudohimalayense included in subgroup 1 of the Melanosporum group.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Biocontrol Potential of Phanerochaete chrysosporium against Wheat Crown Rot 探索蛹虫草菌对小麦冠腐病的生物防治潜力
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-07 DOI: 10.3390/jof10090641
Lei Liu, Yaqiong Jin, Huijuan Lian, Qianxi Yin, Hailei Wang
The worldwide occurrence of wheat crown rot, predominantly caused by the pathogen Fusarium pseudograminearum, has a serious impact on wheat production. Numerous microorganisms have been employed as biocontrol agents, exhibiting effectiveness in addressing a wide array of plant pathogens through various pathways. The mycelium of the white-rot fungus Phanerochaete chrysosporium effectively inhibits the growth of F. pseudograminearum by tightly attaching to it and forming specialized penetrating structures. This process leads to the release of intracellular inclusions and the eventual disintegration of pathogen cells. Furthermore, volatile organic compounds and fermentation products produced by P. chrysosporium exhibit antifungal properties. A comprehensive understanding of the mechanisms and modalities of action will facilitate the advancement and implementation of this biocontrol fungus. In order to gain a deeper understanding of the mycoparasitic behavior of P. chrysosporium, transcriptome analyses were conducted to examine the interactions between P. chrysosporium and F. pseudograminearum at 36, 48, and 84 h. During mycoparasitism, the up-regulation of differentially expressed genes (DEGs) encoding fungal cell-wall-degrading enzymes (CWDEs), iron ion binding, and mycotoxins were mainly observed. Moreover, pot experiments revealed that P. chrysosporium not only promoted the growth and quality of wheat but also hindered the colonization of F. pseudograminearum in wheat seedlings. This led to a delay in the development of stem base rot, a reduction in disease severity and incidence, and the activation of the plant’s self-defense mechanisms. Our study provides important insights into the biocontrol mechanisms employed by P. chrysosporium against wheat crown rot caused by F. pseudograminearum.
小麦冠腐病主要由病原菌镰刀菌(Fusarium pseudograminearum)引起,在全球范围内的发生对小麦生产造成了严重影响。许多微生物已被用作生物防治剂,通过各种途径有效地防治各种植物病原体。白腐真菌 Phanerochaete chrysosporium 的菌丝体通过紧紧附着在 F. pseudograminearum 上并形成专门的穿透结构,有效抑制了 F. pseudograminearum 的生长。这一过程会导致细胞内包涵物的释放,最终使病原体细胞解体。此外,蛹虫草产生的挥发性有机化合物和发酵产物具有抗真菌特性。对其作用机制和方式的全面了解将促进这种生物防治真菌的发展和应用。为了更深入地了解蛹虫草菌的寄生行为,研究人员进行了转录组分析,研究了蛹虫草菌与假单胞菌(F. pseudograminearum)在 36、48 和 84 小时内的相互作用。在寄生过程中,主要观察到编码真菌细胞壁降解酶(CWDEs)、铁离子结合和真菌毒素的差异表达基因(DEGs)的上调。此外,盆栽实验还发现,蛹虫草菌不仅能促进小麦的生长和品质,还能阻碍假丝酵母菌在小麦幼苗中的定殖。这导致了茎基腐病发展的延迟、病害严重程度和发病率的降低以及植物自我防御机制的启动。我们的研究为了解蛹虫草菌对由假根腐镰刀菌引起的小麦冠腐病的生物防治机制提供了重要的启示。
{"title":"Exploring the Biocontrol Potential of Phanerochaete chrysosporium against Wheat Crown Rot","authors":"Lei Liu, Yaqiong Jin, Huijuan Lian, Qianxi Yin, Hailei Wang","doi":"10.3390/jof10090641","DOIUrl":"https://doi.org/10.3390/jof10090641","url":null,"abstract":"The worldwide occurrence of wheat crown rot, predominantly caused by the pathogen Fusarium pseudograminearum, has a serious impact on wheat production. Numerous microorganisms have been employed as biocontrol agents, exhibiting effectiveness in addressing a wide array of plant pathogens through various pathways. The mycelium of the white-rot fungus Phanerochaete chrysosporium effectively inhibits the growth of F. pseudograminearum by tightly attaching to it and forming specialized penetrating structures. This process leads to the release of intracellular inclusions and the eventual disintegration of pathogen cells. Furthermore, volatile organic compounds and fermentation products produced by P. chrysosporium exhibit antifungal properties. A comprehensive understanding of the mechanisms and modalities of