首页 > 最新文献

Journal of Molecular Cell Biology最新文献

英文 中文
A computational study for understanding the impact of p120-catenin on the cis-dimerization of cadherin. 了解p120连环蛋白对钙粘蛋白顺式二聚作用影响的计算研究。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad055
Zhaoqian Su, Vinh H Vu, Deborah E Leckband, Yinghao Wu

A prototype of cross-membrane signal transduction is that extracellular binding of cell surface receptors to their ligands induces intracellular signalling cascades. However, much less is known about the process in the opposite direction, called inside-out signalling. Recent studies show that it plays a more important role in regulating the functions of many cell surface receptors than we used to think. In particular, in cadherin-mediated cell adhesion, recent experiments indicate that intracellular binding of the scaffold protein p120-catenin (p120ctn) can promote extracellular clustering of cadherin and alter its adhesive function. The underlying mechanism, however, is not well understood. To explore possible mechanisms, we designed a new multiscale simulation procedure. Using all-atom molecular dynamics simulations, we found that the conformational dynamics of the cadherin extracellular region can be altered by the intracellular binding of p120ctn. More intriguingly, by integrating all-atom simulation results into coarse-grained random sampling, we showed that the altered conformational dynamics of cadherin caused by the binding of p120ctn can increase the probability of lateral interactions between cadherins on the cell surface. These results suggest that p120ctn could allosterically regulate the cis-dimerization of cadherin through two mechanisms. First, p120ctn controls the extracellular conformational dynamics of cadherin. Second, p120ctn oligomerization can further promote cadherin clustering. Therefore, our study provides a mechanistic foundation for the inside-out signalling in cadherin-mediated cell adhesion, while the computational framework can be generally applied to other cross-membrane signal transduction systems.

跨膜信号转导的原型是细胞表面受体与其配体的细胞外结合诱导细胞内信号级联。然而,人们对相反方向的过程知之甚少,这种过程被称为由内而外的信号传导。最近的研究表明,它在调节许多细胞表面受体的功能方面发挥着比我们过去想象的更重要的作用。特别是,在钙粘蛋白介导的细胞粘附中,最近的实验表明支架蛋白p120连环蛋白的细胞内结合可以促进钙粘蛋白的细胞外聚集并改变其粘附功能。然而,其根本机制尚不清楚。为了探索可能的机制,我们设计了一种新的多尺度模拟程序。使用全原子分子动力学模拟,我们发现钙粘蛋白胞外区的构象动力学可以通过p120连环蛋白的细胞内结合来改变。更有趣的是,通过将所有原子模拟结果整合到粗粒度随机采样中,我们发现由p120连环蛋白结合引起的钙粘蛋白构象动力学的改变可以增加细胞表面钙粘蛋白之间横向相互作用的概率。这些结果表明,p120连环蛋白可以通过两种机制变构调节钙粘蛋白的顺式二聚。首先,p120连环蛋白控制钙粘蛋白的细胞外构象动力学。其次,p120连环蛋白寡聚可以进一步促进钙粘蛋白的聚集。因此,我们的研究为钙粘蛋白介导的细胞粘附中由内而外的信号传导提供了机制基础,而该计算框架通常可以应用于其他跨膜信号转导系统。
{"title":"A computational study for understanding the impact of p120-catenin on the cis-dimerization of cadherin.","authors":"Zhaoqian Su, Vinh H Vu, Deborah E Leckband, Yinghao Wu","doi":"10.1093/jmcb/mjad055","DOIUrl":"10.1093/jmcb/mjad055","url":null,"abstract":"<p><p>A prototype of cross-membrane signal transduction is that extracellular binding of cell surface receptors to their ligands induces intracellular signalling cascades. However, much less is known about the process in the opposite direction, called inside-out signalling. Recent studies show that it plays a more important role in regulating the functions of many cell surface receptors than we used to think. In particular, in cadherin-mediated cell adhesion, recent experiments indicate that intracellular binding of the scaffold protein p120-catenin (p120ctn) can promote extracellular clustering of cadherin and alter its adhesive function. The underlying mechanism, however, is not well understood. To explore possible mechanisms, we designed a new multiscale simulation procedure. Using all-atom molecular dynamics simulations, we found that the conformational dynamics of the cadherin extracellular region can be altered by the intracellular binding of p120ctn. More intriguingly, by integrating all-atom simulation results into coarse-grained random sampling, we showed that the altered conformational dynamics of cadherin caused by the binding of p120ctn can increase the probability of lateral interactions between cadherins on the cell surface. These results suggest that p120ctn could allosterically regulate the cis-dimerization of cadherin through two mechanisms. First, p120ctn controls the extracellular conformational dynamics of cadherin. Second, p120ctn oligomerization can further promote cadherin clustering. Therefore, our study provides a mechanistic foundation for the inside-out signalling in cadherin-mediated cell adhesion, while the computational framework can be generally applied to other cross-membrane signal transduction systems.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11121193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41179154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage. 维生素D受体的缺失通过DDIT4介导的DNA损伤触发慢性粒细胞白血病的衰老。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad066
Yan Xu, Wentao Qi, Chengzu Zheng, Yuan Li, Zhiyuan Lu, Jianmin Guan, Chunhua Lu, Baobing Zhao

Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.

