Pub Date : 2024-02-29DOI: 10.1016/j.jia.2024.02.020
Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang
Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions, thereby affecting straw decomposition in the soil. However, the mechanisms underlying changes in soil organic carbon (SOC) composition and microbial communities during straw decomposition under long-term intercropping with reduced nitrogen addition remain unclear. In this study, we conducted an in-situ microplot incubation experiment with C-labeled soybean straw residue addition in a two-factor (cropping pattern: sugarcane monoculture (MS) and sugarcane/soybean intercropping (SB); nitrogen addition levels: reduced nitrogen addition (N1) and conventional nitrogen addition (N2)) long-term experimental field plot. The results showed that the SBN1 treatment significantly increased the residual particulate organic carbon (POC) and residual microbial biomass carbon (MBC) contents during straw decomposition, and the straw carbon in soil was mainly conserved as POC. Straw addition changed the structure and reduced the diversity of the soil microbial community, but microbial diversity gradually recovered with decomposition time. During straw decomposition, the intercropping pattern significantly increased the relative abundances of Firmicutes and Ascomycota. In addition, straw addition reduced microbial network complexity in the sugarcane/soybean intercropping pattern but increased it in the sugarcane monoculture pattern. Nevertheless, microbial network complexity remained higher in the SBN1 treatment than in the MSN1 treatment. In general, the SBN1 treatment significantly increased the diversity of microbial communities and the relative abundance of microorganisms associated with organic matter decomposition, and the changes in microbial communities were mainly driven by the residual labile SOC fractions. These findings suggest that more straw carbon can be sequestered in the soil under sugarcane/soybean intercropping with reduced nitrogen addition to maintain microbial diversity and contribute to the development of sustainable agriculture.
{"title":"Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition","authors":"Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang","doi":"10.1016/j.jia.2024.02.020","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.020","url":null,"abstract":"Sugarcane/soybean intercropping with reduced nitrogen addition is an important sustainable agricultural pattern that can alter soil ecological functions, thereby affecting straw decomposition in the soil. However, the mechanisms underlying changes in soil organic carbon (SOC) composition and microbial communities during straw decomposition under long-term intercropping with reduced nitrogen addition remain unclear. In this study, we conducted an in-situ microplot incubation experiment with C-labeled soybean straw residue addition in a two-factor (cropping pattern: sugarcane monoculture (MS) and sugarcane/soybean intercropping (SB); nitrogen addition levels: reduced nitrogen addition (N1) and conventional nitrogen addition (N2)) long-term experimental field plot. The results showed that the SBN1 treatment significantly increased the residual particulate organic carbon (POC) and residual microbial biomass carbon (MBC) contents during straw decomposition, and the straw carbon in soil was mainly conserved as POC. Straw addition changed the structure and reduced the diversity of the soil microbial community, but microbial diversity gradually recovered with decomposition time. During straw decomposition, the intercropping pattern significantly increased the relative abundances of Firmicutes and Ascomycota. In addition, straw addition reduced microbial network complexity in the sugarcane/soybean intercropping pattern but increased it in the sugarcane monoculture pattern. Nevertheless, microbial network complexity remained higher in the SBN1 treatment than in the MSN1 treatment. In general, the SBN1 treatment significantly increased the diversity of microbial communities and the relative abundance of microorganisms associated with organic matter decomposition, and the changes in microbial communities were mainly driven by the residual labile SOC fractions. These findings suggest that more straw carbon can be sequestered in the soil under sugarcane/soybean intercropping with reduced nitrogen addition to maintain microbial diversity and contribute to the development of sustainable agriculture.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"108 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In 2013, peste des petits ruminants (PPR) re-emerged in China and spread to the majority of provinces across the country. The disease was effectively controlled through a vaccination campaign employing live attenuated vaccines, although sporadic cases still occurred. However, limited information is currently available regarding the peste des petits ruminants virus (PPRV) endemic in China. Here, a PPRV strain (HLJ/13) was isolated from a field sample in China by using Vero cells expressing goat signalling lymphocyte activation molecule. Phylogenetic analysis indicated that HLJ/13 belonged to lineage Ⅳ. Subsequent intranasal and subcutaneous inoculation of goats with a dose of 2×10 TCID of HLJ/13 resulted in the development of typical clinical symptoms of PPR, including pyrexia, ocular and nasal discharges, stomatitis, and diarrhea. All infected goats succumbed to the disease by day 8. To gain further insight, viral loading, pathological examination and immunohistochemical analyses were conducted, elucidating the main targets of HLJ/13 as the respiratory system, digestive tract and lymphoid organs. Employing the goat infection model established above, the goat poxvirus-vectored PPR vaccine, which was previously developed and could be used as DIVA (differentiating infected from vaccinated animals) vaccine, provided complete protection against the challenge of HLJ/13. It is important to note that this study represents the first comprehensive report delineating the biology and pathogenicity characterization, and infection model of PPRV isolated in China.
