Pub Date : 2016-12-12DOI: 10.15406/JNMR.2016.04.00095
A. Azari, S. K. S. Sahbari, A. Fahim
Inspired by biological communication systems, nano-communication in particular molecular communication has been proposed as a viable scheme to communicate between nano-sized devices separated by a very short distance. Here, molecules are released by the transmitter into the medium, which are then sensed by the receiver .Thus, this has necessitated the research on the potential applications of nanotechnology in a wide range of nano-networking areas. Nano-networking is a new type of networking which can also be applied to the communication theory. In this paper, a well justified channel propagation model for flow-based nano-characteristic communication channel is considered. The signal propagation model based on the advection and diffusion processes is analyzed. Furthermore, a sound mathematical justification for the linearity and time-variance properties of flow and diffusion based nano-communication channel model is investigated.
{"title":"Nano-Communication Propagation Channel Model Using Flow and Diffusion","authors":"A. Azari, S. K. S. Sahbari, A. Fahim","doi":"10.15406/JNMR.2016.04.00095","DOIUrl":"https://doi.org/10.15406/JNMR.2016.04.00095","url":null,"abstract":"Inspired by biological communication systems, nano-communication in particular molecular communication has been proposed as a viable scheme to communicate between nano-sized devices separated by a very short distance. Here, molecules are released by the transmitter into the medium, which are then sensed by the receiver .Thus, this has necessitated the research on the potential applications of nanotechnology in a wide range of nano-networking areas. Nano-networking is a new type of networking which can also be applied to the communication theory. In this paper, a well justified channel propagation model for flow-based nano-characteristic communication channel is considered. The signal propagation model based on the advection and diffusion processes is analyzed. Furthermore, a sound mathematical justification for the linearity and time-variance properties of flow and diffusion based nano-communication channel model is investigated.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"110 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80606024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-09DOI: 10.15406/JNMR.2016.4.00094
Nida Demirçak, Ahu Arslan Yildiz
Microfluidic lab-on-a-chip tools have been emerged in recent years as next generation nanomedicine and drug screening platforms. Plasmonic microfluidic systems have shown promising progress over the past years to identify potential drug candidates. These systems allow the study of drug interactions at molecular and cellular level while facilitating fast, sensitive and label-free detection. We foresee that the advancements in Surface Plasmon Resonance (SPR) coupled microfluidic systems will be an easy to use and cost-effective alternative to identify potential drug candidates for drug development process.
{"title":"On-Chip Drug Screening and Nanomedicine Applications via (L)SPR","authors":"Nida Demirçak, Ahu Arslan Yildiz","doi":"10.15406/JNMR.2016.4.00094","DOIUrl":"https://doi.org/10.15406/JNMR.2016.4.00094","url":null,"abstract":"Microfluidic lab-on-a-chip tools have been emerged in recent years as next generation nanomedicine and drug screening platforms. Plasmonic microfluidic systems have shown promising progress over the past years to identify potential drug candidates. These systems allow the study of drug interactions at molecular and cellular level while facilitating fast, sensitive and label-free detection. We foresee that the advancements in Surface Plasmon Resonance (SPR) coupled microfluidic systems will be an easy to use and cost-effective alternative to identify potential drug candidates for drug development process.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78912035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-07DOI: 10.15406/JNMR.2016.04.00093
G. C. Souza, J. L. Duarte, C. Fern, Es, Josu e Arturo Vel azquez Moyado, A. Navarrete, J. Carvalho
Introduction: Perillyl alcohol (POH) is a hydroxylated monocyclic monoterpene found in lemon and lavender essential oils, among others. It’s widely recognized by antitumoral activity. Despite the great potential of nanoformulations for pharmaceutics, to the date the obtainment a perillyl alcohol-nanoemulsion (NPOH) and its toxicity investigation were not previously reported. On this context, the present study aim to evaluate the toxicity of NPOH on zebrafish (Danio rerio). Lethal concentration (LC50), effects on behaviour and acute administrations effects (48h) on histopathological parameters of the gills, liver and kidneys were performed. Results: Exposure to different concentrations of NPOH (25, 35, 50 e 125 µg/L - expressed as POH content) allowed determination of LC50= 33.4 µg/L. Moreover, NPOH at 50 and 125 µg/L induced 100% of mortality, in addition the alterations of behavior. NPOH at 25 and 35 µg/L induced higher damage to gills tissue when compared to remaining concentrations and control group (surfactant at 125 µg/L) (p < 0.001, p < 0.01 and p < 0.05, Anova, Tukey-Kramer test). NPOH at 25, 35 e 50 µg/L induced significative damage to liver tissue, when compared to control (p < 0.01 and p < 0.05). No significant histopathological alterations were observed in kidneys. Thus, our results suggest that NPOH present toxicity pattern in accordance to nanoformulations and xenobiotics.