action will facilitate the advancement and implementation of this biocontrol fungus. In order to gain a deeper understanding of the mycoparasitic behavior of P. chrysosporium, transcriptome analyses were conducted to examine the interactions between P. chrysosporium and F. pseudograminearum at 36, 48, and 84 h. During mycoparasitism, the up-regulation of differentially expressed genes (DEGs) encoding fungal cell-wall-degrading enzymes (CWDEs), iron ion binding, and mycotoxins were mainly observed. Moreover, pot experiments revealed that P. chrysosporium not only promoted the growth and quality of wheat but also hindered the colonization of F. pseudograminearum in wheat seedlings. This led to a delay in the development of stem base rot, a reduction in disease severity and incidence, and the activation of the plant’s self-defense mechanisms. Our study provides important insights into the biocontrol mechanisms employed by P. chrysosporium against wheat crown rot caused by F. pseudograminearum.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma Inflammatory Proteome Profile in a Cohort of Patients with Recurrent Vulvovaginal Candidiasis in Kenya 肯尼亚复发性外阴阴道念珠菌病患者群体的血浆炎症蛋白质组概况
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-06 DOI: 10.3390/jof10090638
Diletta Rosati, Isis Ricaño Ponce, Gloria S. Omosa-Manyonyi, Mariolina Bruno, Nelly W. Kamau, Martin Jaeger, Vinod Kumar, Mihai G. Netea, Andre J. A. M. van der Ven, Jaap ten Oever
Vulvovaginal candidiasis (VVC) affects up to 75% of women at least once during their lifetime, and up to 8% of women suffer from frequent recurrent episodes of VVC (RVVC). A lack of a protective host response underlies vaginal Candida infections, while a dysregulated hyperinflammatory response may drive RVVC. This study aimed to investigate the systemic inflammatory protein profile in women with RVVC in an African population, considering the potential influence of hormonal contraceptive use on systemic inflammation. Using multiplex Proximity Extension Assay technology, we measured 92 circulatory inflammatory proteins in plasma samples from 158 RVVC patients and 92 asymptomatic women (controls). Hormonal contraceptive use was not found to have a statistically significant correlation with a systemic inflammatory protein profile in either RVVC patients or the asymptomatic women. RVVC women had lower circulating Fibroblast Growth Factor 21 (FGF-21) concentrations compared with healthy controls (adjusted p value = 0.028). Reduced concentrations of FGF-21 may be linked to the immune pathology observed in RVVC cases through IL-1β. This study may help to identify new biomarkers for the diagnosis and future development of novel immunomodulatory treatments for RVVC.
多达 75% 的妇女一生中至少患过一次外阴阴道念珠菌病(VVC),多达 8% 的妇女经常反复发作外阴阴道念珠菌病(RVVC)。缺乏宿主保护性反应是阴道念珠菌感染的基础,而失调的高炎症反应则可能导致 RVVC。考虑到使用激素避孕药对全身炎症的潜在影响,本研究旨在调查非洲人群中患有 RVVC 的妇女的全身炎症蛋白谱。我们使用多重临近扩展分析技术,测量了 158 名 RVVC 患者和 92 名无症状女性(对照组)血浆样本中的 92 种循环系统炎症蛋白。在 RVVC 患者和无症状女性中,使用荷尔蒙避孕药与全身炎症蛋白谱均无统计学意义上的显著相关性。与健康对照组相比,RVVC 妇女的循环成纤维细胞生长因子 21 (FGF-21) 浓度较低(调整后 p 值 = 0.028)。FGF-21浓度的降低可能与通过IL-1β在RVVC病例中观察到的免疫病理学有关。这项研究可能有助于确定新的生物标志物,用于诊断和未来开发新型免疫调节疗法治疗 RVVC。
{"title":"Plasma Inflammatory Proteome Profile in a Cohort of Patients with Recurrent Vulvovaginal Candidiasis in Kenya","authors":"Diletta Rosati, Isis Ricaño Ponce, Gloria S. Omosa-Manyonyi, Mariolina Bruno, Nelly W. Kamau, Martin Jaeger, Vinod Kumar, Mihai G. Netea, Andre J. A. M. van der Ven, Jaap ten Oever","doi":"10.3390/jof10090638","DOIUrl":"https://doi.org/10.3390/jof10090638","url":null,"abstract":"Vulvovaginal candidiasis (VVC) affects up to 75% of women at least once during their lifetime, and up to 8% of women suffer from frequent recurrent episodes of VVC (RVVC). A lack of a protective host response underlies vaginal Candida infections, while a dysregulated