{"title":"Establishment of goat infection model of the peste ruminants virus isolated in China for vaccine efficacy evaluation1","authors":"Xue Wang, Hefeng Chen, Xianfeng Zhang, Zhengshuang Wu, Shuai Zhang, Lei Shuai, Lulu Wang, Weijie Li, Jinliang Wang, Wenxing Liu, Xijun Wang, Zhiyuan Wen, Jinying Ge, Yuntao Guan, Xijun He, Weiye Chen, Zhigao Bu","doi":"10.1016/j.jia.2024.02.016","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.016","url":null,"abstract":"In 2013, peste des petits ruminants (PPR) re-emerged in China and spread to the majority of provinces across the country. The disease was effectively controlled through a vaccination campaign employing live attenuated vaccines, although sporadic cases still occurred. However, limited information is currently available regarding the peste des petits ruminants virus (PPRV) endemic in China. Here, a PPRV strain (HLJ/13) was isolated from a field sample in China by using Vero cells expressing goat signalling lymphocyte activation molecule. Phylogenetic analysis indicated that HLJ/13 belonged to lineage Ⅳ. Subsequent intranasal and subcutaneous inoculation of goats with a dose of 2×10 TCID of HLJ/13 resulted in the development of typical clinical symptoms of PPR, including pyrexia, ocular and nasal discharges, stomatitis, and diarrhea. All infected goats succumbed to the disease by day 8. To gain further insight, viral loading, pathological examination and immunohistochemical analyses were conducted, elucidating the main targets of HLJ/13 as the respiratory system, digestive tract and lymphoid organs. Employing the goat infection model established above, the goat poxvirus-vectored PPR vaccine, which was previously developed and could be used as DIVA (differentiating infected from vaccinated animals) vaccine, provided complete protection against the challenge of HLJ/13. It is important to note that this study represents the first comprehensive report delineating the biology and pathogenicity characterization, and infection model of PPRV isolated in China.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"80 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
is less-studied, but emerging as a powerful biocontrol bacterium producing multiple antimicrobial weapons including lytic enzymes, toxins, secondary metabolites and protein secretion systems. The loss of surface-attached flagellum, production of heat-stable antifungal factor (HSAF, also named as Ningrongmycin) as a novel antifungal antibiotic, and the use of the type IV secretion system (T4SS) rather than the common type VI secretion system (T6SS) to kill competitors make this species unique. These distinct features set apart from well-studied plant beneficial biocontrol agents, such as and . This review describes what takes to be a unique biocontrol warrior by focusing to illustrate how the lack of flagellum governs morphological and functional co-adaptability, what adapted signaling transduction pathways are adopted to coordinate the biosynthesis of HSAF, and how to ecologically adapt plant rhizosphere by cell-to-cell interacting microbiome members the bacterial-killing T4SS.