{"title":"Obtainment and Study of the Toxicity of Perillyl Alcohol Nanoemulsion on Zebrafish (Danio rerio)","authors":"G. C. Souza, J. L. Duarte, C. Fern, Es, Josu e Arturo Vel azquez Moyado, A. Navarrete, J. Carvalho","doi":"10.15406/JNMR.2016.04.00093","DOIUrl":"https://doi.org/10.15406/JNMR.2016.04.00093","url":null,"abstract":"Introduction: Perillyl alcohol (POH) is a hydroxylated monocyclic monoterpene found in lemon and lavender essential oils, among others. It’s widely recognized by antitumoral activity. Despite the great potential of nanoformulations for pharmaceutics, to the date the obtainment a perillyl alcohol-nanoemulsion (NPOH) and its toxicity investigation were not previously reported. On this context, the present study aim to evaluate the toxicity of NPOH on zebrafish (Danio rerio). Lethal concentration (LC50), effects on behaviour and acute administrations effects (48h) on histopathological parameters of the gills, liver and kidneys were performed. \u0000 \u0000 Results: Exposure to different concentrations of NPOH (25, 35, 50 e 125 µg/L - expressed as POH content) allowed determination of LC50= 33.4 µg/L. Moreover, NPOH at 50 and 125 µg/L induced 100% of mortality, in addition the alterations of behavior. NPOH at 25 and 35 µg/L induced higher damage to gills tissue when compared to remaining concentrations and control group (surfactant at 125 µg/L) (p < 0.001, p < 0.01 and p < 0.05, Anova, Tukey-Kramer test). NPOH at 25, 35 e 50 µg/L induced significative damage to liver tissue, when compared to control (p < 0.01 and p < 0.05). No significant histopathological alterations were observed in kidneys. Thus, our results suggest that NPOH present toxicity pattern in accordance to nanoformulations and xenobiotics.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86263182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.15406/JNMR.2016.04.00092
Jagpreet Singh, Rajat Bajaj, H. Kaur, Harjot Kaur, N. Kaur, S. Kaur, Mohit Rawat
Silver nanoparticles have a lot of ways of synthesis like physical and chemical methods; some of these methods use a lot of chemical substances and are very hazardous for humans and environment, so a novel, great, environmental friendly, cheap and easy to use world of green chemistry has been used. A number of characterization techniques such as UV-visible spectroscopy, Fourier transformation infrared spectroscopy, X-ray diffraction study and scanning electron microscopy revealed that silver nanoparticles have been used. Thus the different response of the functional groups and the difference in the peaks and UV-visible data was studied and then compared to understand and know the way these different reducing agents react to the same starting material. The green synthesis had a UV-visible peak at 446 nm while the one with chemical synthesis had a peak at 395 nm. FTIR results of silver nanoparticles synthesis by trisodium citrate (TSC) showed a peak at 1505 cm-1 which shows that the compound has a stretching of the -C=C – bond. In another case, which was done by using Sodium borohydride (NaBH4) a peak at 1695 cm-1 showed a –C=O- bond indicating stretching and a weak absorption intensity. Another peak was present which indicates a –O-H bond formation and presence which is a strong bond are found to exist. A notable peak came for synthesis by orange peel at 1517 cm-1 which represents a –C=C- bond stretching as in aromatic compounds. Another peak at 1732 cm-1 indicates the –C=O- bond. The XRD results on one of the silver sample prepared by green methods showed silver nanomaterials formed which had a average particle size of around 42 nm. FE-SEM results revealed that silver nanomaterials were formed and had a flake like appearance in one of the results. All the overall comparison showed that different modes of synthesis of silver nanomaterials and different reducing agents give same materials but with different peaks and intensities. All this data provided knowledge about the fact that an alternative method can be used to create new nanoparticles if one of the previously considered to tried method fails thus helping in extending the broadways for research.