慢性粒细胞白血病(CML)是一种由BCR:ABL1融合基因驱动的造血恶性肿瘤。BCR:ABL1突变和残留白血病干细胞对酪氨酸激酶抑制剂(TKIs)的耐药性仍然是CML治疗的主要挑战。在这里,我们揭示了VDR在CML进展中的需求,其中VDR被BCR:ABL1上调,解释了其高表达。有趣的是,VDR敲低抑制了BCR:ABL1驱动的CML细胞增殖,无论其突变是否具有TKIs耐药性。从机制上讲,VDR转录调节DDIT4的表达,并通过p53信号激活DDIT4抑制CML细胞中的DNA损伤诱导的衰老。此外,VDR缺乏不仅足以改善原发性CML小鼠的疾病负担和进展,还足以减少CML LSCs的自我更新。总之,我们的研究表明,靶向VDR是克服TKI耐药性和根除CML白血病干细胞的一种很有前途的策略。
{"title":"Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage.","authors":"Yan Xu, Wentao Qi, Chengzu Zheng, Yuan Li, Zhiyuan Lu, Jianmin Guan, Chunhua Lu, Baobing Zhao","doi":"10.1093/jmcb/mjad066","DOIUrl":"10.1093/jmcb/mjad066","url":null,"abstract":"<p><p>Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50161875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The critical role of BTRC in hepatic steatosis as an ATGL E3 ligase. BTRC作为ATGL E3连接酶在肝脂肪变性中的关键作用。
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad064
Weiwei Qi, Zhenzhen Fang, Chuanghua Luo, Honghai Hong, Yanlan Long, Zhiyu Dai, Junxi Liu, Yongcheng Zeng, Ti Zhou, Yong Xia, Xia Yang, Guoquan Gao

Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is one of the commonest causes of liver dysfunction. Adipose triglyceride lipase (ATGL) is closely related to lipid turnover and hepatic steatosis as the speed-limited triacylglycerol lipase in liver lipolysis. However, the expression and regulation of ATGL in NAFLD remain unclear. Herein, our results showed that ATGL protein levels were decreased in the liver tissues of high-fat diet (HFD)-fed mice, naturally obese mice, and cholangioma/hepatic carcinoma patients with hepatic steatosis, as well as in the oleic acid-induced hepatic steatosis cell model, while ATGL mRNA levels were not changed. ATGL protein was mainly degraded through the proteasome pathway in hepatocytes. Beta-transducin repeat containing (BTRC) was upregulated and negatively correlated with the decreased ATGL level in these hepatic steatosis models. Consequently, BTRC was identified as the E3 ligase for ATGL through predominant ubiquitination at the lysine 135 residue. Moreover, adenovirus-mediated knockdown of BTRC ameliorated steatosis in HFD-fed mouse livers and oleic acid-treated liver cells via upregulating the ATGL level. Taken together, BTRC plays a crucial role in hepatic steatosis as a new ATGL E3 ligase and may serve as a potential therapeutic target for treating NAFLD.