的研究较少,但它正在成为一种强大的生物控制细菌,可产生多种抗菌武器,包括溶解酶、毒素、次级代谢产物和蛋白质分泌系统。失去表面附着的鞭毛、产生作为新型抗真菌抗生素的热稳定抗真菌因子(HSAF,又名宁荣霉素),以及使用 IV 型分泌系统(T4SS)而非常见的 VI 型分泌系统(T6SS)来杀死竞争者,使该物种独树一帜。这些显著特点使其有别于已被充分研究的植物有益生物控制剂,如 和 。本综述通过重点说明缺乏鞭毛如何影响形态和功能的共同适应性、采用何种适应的信号转导途径来协调 HSAF 的生物合成,以及如何通过细胞间相互作用的微生物组成员杀死细菌的 T4SS 来从生态学角度适应植物根瘤。
{"title":"Lysobacter enzymogenes: a fully armed biocontrol warrior1","authors":"Long Lin, Xiaolong Shao, Yicheng Yang, Aprodisia Kavutu Murero, Limin Wang, Gaoge Xu, Yangyang Zhao, Sen Han, Zhenhe Su, Kangwen Xu, Mingming Yang, Jinxing Liao, Kaihuai Li, Fengquan Liu, Guoliang Qian","doi":"10.1016/j.jia.2024.02.021","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.021","url":null,"abstract":"is less-studied, but emerging as a powerful biocontrol bacterium producing multiple antimicrobial weapons including lytic enzymes, toxins, secondary metabolites and protein secretion systems. The loss of surface-attached flagellum, production of heat-stable antifungal factor (HSAF, also named as Ningrongmycin) as a novel antifungal antibiotic, and the use of the type IV secretion system (T4SS) rather than the common type VI secretion system (T6SS) to kill competitors make this species unique. These distinct features set apart from well-studied plant beneficial biocontrol agents, such as and . This review describes what takes to be a unique biocontrol warrior by focusing to illustrate how the lack of flagellum governs morphological and functional co-adaptability, what adapted signaling transduction pathways are adopted to coordinate the biosynthesis of HSAF, and how to ecologically adapt plant rhizosphere by cell-to-cell interacting microbiome members the bacterial-killing T4SS.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"3 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xenocoumacins (Xcns), the major antimicrobial natural products produced by , have gained widespread attention for their potential application in crop protection. However, the regulatory mechanisms involved in the biosynthesis of Xcns remain poorly understood. In this study, we identified 21 potential two-component systems (TCSs) in CB6 by bioinformatic analysis. Among them, the response regulators (RRs) GlrR and ArcA were proven to positively regulate the production of Xcns based on gene deletion and complementation experiments. In addition, our results showed that GlrR played an important role in cell growth, while ArcA was involved in both cell morphology and growth. Using a variety of molecular biological and biochemical techniques, we found that GlrR controlled the Xcns biosynthesis by indirectly regulating the expression levels of the biosynthetic gene cluster (BGC). ArcA directly binded to the promoter regions of and to regulate the transcription of the Xcns BGC, and the binding sites were also identified. This study provides valuable insights into the regulatory network of Xcns biosynthesis, which will contribute to the construction of a high-yielding strain.
{"title":"Studying of the regulatory roles of response regulators GlrR and ArcA in xenocoumacins biosynthesis in Xenorhabdus nematophila CB61","authors":"Xiaohui Li, Xiaobing Zheng, Yijie Dong, Youcai Qin, Fenglian Jia, Baoming Yuan, Jiaqi Duan, Beibei Li, Guangyue Li","doi":"10.1016/j.jia.2024.02.014","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.014","url":null,"abstract":"Xenocoumacins (Xcns), the major antimicrobial natural products produced by , have gained widespread attention for their potential application in crop protection. However, the regulatory mechanisms involved in the biosynthesis of Xcns remain poorly understood. In this study, we identified 21 potential two-component systems (TCSs) in CB6 by bioinformatic analysis. Among them, the response regulators (RRs) GlrR and ArcA were proven to positively regulate the production of Xcns based on gene deletion and complementation experiments. In addition, our results showed that GlrR played an important role in cell growth, while ArcA was involved in both cell morphology and growth. Using a variety of molecular biological and biochemical techniques, we found that GlrR controlled the Xcns biosynthesis by indirectly regulating the expression levels of the biosynthetic gene cluster (BGC). ArcA directly binded to the promoter regions of and to regulate the transcription of the Xcns BGC, and the binding sites were also identified. This study provides valuable insights into the regulatory network of Xcns biosynthesis, which will contribute to the construction of a high-yielding strain.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"19 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen fertilizer is an important agronomic measure that greatly affects crop yield and grain quality. This two-year study aimed to explore the effects of four nitrogen levels on the morphology, lamellar and crystalline structure, pasting, and rheological properties of proso millet (PM) starch, and to investigate potential food applications of PM. The results showed that the starch surface became uneven and the structure of the starch granules shifted towards greater complexity with increasing nitrogen level. Nitrogen increased the relative crystallinity, ordered structure, and average repeat distance, leading to a stable starch structure and contributing to a higher gelatinization enthalpy. Furthermore, nitrogen significantly increased peak, breakdown, setback, and final viscosities but decreased apparent amylose content, which caused the shear resistance and storage capacity of PM starch-based foods to deteriorate during processing and transport. Rheological analysis showed that PM starch exhibited the typical characteristics of a pseudoplastic fluid. Under nitrogen treatment, PM starch gels showed high potential for application in 3D printing products due to a high resistance to shear thinning, gel strength, and yield stress, presumably owing to the significantly higher G′ than G′′, and the lower amylose content, which in turn promoted the formation of a stable network structure in water to immobilize more water. Our study provides a reference for the application of PM starch in the food industry and for the development of PM cropping-management programs to improve quality.