hyperinflammatory response may drive RVVC. This study aimed to investigate the systemic inflammatory protein profile in women with RVVC in an African population, considering the potential influence of hormonal contraceptive use on systemic inflammation. Using multiplex Proximity Extension Assay technology, we measured 92 circulatory inflammatory proteins in plasma samples from 158 RVVC patients and 92 asymptomatic women (controls). Hormonal contraceptive use was not found to have a statistically significant correlation with a systemic inflammatory protein profile in either RVVC patients or the asymptomatic women. RVVC women had lower circulating Fibroblast Growth Factor 21 (FGF-21) concentrations compared with healthy controls (adjusted p value = 0.028). Reduced concentrations of FGF-21 may be linked to the immune pathology observed in RVVC cases through IL-1β. This study may help to identify new biomarkers for the diagnosis and future development of novel immunomodulatory treatments for RVVC.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of Human Endemic Mycoses Caused by Thermally Dimorphic Fungi: From Classical to Molecular Methods 诊断由热二态真菌引起的人类地方性真菌病:从经典方法到分子方法
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-06 DOI: 10.3390/jof10090637
Joaquina María García-Martín, Antonio Muro, Pedro Fernández-Soto
Human endemic mycoses are potentially fatal diseases caused by a diverse group of fungi that can alter their morphology in response to an increase in temperature. These thermally dimorphic fungi affect both healthy and immunocompromised hosts, causing a substantial health and economic burden. Despite this, the diagnosis of endemic mycoses is still a formidable challenge for several reasons, including similar symptomatology, limited utility of classical diagnostic methods, inaccessibility to reliable molecular approaches in most endemic areas, and a lack of clinical suspicion out of these regions. This review summarizes essential knowledge on thermally dimorphic fungi and the life-threatening diseases they cause. The principle, advantages and limitations of the methods traditionally used for their diagnosis are also described, along with the application status and future directions for the development of alternative diagnostic strategies, which could help to reduce the disease burden in endemic areas.
人类地方性真菌病是由多种真菌引起的可能致命的疾病,这些真菌会随着温度的升高而改变形态。这些温度二态真菌既影响健康的宿主,也影响免疫力低下的宿主,造成巨大的健康和经济负担。尽管如此,地方性真菌病的诊断仍然是一项艰巨的挑战,原因包括症状相似、传统诊断方法的效用有限、大多数地方性真菌病流行地区无法获得可靠的分子方法以及这些地区缺乏临床怀疑。本综述总结了有关热二态真菌及其引发的危及生命的疾病的基本知识。此外,还介绍了传统诊断方法的原理、优势和局限性,以及替代诊断策略的应用现状和未来发展方向,这将有助于减轻地方病流行地区的疾病负担。
{"title":"Diagnosis of Human Endemic Mycoses Caused by Thermally Dimorphic Fungi: From Classical to Molecular Methods","authors":"Joaquina María García-Martín, Antonio Muro, Pedro Fernández-Soto","doi":"10.3390/jof10090637","DOIUrl":"https://doi.org/10.3390/jof10090637","url":null,"abstract":"Human endemic mycoses are potentially fatal diseases caused by a diverse group of fungi that can alter their morphology in response to an increase in temperature. These thermally dimorphic fungi affect both healthy and immunocompromised hosts, causing a substantial health and economic burden. Despite this, the diagnosis of endemic mycoses is still a formidable challenge for several reasons, including similar symptomatology, limited utility of classical diagnostic methods, inaccessibility to reliable molecular approaches in most endemic areas, and a lack of clinical suspicion out of these regions. This review summarizes essential knowledge on thermally dimorphic fungi and the life-threatening diseases they cause. The principle, advantages and limitations of the methods traditionally used for their diagnosis are also described, along with the application status and future directions for the development of alternative diagnostic strategies, which could help to reduce the disease burden in endemic areas.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Genomics of Fungi in Nectriaceae Reveals Their Environmental Adaptation and Conservation Strategies 花蜜科真菌的比较基因组学揭示其环境适应性和保护策略