以肝脂肪变性为特征的非酒精性脂肪肝(NAFLD)是肝功能障碍的最常见原因之一。脂肪甘油三酯脂酶(ATGL)作为肝脏脂解中限速的三酰甘油脂酶,与脂质周转和肝脏脂肪变性密切相关。然而,ATGL在NAFLD中的表达和调节仍不清楚。在此,我们的研究结果表明,在高脂肪饮食(HFD)喂养的小鼠、自然肥胖小鼠、患有肝脂肪变性的胆管瘤/肝癌患者的肝组织中,以及在油酸诱导的肝脂肪变性细胞模型中,ATGL蛋白水平降低,而ATGL mRNA水平没有改变。ATGL蛋白在肝细胞中主要通过蛋白酶体途径降解。在这些肝脂肪变性模型中,β-转导素重复序列(BTRC)上调,并与ATGL水平下降呈负相关。因此,BTRC通过赖氨酸135残基的主要泛素化被鉴定为ATGL的E3连接酶。此外,腺病毒介导的BTRC敲低通过上调ATGL水平改善了HFD喂养的小鼠肝脏和油酸处理的肝细胞中的脂肪变性。总之,BTRC作为一种新的ATGL E3连接酶在肝脂肪变性中起着至关重要的作用,并可能成为治疗NAFLD的潜在治疗靶点。
{"title":"The critical role of BTRC in hepatic steatosis as an ATGL E3 ligase.","authors":"Weiwei Qi, Zhenzhen Fang, Chuanghua Luo, Honghai Hong, Yanlan Long, Zhiyu Dai, Junxi Liu, Yongcheng Zeng, Ti Zhou, Yong Xia, Xia Yang, Guoquan Gao","doi":"10.1093/jmcb/mjad064","DOIUrl":"10.1093/jmcb/mjad064","url":null,"abstract":"<p><p>Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is one of the commonest causes of liver dysfunction. Adipose triglyceride lipase (ATGL) is closely related to lipid turnover and hepatic steatosis as the speed-limited triacylglycerol lipase in liver lipolysis. However, the expression and regulation of ATGL in NAFLD remain unclear. Herein, our results showed that ATGL protein levels were decreased in the liver tissues of high-fat diet (HFD)-fed mice, naturally obese mice, and cholangioma/hepatic carcinoma patients with hepatic steatosis, as well as in the oleic acid-induced hepatic steatosis cell model, while ATGL mRNA levels were not changed. ATGL protein was mainly degraded through the proteasome pathway in hepatocytes. Beta-transducin repeat containing (BTRC) was upregulated and negatively correlated with the decreased ATGL level in these hepatic steatosis models. Consequently, BTRC was identified as the E3 ligase for ATGL through predominant ubiquitination at the lysine 135 residue. Moreover, adenovirus-mediated knockdown of BTRC ameliorated steatosis in HFD-fed mouse livers and oleic acid-treated liver cells via upregulating the ATGL level. Taken together, BTRC plays a crucial role in hepatic steatosis as a new ATGL E3 ligase and may serve as a potential therapeutic target for treating NAFLD.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49690972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting dysregulated splicing factors in cancer: lessons learned from RBM10 deficiency. 靶向癌症中失调剪接因子:从RBM10缺乏中吸取的经验教训。
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad063
Yongbo Wang, Zefeng Wang
{"title":"Targeting dysregulated splicing factors in cancer: lessons learned from RBM10 deficiency.","authors":"Yongbo Wang, Zefeng Wang","doi":"10.1093/jmcb/mjad063","DOIUrl":"10.1093/jmcb/mjad063","url":null,"abstract":"","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41203482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CBX7 reprograms metabolic flux to protect against meningioma progression by modulating the USP44/c-MYC/LDHA axis. CBX7通过调节USP44/c-MYC/LDHA轴来重新编程代谢通量以防止脑膜瘤的进展。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad057
Haixia Cheng, Lingyang Hua, Hailiang Tang, Zhongyuan Bao, Xiupeng Xu, Hongguang Zhu, Shuyang Wang, Zeyidan Jiapaer, Roma Bhatia, Ian F Dunn, Jiaojiao Deng, Daijun Wang, Shuchen Sun, Shihai Luan, Jing Ji, Qing Xie, Xinyu Yang, Ji Lei, Guoping Li, Xianli Wang, Ye Gong

Meningioma is one of the most common primary neoplasms in the central nervous system, but no specific molecularly targeted therapy has been approved for the clinical treatment of aggressive meningiomas. There is hence an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up studies of 445 meningioma patients, we uncovered that CBX7 expression progressively decreases with malignancy grade and neoplasia stage in meningioma, and a high CBX7 expression level predicts a favorable prognosis in meningioma patients. CBX7 restoration significantly induces cell cycle arrest and inhibits meningioma cell proliferation. iTRAQ-based proteomics analysis indicated that CBX7 restoration triggers the metabolic shift from glycolysis to oxidative phosphorylation. The mechanistic study demonstrated that CBX7 promotes the proteasome-dependent degradation of c-MYC protein by transcriptionally inhibiting the expression of a c-MYC deubiquitinase, USP44, consequently attenuates c-MYC-mediated transactivation of LDHA transcripts, and further inhibits glycolysis and subsequent cell proliferation. More importantly, the functional role of CBX7 was further confirmed in subcutaneous and orthotopic meningioma xenograft mouse models and meningioma patients. Altogether, our results shed light on the critical role of CBX7 in meningioma malignancy progression and identify the CBX7/USP44/c-MYC/LDHA axis as a promising therapeutic target against meningioma progression.