{"title":"Effect of nitrogen fertilizer on proso millet starch structure, pasting, and rheological properties","authors":"Honglu Wang, Hui Zhang, Qian Ma, Enguo Wu, Aliaksandr Ivanistau, Baili Feng","doi":"10.1016/j.jia.2024.02.015","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.015","url":null,"abstract":"Nitrogen fertilizer is an important agronomic measure that greatly affects crop yield and grain quality. This two-year study aimed to explore the effects of four nitrogen levels on the morphology, lamellar and crystalline structure, pasting, and rheological properties of proso millet (PM) starch, and to investigate potential food applications of PM. The results showed that the starch surface became uneven and the structure of the starch granules shifted towards greater complexity with increasing nitrogen level. Nitrogen increased the relative crystallinity, ordered structure, and average repeat distance, leading to a stable starch structure and contributing to a higher gelatinization enthalpy. Furthermore, nitrogen significantly increased peak, breakdown, setback, and final viscosities but decreased apparent amylose content, which caused the shear resistance and storage capacity of PM starch-based foods to deteriorate during processing and transport. Rheological analysis showed that PM starch exhibited the typical characteristics of a pseudoplastic fluid. Under nitrogen treatment, PM starch gels showed high potential for application in 3D printing products due to a high resistance to shear thinning, gel strength, and yield stress, presumably owing to the significantly higher G′ than G′′, and the lower amylose content, which in turn promoted the formation of a stable network structure in water to immobilize more water. Our study provides a reference for the application of PM starch in the food industry and for the development of PM cropping-management programs to improve quality.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"6 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pentatricopeptide repeat (PPR) proteins play crucial roles in the post-transcriptional regulation of gene expression, specifically RNA editing and RNA splicing, in plant organelles. Despite longstanding research on chloroplast biogenesis and development, the roles of most PPR genes in this process in rice () remain unclear. In this study, we identified a novel P-type PPR protein, YELLOW-GREEN LEAF AND SEEDLING LETHAL (YGS), that is targeted to rice chloroplasts. is preferentially expressed in leaves. The mutants were obtained by knocking out gene using CRISPR/Cas9-mediated genome editing; these mutants exhibited yellow-green leaves and a seedling-lethal phenotype. Consistent with these phenotypes, the mutants had lower levels of pigment contents and an abnormal chloroplast ultrastructure compared to the wild type. Moreover, the expression levels of genes related to chloroplast development and chlorophyll biosynthesis were significantly altered in the mutants. In addition, loss of function of YGS impaired RNA editing of and intron splicing of in the plastid genome. Finally, YGS interacted with the chloroplast signal recognition particle protein OscpSRP54b in yeast two-hybrid and bimolecular fluorescence complementation assays. These findings suggest that YGS is involved in RNA editing and RNA splicing in chloroplasts, thereby playing a crucial role in chloroplast development in rice.