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-05 DOI: 10.3390/jof10090632
Daniel Vasconcelos Rissi, Maham Ijaz, Christiane Baschien
This study presents the first genome assembly of the freshwater saprobe fungus Neonectria lugdunensis and a comprehensive phylogenomics analysis of the Nectriaceae family, examining genomic traits according to fungal lifestyles. The Nectriaceae family, one of the largest in Hypocreales, includes fungi with significant ecological roles and economic importance as plant pathogens, endophytes, and saprobes. The phylogenomics analysis identified 2684 single-copy orthologs, providing a robust evolutionary framework for the Nectriaceae family. We analyzed the genomic characteristics of 17 Nectriaceae genomes, focusing on their carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), and adaptations to environmental temperatures. Our results highlight the adaptation mechanisms of N. lugdunensis, emphasizing its capabilities for plant litter degradation and enzyme activity in varying temperatures. The comparative genomics of different Nectriaceae lifestyles revealed significant differences in genome size, gene content, repetitive elements, and secondary metabolite production. Endophytes exhibited larger genomes, more effector proteins, and BGCs, while plant pathogens had higher thermo-adapted protein counts, suggesting greater resilience to global warming. In contrast, the freshwater saprobe shows less adaptation to warmer temperatures and is important for conservation goals. This study underscores the importance of understanding fungal genomic adaptations to predict ecosystem impacts and conservation targets in the face of climate change.
本研究首次展示了淡水有袋真菌 Neonectria lugdunensis 的基因组组装,并对 Nectriaceae 家族进行了全面的系统发生组学分析,根据真菌的生活方式研究了其基因组特征。Nectriaceae 家族是下真菌门中最大的家族之一,其中的真菌作为植物病原体、内生菌和吸水菌具有重要的生态作用和经济意义。系统发生组学分析确定了 2684 个单拷贝直向同源物,为 Nectriaceae 家族提供了一个强大的进化框架。我们分析了 17 个油菜基因组的基因组特征,重点研究了它们的碳水化合物活性酶(CAZymes)、生物合成基因簇(BGCs)以及对环境温度的适应性。我们的研究结果突显了鲁格杜氏菌的适应机制,强调了其在不同温度下降解植物废弃物的能力和酶活性。不同内生菌生活方式的比较基因组学发现,它们在基因组大小、基因含量、重复元件和次生代谢物产量方面存在显著差异。内生菌表现出更大的基因组、更多的效应蛋白和BGCs,而植物病原体则具有更高的热适应蛋白数量,这表明它们对全球变暖具有更强的适应能力。相比之下,淡水根瘤菌对气温变暖的适应能力较弱,对保护目标非常重要。这项研究强调了了解真菌基因组适应性对于预测气候变化对生态系统的影响和保护目标的重要性。
{"title":"Comparative Genomics of Fungi in Nectriaceae Reveals Their Environmental Adaptation and Conservation Strategies","authors":"Daniel Vasconcelos Rissi, Maham Ijaz, Christiane Baschien","doi":"10.3390/jof10090632","DOIUrl":"https://doi.org/10.3390/jof10090632","url":null,"abstract":"This study presents the first genome assembly of the freshwater saprobe fungus Neonectria lugdunensis and a comprehensive phylogenomics analysis of the Nectriaceae family, examining genomic traits according to fungal lifestyles. The Nectriaceae family, one of the largest in Hypocreales, includes fungi with significant ecological roles and economic importance as plant pathogens, endophytes, and saprobes. The phylogenomics analysis identified 2684 single-copy orthologs, providing a robust evolutionary framework for the Nectriaceae family. We analyzed the genomic characteristics of 17 Nectriaceae genomes, focusing on their carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), and adaptations to environmental temperatures. Our results highlight the adaptation mechanisms of N. lugdunensis, emphasizing its capabilities for plant litter degradation and enzyme activity in varying temperatures. The comparative genomics of different Nectriaceae lifestyles revealed significant differences in genome size, gene content, repetitive elements, and secondary metabolite production. Endophytes exhibited larger genomes, more effector proteins, and BGCs, while plant pathogens had higher thermo-adapted protein counts, suggesting greater resilience to global warming. In contrast, the freshwater saprobe shows less adaptation to warmer temperatures and is important for conservation goals. This study underscores the importance of understanding fungal genomic adaptations to predict ecosystem impacts and conservation targets in the face of climate change.