脑膜瘤是中枢神经系统中最常见的原发性肿瘤之一,而目前还没有特定的分子靶向治疗方法被批准用于侵袭性脑膜瘤的临床治疗。因此,迫切需要解密恶性脑膜瘤的生物学和分子景观。在这里,通过对445名脑膜瘤患者进行二氧化硅内预筛选和10年随访,我们发现CBX7随着脑膜瘤的恶性程度和肿瘤分期而逐渐降低,高CBX7表达水平预示着脑膜瘤患者的良好预后。CBX7修复显著诱导细胞周期停滞并抑制脑膜瘤细胞增殖。基于iTRAQ的蛋白质组学分析表明,CBX7的恢复触发了从糖酵解到氧化磷酸化的代谢转变。机制研究表明,CBX7通过转录抑制c-MYC去泛素酶USP44的表达来促进c-MYC蛋白的蛋白酶体依赖性降解,该酶减弱了c-MYC介导的LDHA转录物的反式激活,并进一步抑制糖酵解和随后的细胞增殖。更重要的是,CBX7的功能作用在皮下和原位脑膜瘤异种移植物小鼠模型和人类脑膜瘤患者中得到了进一步证实。总之,我们的研究结果阐明了CBX7在脑膜瘤恶性肿瘤进展中的关键作用,并确定CBX7/UP44/c-MYC/LDHA轴是对抗脑膜瘤进展的一个有前途的治疗靶点。
{"title":"CBX7 reprograms metabolic flux to protect against meningioma progression by modulating the USP44/c-MYC/LDHA axis.","authors":"Haixia Cheng, Lingyang Hua, Hailiang Tang, Zhongyuan Bao, Xiupeng Xu, Hongguang Zhu, Shuyang Wang, Zeyidan Jiapaer, Roma Bhatia, Ian F Dunn, Jiaojiao Deng, Daijun Wang, Shuchen Sun, Shihai Luan, Jing Ji, Qing Xie, Xinyu Yang, Ji Lei, Guoping Li, Xianli Wang, Ye Gong","doi":"10.1093/jmcb/mjad057","DOIUrl":"10.1093/jmcb/mjad057","url":null,"abstract":"<p><p>Meningioma is one of the most common primary neoplasms in the central nervous system, but no specific molecularly targeted therapy has been approved for the clinical treatment of aggressive meningiomas. There is hence an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up studies of 445 meningioma patients, we uncovered that CBX7 expression progressively decreases with malignancy grade and neoplasia stage in meningioma, and a high CBX7 expression level predicts a favorable prognosis in meningioma patients. CBX7 restoration significantly induces cell cycle arrest and inhibits meningioma cell proliferation. iTRAQ-based proteomics analysis indicated that CBX7 restoration triggers the metabolic shift from glycolysis to oxidative phosphorylation. The mechanistic study demonstrated that CBX7 promotes the proteasome-dependent degradation of c-MYC protein by transcriptionally inhibiting the expression of a c-MYC deubiquitinase, USP44, consequently attenuates c-MYC-mediated transactivation of LDHA transcripts, and further inhibits glycolysis and subsequent cell proliferation. More importantly, the functional role of CBX7 was further confirmed in subcutaneous and orthotopic meningioma xenograft mouse models and meningioma patients. Altogether, our results shed light on the critical role of CBX7 in meningioma malignancy progression and identify the CBX7/USP44/c-MYC/LDHA axis as a promising therapeutic target against meningioma progression.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41133139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The unique ORF8 protein from SARS-CoV-2 binds to human dendritic cells and induces a hyper-inflammatory cytokine storm. 来自严重急性呼吸系统综合征冠状病毒2型的独特ORF8蛋白与人类树突状细胞结合,并诱导超炎症细胞因子风暴。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-04-04 DOI: 10.1093/jmcb/mjad062
Matthias Hamdorf, Thomas Imhof, Ben Bailey-Elkin, Janina Betz, Sebastian J Theobald, Alexander Simonis, Veronica Di Cristanziano, Lutz Gieselmann, Felix Dewald, Clara Lehmann, Max Augustin, Florian Klein, Miguel A Alejandre Alcazar, Robert Rongisch, Mario Fabri, Jan Rybniker, Heike Goebel, Jörg Stetefeld, Bent Brachvogel, Claus Cursiefen, Manuel Koch, Felix Bock

The novel coronavirus pandemic, first reported in December 2019, was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection leads to a strong immune response and activation of antigen-presenting cells, which can elicit acute respiratory distress syndrome (ARDS) characterized by the rapid onset of widespread inflammation, the so-called cytokine storm. In response to viral infections, monocytes are recruited into the lung and subsequently differentiate into dendritic cells (DCs). DCs are critical players in the development of acute lung inflammation that causes ARDS. Here, we focus on the interaction of a specific SARS-CoV-2 open reading frame protein, ORF8, with DCs. We show that ORF8 binds to DCs, causes pre-maturation of differentiating DCs, and induces the secretion of multiple proinflammatory cytokines by these cells. In addition, we identified DC-SIGN as a possible interaction partner of ORF8 on DCs. Blockade of ORF8 leads to reduced production of IL-1β, IL-6, IL-12p70, TNF-α, MCP-1 (also named CCL2), and IL-10 by DCs. Therefore, a neutralizing antibody blocking the ORF8-mediated cytokine and chemokine response could be an improved therapeutic strategy against SARS-CoV-2.