{"title":"The P-type pentatricopeptide repeat protein YGS is essential for chloroplast development in rice","authors":"Zhennan Qiu, Dongdong Chen, Peiliang Zhang, Chunmiao Wang, Guihong Liang, Chunyang Jiao, Shuo Han, Cuiping Wen, Xiliang Song, Peiyan Guan, Yan Li, Shiyong Wen, Li Zhu","doi":"10.1016/j.jia.2024.02.022","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.022","url":null,"abstract":"Pentatricopeptide repeat (PPR) proteins play crucial roles in the post-transcriptional regulation of gene expression, specifically RNA editing and RNA splicing, in plant organelles. Despite longstanding research on chloroplast biogenesis and development, the roles of most PPR genes in this process in rice () remain unclear. In this study, we identified a novel P-type PPR protein, YELLOW-GREEN LEAF AND SEEDLING LETHAL (YGS), that is targeted to rice chloroplasts. is preferentially expressed in leaves. The mutants were obtained by knocking out gene using CRISPR/Cas9-mediated genome editing; these mutants exhibited yellow-green leaves and a seedling-lethal phenotype. Consistent with these phenotypes, the mutants had lower levels of pigment contents and an abnormal chloroplast ultrastructure compared to the wild type. Moreover, the expression levels of genes related to chloroplast development and chlorophyll biosynthesis were significantly altered in the mutants. In addition, loss of function of YGS impaired RNA editing of and intron splicing of in the plastid genome. Finally, YGS interacted with the chloroplast signal recognition particle protein OscpSRP54b in yeast two-hybrid and bimolecular fluorescence complementation assays. These findings suggest that YGS is involved in RNA editing and RNA splicing in chloroplasts, thereby playing a crucial role in chloroplast development in rice.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"113 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140009297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1016/j.jia.2024.02.013
Shahid Ullah Khan, Ahmad Ali, Sumbul Saeed, Yonghai Fan, Ali Shehazd, Hameed Gul, Shah Fahad, Kun Lu
Rapeseed (Brassica napus L.) is the second most premium oilseed crop, mainly grown for vegetable oil and protein meal around the globe. One of the main goals for breeders is to produce high-yield rapeseed cultivars with sustainable production to meet the requirements of the fast-growing population. Besides the pod number, seeds per silique (SS), and thousand-seed weight (TSW), ovule number (ON) is the decisive yield determining factor of a single plant and final seed yield. In recent years, tremendous efforts have been made to dissect the genetic and molecular basis of these complex traits. Still, only relatively few genes or loci controlling these traits have been reported. This review highlighted the updated hormonal and molecular basis of ON and development in model plants (. ). This review also compiled efforts at the hormonal, molecular, and genetic mechanism of ovule development and number and bridge the understanding between the model plant species (. ) and cultivated species (. ). This report will open a new corridor for primary and applied research in plant biology and benefit rapeseed breeding programs. This literature will inculcate research interest to understand further ovule number determination, its role in yield improvement, and possible utilization in breeding programs.
{"title":"Ovule number a rising star to regulate seed Yield: Hopes or hypes","authors":"Shahid Ullah Khan, Ahmad Ali, Sumbul Saeed, Yonghai Fan, Ali Shehazd, Hameed Gul, Shah Fahad, Kun Lu","doi":"10.1016/j.jia.2024.02.013","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.013","url":null,"abstract":"Rapeseed (Brassica napus L.) is the second most premium oilseed crop, mainly grown for vegetable oil and protein meal around the globe. One of the main goals for breeders is to produce high-yield rapeseed cultivars with sustainable production to meet the requirements of the fast-growing population. Besides the pod number, seeds per silique (SS), and thousand-seed weight (TSW), ovule number (ON) is the decisive yield determining factor of a single plant and final seed yield. In recent years, tremendous efforts have been made to dissect the genetic and molecular basis of these complex traits. Still, only relatively few genes or loci controlling these traits have been reported. This review highlighted the updated hormonal and molecular basis of ON and development in model plants (. ). This review also compiled efforts at the hormonal, molecular, and genetic mechanism of ovule development and number and bridge the understanding between the model plant species (. ) and cultivated species (. ). This report will open a new corridor for primary and applied research in plant biology and benefit rapeseed breeding programs. This literature will inculcate research interest to understand further ovule number determination, its role in yield improvement, and possible utilization in breeding programs.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"5 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobacco () and tomato () are two major economic crops in China. Tobacco mosaic virus (TMV; genus ) is the most prevalent virus infecting both crops. Currently, some widely cultivated tobacco and tomato cultivars are susceptible to TMV and there is no effective strategy to control this virus. Cross-protection can be a safe and environmentally friendly strategy to prevent viral diseases. However, stable attenuated TMV mutants are scarce. In this study, we found that the substitutions in the replicase p126, arginine at position 196 (R) with aspartic acid (D), glutamic acid at position 614 (E) with glycine (G), serine at position 643 (S) with phenylalanine (F), or D at position 730 (D) with S, significantly reduced the virulence and replication of TMV. However, only the mutation of S to F reduced the RNA silencing suppression activity of TMV p126. A double-mutant TMV-E614G-S643F induced no visible symptom and was genetically stable through six successive passages in tobacco plants. Furthermore, our results showed that TMV-E614G-S643F double-mutant could provide effective protection against the wild-type TMV infection in tobacco and tomato plants. This study reports a promising mild mutant for cross-protection to control TMV in tobacco and tomato plants.