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Evaluation of Mechanical and Physical Properties of Mycelium Composite Boards Made from Lentinus sajor-caju with Various Ratios of Corn Husk and Sawdust 用不同比例的玉米芯和锯屑制成的菌丝复合板的机械和物理性能比较评估
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-05 DOI: 10.3390/jof10090634
Praween Jinanukul, Jaturong Kumla, Worawoot Aiduang, Wandee Thamjaree, Rawiwan Oranratmanee, Umpiga Shummadtayar, Yuttana Tongtuam, Saisamorn Lumyong, Nakarin Suwannarach, Tanut Waroonkun
Mycelium-based composites (MBCs) exhibit varied properties as alternative biodegradable materials that can be used in various industries such as construction, furniture, household goods, and packaging. However, these properties are primarily influenced by the type of substrate used. This study aims to investigate the properties of MBCs produced from Lentinus sajor-caju strain CMU-NK0427 using different ratios of sawdust to corn husk in the development of mycelium composite boards (MCBs) with thicknesses of 8, 16, and 24 mm. The results indicate that variations in the ratios of corn husk to sawdust and thickness affected the mechanical and physical properties of the obtained MCBs. Reducing the corn husk content in the substrate increased the modulus of elasticity, density, and thermal conductivity, while increasing the corn husk content increased the bending strength, shrinkage, water absorption, and volumetric swelling. Additionally, an increase in thickness with the same substrate ratio only indicated an increase in density and shrinkage. MCBs have sound absorption properties ranging from 61 to 94% at a frequency of 1000 Hz. According to the correlation results, a reduction in corn husk content in the substrate has a significant positive effect on the reduction in bending strength, shrinkage, and water absorption in MCBs. However, a decrease in corn husk content shows a strong negative correlation with the increase in the modulus of elasticity, density, and thermal conductivity. The thickness of MCBs with the same substrate ratio only shows a significant negative correlation with the modulus of elasticity and bending strength. Compared to commercial boards, the mechanical (bending strength) and physical (density, thermal conductivity, and sound absorption) properties of MCBs made from a 100% corn husk ratio are most similar to those of softboards and acoustic boards. The results of this study can provide valuable information for the production of MCBs and will serve as a guide to enhance strategies for further improving their properties for commercial manufacturing, as well as fulfilling the long-term goal of eco-friendly recycling of lignocellulosic substrates.
作为可生物降解的替代材料,菌丝基复合材料(MBCs)具有多种特性,可用于建筑、家具、家居用品和包装等多个行业。然而,这些特性主要受所用基材类型的影响。本研究旨在研究在开发厚度为 8、16 和 24 毫米的菌丝复合板(MCB)时,使用不同比例的锯屑和玉米皮从 Lentinus sajor-caju 菌株 CMU-NK0427 中生产出的 MBC 的特性。结果表明,玉米皮与锯屑的比例和厚度的变化会影响所获得 MCB 的机械和物理特性。减少基材中的玉米皮含量会增加弹性模量、密度和导热性,而增加玉米皮含量则会增加弯曲强度、收缩率、吸水率和体积膨胀率。此外,在基材比例相同的情况下,增加厚度只会增加密度和收缩率。MCB 在频率为 1000 Hz 时具有 61% 至 94% 的吸音特性。根据相关结果,基材中玉米皮含量的减少对降低 MCB 的抗弯强度、收缩率和吸水性有显著的积极影响。然而,玉米皮含量的减少与弹性模量、密度和导热系数的增加呈强烈的负相关。基材比例相同的 MCB 厚度仅与弹性模量和抗弯强度呈显著负相关。与商用板相比,100% 玉米皮配比制成的 MCB 的机械(弯曲强度)和物理(密度、导热性和吸音)特性与软板和吸音板最为相似。本研究的结果可为 MCB 的生产提供有价值的信息,并可作为改进策略的指南,以进一步提高其商业制造性能,同时实现木质纤维素基材生态友好型回收利用的长期目标。