2019年12月首次报告的新型冠状病毒大流行是由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的。严重急性呼吸系统综合征冠状病毒2型感染会导致强烈的免疫反应和抗原呈递细胞的激活,从而引发急性呼吸窘迫综合征(ARDS),其特征是广泛炎症的快速发作,即所谓的细胞因子风暴。作为对病毒感染的反应,单核细胞被募集到肺部,随后分化为树突状细胞(DC)。DC是导致ARDS的急性肺部炎症发展的关键因素。在这里,我们重点关注一种特定的严重急性呼吸系统综合征冠状病毒2型开放阅读框蛋白ORF8与DC的相互作用。我们发现ORF8与DC结合,导致分化的DC提前成熟,并诱导这些细胞分泌多种促炎细胞因子。此外,我们确定DC-SIGN可能是ORF8在DC上的相互作用伙伴。阻断ORF8导致DC减少IL-1β、IL-6、IL-12p70、TNF-α、MCP-1(也称为CCL2)和IL-10的产生。因此,阻断ORF8介导的细胞因子和趋化因子反应的中和抗体可能是针对严重严重急性呼吸系统综合征冠状病毒2型的一种改进的治疗策略。
{"title":"The unique ORF8 protein from SARS-CoV-2 binds to human dendritic cells and induces a hyper-inflammatory cytokine storm.","authors":"Matthias Hamdorf, Thomas Imhof, Ben Bailey-Elkin, Janina Betz, Sebastian J Theobald, Alexander Simonis, Veronica Di Cristanziano, Lutz Gieselmann, Felix Dewald, Clara Lehmann, Max Augustin, Florian Klein, Miguel A Alejandre Alcazar, Robert Rongisch, Mario Fabri, Jan Rybniker, Heike Goebel, Jörg Stetefeld, Bent Brachvogel, Claus Cursiefen, Manuel Koch, Felix Bock","doi":"10.1093/jmcb/mjad062","DOIUrl":"10.1093/jmcb/mjad062","url":null,"abstract":"<p><p>The novel coronavirus pandemic, first reported in December 2019, was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection leads to a strong immune response and activation of antigen-presenting cells, which can elicit acute respiratory distress syndrome (ARDS) characterized by the rapid onset of widespread inflammation, the so-called cytokine storm. In response to viral infections, monocytes are recruited into the lung and subsequently differentiate into dendritic cells (DCs). DCs are critical players in the development of acute lung inflammation that causes ARDS. Here, we focus on the interaction of a specific SARS-CoV-2 open reading frame protein, ORF8, with DCs. We show that ORF8 binds to DCs, causes pre-maturation of differentiating DCs, and induces the secretion of multiple proinflammatory cytokines by these cells. In addition, we identified DC-SIGN as a possible interaction partner of ORF8 on DCs. Blockade of ORF8 leads to reduced production of IL-1β, IL-6, IL-12p70, TNF-α, MCP-1 (also named CCL2), and IL-10 by DCs. Therefore, a neutralizing antibody blocking the ORF8-mediated cytokine and chemokine response could be an improved therapeutic strategy against SARS-CoV-2.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61563196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial transport of catalytic RNAs and targeting of the organellar transcriptome in human cells. 线粒体运输催化 RNA 和人体细胞内细胞器转录组的靶向。
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-01-17 DOI: 10.1093/jmcb/mjad051
Paweł Głodowicz, Konrad Kuczyński, Romain Val, André Dietrich, Katarzyna Rolle

Mutations in the small genome present in mitochondria often result in severe pathologies. Different genetic strategies have been explored, aiming to rescue such mutations. A number of these strategies were based on the capacity of human mitochondria to import RNAs from the cytosol and designed to repress the replication of the mutated genomes or to provide the organelles with wild-type versions of mutant transcripts. However, the mutant RNAs present in mitochondria turned out to be an obstacle to therapy and little attention has been devoted so far to their elimination. Here, we present the development of a strategy to knockdown mitochondrial RNAs in human cells using the transfer RNA-like structure of Brome mosaic virus or Tobacco mosaic virus as a shuttle to drive trans-cleaving ribozymes into the organelles in human cell lines. We obtained a specific knockdown of the targeted mitochondrial ATP6 mRNA, followed by a deep drop in ATP6 protein and a functional impairment of the oxidative phosphorylation chain. Our strategy provides a powerful approach to eliminate mutant organellar transcripts and to analyse the control and communication of the human organellar genetic system.