{"title":"Development of a stable attenuated double-mutant of tobacco mosaic virus for cross-protection1","authors":"Xiaojie Xu, Shaoyan Jiang, Chunju Liu, Xujie Sun, Qing Zhu, Xiuzhai Chen, Pengchao Jiang, Fenglong Wang, Yanping Tian, Xiangdong Li","doi":"10.1016/j.jia.2024.02.019","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.019","url":null,"abstract":"Tobacco () and tomato () are two major economic crops in China. Tobacco mosaic virus (TMV; genus ) is the most prevalent virus infecting both crops. Currently, some widely cultivated tobacco and tomato cultivars are susceptible to TMV and there is no effective strategy to control this virus. Cross-protection can be a safe and environmentally friendly strategy to prevent viral diseases. However, stable attenuated TMV mutants are scarce. In this study, we found that the substitutions in the replicase p126, arginine at position 196 (R) with aspartic acid (D), glutamic acid at position 614 (E) with glycine (G), serine at position 643 (S) with phenylalanine (F), or D at position 730 (D) with S, significantly reduced the virulence and replication of TMV. However, only the mutation of S to F reduced the RNA silencing suppression activity of TMV p126. A double-mutant TMV-E614G-S643F induced no visible symptom and was genetically stable through six successive passages in tobacco plants. Furthermore, our results showed that TMV-E614G-S643F double-mutant could provide effective protection against the wild-type TMV infection in tobacco and tomato plants. This study reports a promising mild mutant for cross-protection to control TMV in tobacco and tomato plants.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"1 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140018044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot spots in crop genetic breeding and genetic resources research. Fiber- and seed-related traits, which are critical to the global economy and people's livelihoods, occupy the principal status of cotton breeding. Here, a wild cotton species , was used to broaden the genetic basis of . and identify QTL for fiber- and seed-related traits. A population of 559 chromosome segment substitution lines (CSSLs) was established with various chromosome segments from . in a . cultivar background. A total of 72, 89, and 76 QTLs were identified for three yield traits, five fiber quality traits, and six cottonseed nutrient quality traits, respectively. Favorable alleles of 104 QTLs were contributed by . . Sixty-four QTL were identified in two or more environments, and candidate genes for three of them were further identified. The results of this study contributed to further study on the genetic basis of the morphogenesis of these economic traits, as well as indicating that the great breeding potentials of . in improving the fiber- and seed-related traits in . .