{"title":"Comparative Evaluation of Mechanical and Physical Properties of Mycelium Composite Boards Made from Lentinus sajor-caju with Various Ratios of Corn Husk and Sawdust","authors":"Praween Jinanukul, Jaturong Kumla, Worawoot Aiduang, Wandee Thamjaree, Rawiwan Oranratmanee, Umpiga Shummadtayar, Yuttana Tongtuam, Saisamorn Lumyong, Nakarin Suwannarach, Tanut Waroonkun","doi":"10.3390/jof10090634","DOIUrl":"https://doi.org/10.3390/jof10090634","url":null,"abstract":"Mycelium-based composites (MBCs) exhibit varied properties as alternative biodegradable materials that can be used in various industries such as construction, furniture, household goods, and packaging. However, these properties are primarily influenced by the type of substrate used. This study aims to investigate the properties of MBCs produced from Lentinus sajor-caju strain CMU-NK0427 using different ratios of sawdust to corn husk in the development of mycelium composite boards (MCBs) with thicknesses of 8, 16, and 24 mm. The results indicate that variations in the ratios of corn husk to sawdust and thickness affected the mechanical and physical properties of the obtained MCBs. Reducing the corn husk content in the substrate increased the modulus of elasticity, density, and thermal conductivity, while increasing the corn husk content increased the bending strength, shrinkage, water absorption, and volumetric swelling. Additionally, an increase in thickness with the same substrate ratio only indicated an increase in density and shrinkage. MCBs have sound absorption properties ranging from 61 to 94% at a frequency of 1000 Hz. According to the correlation results, a reduction in corn husk content in the substrate has a significant positive effect on the reduction in bending strength, shrinkage, and water absorption in MCBs. However, a decrease in corn husk content shows a strong negative correlation with the increase in the modulus of elasticity, density, and thermal conductivity. The thickness of MCBs with the same substrate ratio only shows a significant negative correlation with the modulus of elasticity and bending strength. Compared to commercial boards, the mechanical (bending strength) and physical (density, thermal conductivity, and sound absorption) properties of MCBs made from a 100% corn husk ratio are most similar to those of softboards and acoustic boards. The results of this study can provide valuable information for the production of MCBs and will serve as a guide to enhance strategies for further improving their properties for commercial manufacturing, as well as fulfilling the long-term goal of eco-friendly recycling of lignocellulosic substrates.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses 揭示机制:生物营养真菌在激活或抑制植物防御反应中的作用
IF 4.7 2区 生物学 Q2 MICROBIOLOGY Pub Date : 2024-09-05 DOI: 10.3390/jof10090635
Michel Leiva-Mora, Yanelis Capdesuñer, Ariel Villalobos-Olivera, Roberto Moya-Jiménez, Luis Rodrigo Saa, Marcos Edel Martínez-Montero
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant–pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
本文讨论了真菌操纵植物生理机理和抑制植物防御反应的机制,真菌产生的效应物可以靶向各种宿主蛋白。效应物触发的免疫和效应物触发的易感性是植物与病原体相互作用的复杂分子对话中的关键因素。病原体产生的效应分子具有模拟病原体相关分子模式或阻碍模式识别受体结合的能力。效应分子可直接靶向核苷酸结合域、富亮氨酸重复受体,或操纵下游信号元件以抑制植物防御。在这一过程中,这些效应物与寄主植物中的受体样激酶之间的相互作用至关重要。生物营养真菌善于利用关键植物激素(包括水杨酸、茉莉酸、脱落酸和乙烯)的信号网络,与其植物宿主建立兼容的互动关系。总之,论文强调了了解植物防御机制和真菌效应物之间复杂的相互作用对于制定有效的植物病害管理策略的重要性。
{"title":"Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses","authors":"Michel Leiva-Mora, Yanelis Capdesuñer, Ariel Villalobos-Olivera, Roberto Moya-Jiménez, Luis Rodrigo Saa, Marcos Edel Martínez-Montero","doi":"10.3390/jof10090635","DOIUrl":"https://doi.org/10.3390/jof10090635","url":null,"abstract":"This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant–pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Fungi
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1