线粒体中的小基因组发生突变往往会导致严重的病变。人们探索了不同的遗传策略,旨在挽救这种突变。其中一些策略基于人类线粒体从细胞质导入 RNA 的能力,旨在抑制突变基因组的复制,或为细胞器提供突变转录本的野生型版本。然而,线粒体中存在的突变 RNA 是治疗的障碍,迄今为止,人们很少关注如何消除这些突变 RNA。在这里,我们介绍了一种在人体细胞中敲除线粒体 RNA 的策略,该策略利用 Brome mosaic 病毒或烟草花叶病毒的类转移 RNA 结构作为穿梭器,将反式裂解核糖酶驱动到人体细胞系的细胞器中。我们特异性地敲除了目标线粒体 ATP6 mRNA,随后 ATP6 蛋白深度下降,氧化磷酸化链功能受损。我们的策略为消除突变细胞器转录本和分析人类细胞器遗传系统的控制与交流提供了一种强有力的方法。
{"title":"Mitochondrial transport of catalytic RNAs and targeting of the organellar transcriptome in human cells.","authors":"Paweł Głodowicz, Konrad Kuczyński, Romain Val, André Dietrich, Katarzyna Rolle","doi":"10.1093/jmcb/mjad051","DOIUrl":"10.1093/jmcb/mjad051","url":null,"abstract":"<p><p>Mutations in the small genome present in mitochondria often result in severe pathologies. Different genetic strategies have been explored, aiming to rescue such mutations. A number of these strategies were based on the capacity of human mitochondria to import RNAs from the cytosol and designed to repress the replication of the mutated genomes or to provide the organelles with wild-type versions of mutant transcripts. However, the mutant RNAs present in mitochondria turned out to be an obstacle to therapy and little attention has been devoted so far to their elimination. Here, we present the development of a strategy to knockdown mitochondrial RNAs in human cells using the transfer RNA-like structure of Brome mosaic virus or Tobacco mosaic virus as a shuttle to drive trans-cleaving ribozymes into the organelles in human cell lines. We obtained a specific knockdown of the targeted mitochondrial ATP6 mRNA, followed by a deep drop in ATP6 protein and a functional impairment of the oxidative phosphorylation chain. Our strategy provides a powerful approach to eliminate mutant organellar transcripts and to analyse the control and communication of the human organellar genetic system.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10018208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANGPTL3 negatively regulates IL-1β-induced NF-κB activation by inhibiting the IL1R1-associated signaling complex assembly. ANGPTL3 通过抑制 IL1R1 相关信号复合体的组装,对 IL-1β 诱导的 NF-κB 激活进行负向调节。
IF 5.5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-01-17 DOI: 10.1093/jmcb/mjad053
Yu Zhang, Zi-Tong Zhang, Shi-Yuan Wan, Jing Yang, Yu-Juan Wei, Hui-Jing Chen, Wan-Zhu Zhou, Qiu-Yi Song, Shu-Xuan Niu, Ling Zheng, Kun Huang

Interleukin-1β (IL-1β)-induced signaling is one of the most important pathways in regulating inflammation and immunity. The assembly of the receptor complex, consisting of the ligand IL-1β, the IL-1 receptor (IL-1R) type 1 (IL1R1), and the IL-1R accessory protein (IL1RAP), initiates this signaling. However, how the IL1R1-associated complex is regulated remains elusive. Angiopoietin like 3 (ANGPTL3), a key inhibitor of plasma triglyceride clearance, is mainly expressed in the liver and exists in both intracellular and extracellular secreted forms. Currently, ANGPTL3 has emerged as a highly promising drug target for hypertriglyceridemia and associated cardiovascular diseases. However, most studies have focused on the secreted form of ANGPTL3, while its intracellular role is still largely unknown. Here, we report that intracellular ANGPTL3 acts as a negative regulator of IL-1β-triggered signaling. Overexpression of ANGPTL3 inhibited IL-1β-induced NF-κB activation and the transcription of inflammatory genes in HepG2, THP1, and HEK293T cells, while knockdown or knockout of ANGPTL3 resulted in opposite effects. Mechanistically, ANGPTL3 interacted with IL1R1 and IL1RAP through its intracellular C-terminal fibrinogen-like domain and disrupted the assembly of the IL1R1-associated complex. Taken together, our study reveals a novel role for ANGPTL3 in inflammation, whereby it inhibits the physiological interaction between IL1R1 and IL1RAP to maintain immune tolerance and homeostasis in the liver.