{"title":"Mapping QTL for fiber- and seed-related traits in Gossypium tomentosum CSSLs with G. hirsutum background","authors":"Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang","doi":"10.1016/j.jia.2024.02.023","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.023","url":null,"abstract":"Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot spots in crop genetic breeding and genetic resources research. Fiber- and seed-related traits, which are critical to the global economy and people's livelihoods, occupy the principal status of cotton breeding. Here, a wild cotton species , was used to broaden the genetic basis of . and identify QTL for fiber- and seed-related traits. A population of 559 chromosome segment substitution lines (CSSLs) was established with various chromosome segments from . in a . cultivar background. A total of 72, 89, and 76 QTLs were identified for three yield traits, five fiber quality traits, and six cottonseed nutrient quality traits, respectively. Favorable alleles of 104 QTLs were contributed by . . Sixty-four QTL were identified in two or more environments, and candidate genes for three of them were further identified. The results of this study contributed to further study on the genetic basis of the morphogenesis of these economic traits, as well as indicating that the great breeding potentials of . in improving the fiber- and seed-related traits in . .","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"8 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen (N) is a major factor affecting rice yield and lodging resistance. Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture (RM); however, few studies have performed such investigations in rice-crayfish coculture (RC). We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security. We conducted a two-factor (rice farming mode and N management practice) field experiment from 2021 to 2022 to test our hypothesis. The rice farming modes included RM and RC, and the N management practices included no nitrogen fertilizer, conventional N application, and optimized N treatment. The rice yield and lodging resistance characteristics, such as the morphology, mechanical and chemical characteristics, anatomic structure, and gene expression levels, were analysed and compared among the different treatments. Under the same N application practice, RC decreased the rice yield by 11.1–24.4% and increased the lodging index by 19.6–45.6% compared with the values yielded in RM. In RC, optimized N application decreased the plant height, panicle neck node height, centre of gravity height, bending stress, and lodging index by 4.0–4.8%, 5.2–7.8%, 0.5–4.5%, 5.5–10.5%, and 1.8–19.5% compared with those in the conventional N application practice, respectively. Furthermore, it increased the culm diameter, culm wall thickness, breaking strength, and non-structural and structural carbohydrate content by 0.8–4.9%, 2.2–53.1%, 13.5–19.2%, 2.2–24.7%, and 31.3–87.2%, respectively. Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode. Furthermore, optimized N application upregulated genes involved in lignin and cellulose synthesis, thereby promoting lower internodes on the rice stem and enhancing lodging resistance. Optimized N application in RC significantly reduced the lodging index by 1.8–19.5% and stabilized the rice yield (>8,570 kg ha–1 on average). This study systematically analysed and compared the differences in lodging characteristics between RM and RC, and these findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.
{"title":"Optimizing nitrogen management can improve stem lodging resistance and stabilize grain yield of japonica rice in rice-crayfish coculture systems","authors":"Qiang Xu, Jingyong Li, Hui Gao, Xinyi Yang, Zhi Dou, Xiaochun Yuan, Weiyan Gao, Hongcheng Zhang","doi":"10.1016/j.jia.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.jia.2024.02.002","url":null,"abstract":"<p>Nitrogen (N) is a major factor affecting rice yield and lodging resistance. Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture (RM); however, few studies have performed such investigations in rice-crayfish coculture (RC). We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security. We conducted a two-factor (rice farming mode and N management practice) field experiment from 2021 to 2022 to test our hypothesis. The rice farming modes included RM and RC, and the N management practices included no nitrogen fertilizer, conventional N application, and optimized N treatment. The rice yield and lodging resistance characteristics, such as the morphology, mechanical and chemical characteristics, anatomic structure, and gene expression levels, were analysed and compared among the different treatments. Under the same N application practice, RC decreased the rice yield by 11.1–24.4% and increased the lodging index by 19.6–45.6% compared with the values yielded in RM. In RC, optimized N application decreased the plant height, panicle neck node height, centre of gravity height, bending stress, and lodging index by 4.0–4.8%, 5.2–7.8%, 0.5–4.5%, 5.5–10.5%, and 1.8–19.5% compared with those in the conventional N application practice, respectively. Furthermore, it increased the culm diameter, culm wall thickness, breaking strength, and non-structural and structural carbohydrate content by 0.8–4.9%, 2.2–53.1%, 13.5–19.2%, 2.2–24.7%, and 31.3–87.2%, respectively. Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode. Furthermore, optimized N application upregulated genes involved in lignin and cellulose synthesis, thereby promoting lower internodes on the rice stem and enhancing lodging resistance. Optimized N application in RC significantly reduced the lodging index by 1.8–19.5% and stabilized the rice yield (>8,570 kg ha<sup>–1</sup> on average). This study systematically analysed and compared the differences in lodging characteristics between RM and RC, and these findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.</p>","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"62 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}