白细胞介素-1β(IL-1β)诱导的信号传导是调节炎症和免疫的最重要途径之一。由配体 IL-1β、IL-1 受体(IL-1R)1 型(IL1R1)和 IL-1R 辅助蛋白(IL1RAP)组成的受体复合物的组装启动了这种信号传导。然而,IL1R1 相关复合物是如何调控的仍是个谜。血管生成素样 3(ANGPTL3)是血浆甘油三酯清除的关键抑制因子,主要在肝脏中表达,以细胞内和细胞外分泌形式存在。目前,ANGPTL3 已成为治疗高甘油三酯血症及相关心血管疾病的极具潜力的药物靶点。然而,大多数研究都集中在 ANGPTL3 的分泌形式上,而对其在细胞内的作用还知之甚少。在此,我们报告了细胞内 ANGPTL3 在 IL-1β 触发的信号传导中起负调控作用。过表达 ANGPTL3 可抑制 IL-1β 诱导的 NF-κB 激活以及 HepG2、THP1 和 HEK293T 细胞中炎症基因的转录,而敲除或敲除 ANGPTL3 则会产生相反的效果。从机理上讲,ANGPTL3 通过其胞内 C 端纤维蛋白原样结构域与 IL1R1 和 IL1RAP 相互作用,并破坏了 IL1R1 相关复合物的组装。综上所述,我们的研究揭示了 ANGPTL3 在炎症中的新作用,它通过抑制 IL1R1 和 IL1RAP 之间的生理相互作用来维持肝脏的免疫耐受和平衡。
{"title":"ANGPTL3 negatively regulates IL-1β-induced NF-κB activation by inhibiting the IL1R1-associated signaling complex assembly.","authors":"Yu Zhang, Zi-Tong Zhang, Shi-Yuan Wan, Jing Yang, Yu-Juan Wei, Hui-Jing Chen, Wan-Zhu Zhou, Qiu-Yi Song, Shu-Xuan Niu, Ling Zheng, Kun Huang","doi":"10.1093/jmcb/mjad053","DOIUrl":"10.1093/jmcb/mjad053","url":null,"abstract":"<p><p>Interleukin-1β (IL-1β)-induced signaling is one of the most important pathways in regulating inflammation and immunity. The assembly of the receptor complex, consisting of the ligand IL-1β, the IL-1 receptor (IL-1R) type 1 (IL1R1), and the IL-1R accessory protein (IL1RAP), initiates this signaling. However, how the IL1R1-associated complex is regulated remains elusive. Angiopoietin like 3 (ANGPTL3), a key inhibitor of plasma triglyceride clearance, is mainly expressed in the liver and exists in both intracellular and extracellular secreted forms. Currently, ANGPTL3 has emerged as a highly promising drug target for hypertriglyceridemia and associated cardiovascular diseases. However, most studies have focused on the secreted form of ANGPTL3, while its intracellular role is still largely unknown. Here, we report that intracellular ANGPTL3 acts as a negative regulator of IL-1β-triggered signaling. Overexpression of ANGPTL3 inhibited IL-1β-induced NF-κB activation and the transcription of inflammatory genes in HepG2, THP1, and HEK293T cells, while knockdown or knockout of ANGPTL3 resulted in opposite effects. Mechanistically, ANGPTL3 interacted with IL1R1 and IL1RAP through its intracellular C-terminal fibrinogen-like domain and disrupted the assembly of the IL1R1-associated complex. Taken together, our study reveals a novel role for ANGPTL3 in inflammation, whereby it inhibits the physiological interaction between IL1R1 and IL1RAP to maintain immune tolerance and homeostasis in the liver.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.5,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10076021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct roles of two SEC scaffold proteins, AFF1 and AFF4, in regulating RNA polymerase II transcription elongation. 两种 SEC 支架蛋白 AFF1 和 AFF4 在调节 RNA 聚合酶 II 转录伸长过程中的不同作用。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-01-17 DOI: 10.1093/jmcb/mjad049
Zhuanzhuan Che, Xiaoxu Liu, Qian Dai, Ke Fang, Chenghao Guo, Junjie Yue, Haitong Fang, Peng Xie, Zhuojuan Luo, Chengqi Lin

The super elongation complex (SEC) containing positive transcription elongation factor b plays a critical role in regulating transcription elongation. AFF1 and AFF4, two members of the AF4/FMR2 family, act as central scaffold proteins of SEC and are associated with various human diseases. However, their precise roles in transcriptional control remain unclear. Here, we investigate differences in the genomic distribution patterns of AFF1 and AFF4 around transcription start sites (TSSs). AFF1 mainly binds upstream of the TSS, while AFF4 is enriched downstream of the TSS. Notably, disruption of AFF4 results in slow elongation and early termination in a subset of AFF4-bound active genes, whereas AFF1 deletion leads to fast elongation and transcriptional readthrough in the same subset of genes. Additionally, AFF1 knockdown increases AFF4 levels at chromatin, and vice versa. In summary, these findings demonstrate that AFF1 and AFF4 function antagonistically to regulate RNA polymerase II transcription.

含有正转录伸长因子 b 的超级伸长复合体(SEC)在调节转录伸长过程中发挥着关键作用。AFF1 和 AFF4 是 AF4/FMR2 家族的两个成员,它们是 SEC 的核心支架蛋白,与多种人类疾病相关。然而,它们在转录控制中的确切作用仍不清楚。在这里,我们研究了AFF1和AFF4在转录起始位点(TSSs)周围基因组分布模式的差异。AFF1 主要结合在 TSS 上游,而 AFF4 则富集在 TSS 下游。值得注意的是,破坏 AFF4 会导致与 AFF4 结合的活性基因亚群缓慢伸长并提前终止,而 AFF1 缺失则会导致同一基因亚群快速伸长和转录通读。此外,敲除 AFF1 会增加染色质中的 AFF4 水平,反之亦然。总之,这些研究结果表明,AFF1 和 AFF4 在调节 RNA 聚合酶 II 转录方面具有拮抗作用。
{"title":"Distinct roles of two SEC scaffold proteins, AFF1 and AFF4, in regulating RNA polymerase II transcription elongation.","authors":"Zhuanzhuan Che, Xiaoxu Liu, Qian Dai, Ke Fang, Chenghao Guo, Junjie Yue, Haitong Fang, Peng Xie, Zhuojuan Luo, Chengqi Lin","doi":"10.1093/jmcb/mjad049","DOIUrl":"10.1093/jmcb/mjad049","url":null,"abstract":"<p><p>The super elongation complex (SEC) containing positive transcription elongation factor b plays a critical role in regulating transcription elongation. AFF1 and AFF4, two members of the AF4/FMR2 family, act as central scaffold proteins of SEC and are associated with various human diseases. However, their precise roles in transcriptional control remain unclear. Here, we investigate differences in the genomic distribution patterns of AFF1 and AFF4 around transcription start sites (TSSs). AFF1 mainly binds upstream of the TSS, while AFF4 is enriched downstream of the TSS. Notably, disruption of AFF4 results in slow elongation and early termination in a subset of AFF4-bound active genes, whereas AFF1 deletion leads to fast elongation and transcriptional readthrough in the same subset of genes. Additionally, AFF1 knockdown increases AFF4 levels at chromatin, and vice versa. In summary, these findings demonstrate that AFF1 and AFF4 function antagonistically to regulate RNA polymerase II transcription.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9922959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CAMSAP2 and CAMSAP3 localize at microtubule intersections to regulate the spatial distribution of microtubules. CAMSAP2 和 CAMSAP3 定位于微管交汇处,调节微管的空间分布。
IF 5.3 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-01-17 DOI: 10.1093/jmcb/mjad050
Rui Zhang, Lusheng Gu, Wei Chen, Nobutoshi Tanaka, Zhengrong Zhou, Honglin Xu, Tao Xu, Wei Ji, Xin Liang, Wenxiang Meng

Microtubule networks support many cellular processes and exhibit a highly ordered architecture. However, due to the limited axial resolution of conventional light microscopy, the structural features of these networks cannot be resolved in three-dimensional (3D) space. Here, we used customized ultra-high-resolution interferometric single-molecule localization microscopy to characterize the microtubule networks in Caco2 cells. We found that the calmodulin-regulated spectrin-associated proteins (CAMSAPs) localize at a portion of microtubule intersections. Further investigation showed that depletion of CAMSAP2 and CAMSAP3 leads to the narrowing of the inter-microtubule distance. Mechanistically, CAMSAPs recognize microtubule defects, which often occur near microtubule intersections, and then recruit katanin to remove the damaged microtubules. Therefore, the CAMSAP-katanin complex is a regulatory module for the distance between microtubules. Taken together, our results characterize the architecture of cellular microtubule networks in high resolution and provide molecular insights into how the 3D structure of microtubule networks is controlled.

微管网络支持许多细胞过程,并表现出高度有序的结构。然而,由于传统光学显微镜的轴向分辨率有限,这些网络的结构特征无法在三维(3D)空间中解析。在这里,我们使用定制的超高分辨率干涉单分子定位显微镜来表征 Caco2 细胞中的微管网络。我们发现,钙调蛋白调控的光谱蛋白相关蛋白(CAMSAPs)定位在部分微管交汇处。进一步的研究表明,消耗 CAMSAP2 和 CAMSAP3 会导致微管间距离变窄。从机理上讲,CAMSAPs 可识别微管缺陷(通常发生在微管交叉点附近),然后招募 katanin 移除受损的微管。因此,CAMSAP-katanin 复合物是微管间距的调控模块。综上所述,我们的研究结果以高分辨率描述了细胞微管网络的结构,并提供了关于如何控制微管网络三维结构的分子见解。
{"title":"CAMSAP2 and CAMSAP3 localize at microtubule intersections to regulate the spatial distribution of microtubules.","authors":"Rui Zhang, Lusheng Gu, Wei Chen, Nobutoshi Tanaka, Zhengrong Zhou, Honglin Xu, Tao Xu, Wei Ji, Xin Liang, Wenxiang Meng","doi":"10.1093/jmcb/mjad050","DOIUrl":"10.1093/jmcb/mjad050","url":null,"abstract":"<p><p>Microtubule networks support many cellular processes and exhibit a highly ordered architecture. However, due to the limited axial resolution of conventional light microscopy, the structural features of these networks cannot be resolved in three-dimensional (3D) space. Here, we used customized ultra-high-resolution interferometric single-molecule localization microscopy to characterize the microtubule networks in Caco2 cells. We found that the calmodulin-regulated spectrin-associated proteins (CAMSAPs) localize at a portion of microtubule intersections. Further investigation showed that depletion of CAMSAP2 and CAMSAP3 leads to the narrowing of the inter-microtubule distance. Mechanistically, CAMSAPs recognize microtubule defects, which often occur near microtubule intersections, and then recruit katanin to remove the damaged microtubules. Therefore, the CAMSAP-katanin complex is a regulatory module for the distance between microtubules. Taken together, our results characterize the architecture of cellular microtubule networks in high resolution and provide molecular insights into how the 3D structure of microtubule networks is controlled.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10332748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Molecular Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1