银纳米粒子有多种合成方法,如物理法和化学法;其中一些方法使用了大量的化学物质,对人类和环境都有很大的危害,因此一个新的、伟大的、环境友好的、廉价的和易于使用的绿色化学世界已经被使用。许多表征技术,如紫外可见光谱、傅里叶变换红外光谱、x射线衍射研究和扫描电子显微镜显示,银纳米颗粒已经被使用。因此,研究了官能团的不同反应以及峰和紫外可见数据的差异,然后进行比较,以了解和了解这些不同的还原剂对相同起始物质的反应方式。绿色合成的紫外可见峰在446 nm处,化学合成的紫外可见峰在395 nm处。用柠檬酸三钠(TSC)合成纳米银的FTIR结果显示,该化合物在1505 cm-1处有一个峰,表明该化合物具有C=C -键的拉伸。在另一种情况下,用硼氢化钠(NaBH4)完成,在1695 cm-1处的峰显示- c =O-键,表明拉伸和弱吸收强度。另一个峰的存在表明-O-H键的形成和强键的存在。用橘子皮合成的产物在1517 cm-1处有一个显著的峰值,这代表了芳香化合物中C=C键的拉伸。1732 cm-1处的另一个峰表示- c =O-键。对绿色法制备的银样品进行XRD分析,结果表明,制备的银纳米材料平均粒径约为42 nm。FE-SEM结果显示,在其中一个结果中形成了银纳米材料,并具有片状外观。综合比较表明,不同的银纳米材料合成方式和不同的还原剂得到的材料相同,但峰和强度不同。所有这些数据提供了一个事实,即如果先前被认为是尝试过的方法之一失败,可以使用另一种方法来制造新的纳米粒子,从而有助于扩大研究的范围。
{"title":"Chemo-bio Synthesis of Silver Nanoparticles","authors":"Jagpreet Singh, Rajat Bajaj, H. Kaur, Harjot Kaur, N. Kaur, S. Kaur, Mohit Rawat","doi":"10.15406/JNMR.2016.04.00092","DOIUrl":"https://doi.org/10.15406/JNMR.2016.04.00092","url":null,"abstract":"Silver nanoparticles have a lot of ways of synthesis like physical and chemical methods; some of these methods use a lot of chemical substances and are very hazardous for humans and environment, so a novel, great, environmental friendly, cheap and easy to use world of green chemistry has been used. A number of characterization techniques such as UV-visible spectroscopy, Fourier transformation infrared spectroscopy, X-ray diffraction study and scanning electron microscopy revealed that silver nanoparticles have been used. Thus the different response of the functional groups and the difference in the peaks and UV-visible data was studied and then compared to understand and know the way these different reducing agents react to the same starting material. The green synthesis had a UV-visible peak at 446 nm while the one with chemical synthesis had a peak at 395 nm. FTIR results of silver nanoparticles synthesis by trisodium citrate (TSC) showed a peak at 1505 cm-1 which shows that the compound has a stretching of the -C=C – bond. In another case, which was done by using Sodium borohydride (NaBH4) a peak at 1695 cm-1 showed a –C=O- bond indicating stretching and a weak absorption intensity. Another peak was present which indicates a –O-H bond formation and presence which is a strong bond are found to exist. A notable peak came for synthesis by orange peel at 1517 cm-1 which represents a –C=C- bond stretching as in aromatic compounds. Another peak at 1732 cm-1 indicates the –C=O- bond. The XRD results on one of the silver sample prepared by green methods showed silver nanomaterials formed which had a average particle size of around 42 nm. FE-SEM results revealed that silver nanomaterials were formed and had a flake like appearance in one of the results. All the overall comparison showed that different modes of synthesis of silver nanomaterials and different reducing agents give same materials but with different peaks and intensities. All this data provided knowledge about the fact that an alternative method can be used to create new nanoparticles if one of the previously considered to tried method fails thus helping in extending the broadways for research.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82988715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-28DOI: 10.15406/JNMR.2016.4.00090
A. Maireche
It is well-known, that, the modern quantum mechanics, satisfied a big successful in the last few years, for describing atoms, nuclei, and molecules and their spectral behaviors based on three fundamental equations: Schrödinger, Klein-Gordon and Dirac. Schrödinger equation rest the first and the latest in terms of interest, it is playing a crucial role in devising well-behaved physical models in different fields of physics and chemists, many potentials are treated within the framework of nonrelativistic quantum mechanics based on this equation in two, three and D generalized spaces [1-30], the quantum structure based to the ordinary canonical commutations relations (CCRs) in both Schrödinger and Heisenberg (the operators are depended on time) pictures (CCRs), respectively, as:
{"title":"A New Nonrelativistic Investigation for Interactions in One-Electron Atoms With Modified Inverse-Square Potential: Noncommutative Two and Three Dimensional Space Phase Solutions at Planck’s and Nano-Scales","authors":"A. Maireche","doi":"10.15406/JNMR.2016.4.00090","DOIUrl":"https://doi.org/10.15406/JNMR.2016.4.00090","url":null,"abstract":"It is well-known, that, the modern quantum mechanics, satisfied a big successful in the last few years, for describing atoms, nuclei, and molecules and their spectral behaviors based on three fundamental equations: Schrödinger, Klein-Gordon and Dirac. Schrödinger equation rest the first and the latest in terms of interest, it is playing a crucial role in devising well-behaved physical models in different fields of physics and chemists, many potentials are treated within the framework of nonrelativistic quantum mechanics based on this equation in two, three and D generalized spaces [1-30], the quantum structure based to the ordinary canonical commutations relations (CCRs) in both Schrödinger and Heisenberg (the operators are depended on time) pictures (CCRs), respectively, as:","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"6 1","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84396211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-28DOI: 10.15406/JNMR.2016.04.00091
N. A. Aval
As discussed formerly, pore size is very determinative in adsorption of drug molecules inside the mesoporous structure. The size of porosity can be changed in a broad range (2-50 nm) with altering the chain length of polymeric micelles which make the mesostructured appropriate for delivery of different size of bioactive molecules concluding small drug molecules and large proteins [7]. The size of pores is determinant not only on adsorption of diverse drug molecules but also on the rate of release [8]. Vallet-Regi and co-workers [9] synthesized two silica mesoporous structure (MCM-41 and SBA-15) with different surface area in application as a vehicle for alendronate as drug model in which the one with higher surface yielded to more loading efficacy. Some efforts have been done to have a controlled release of drug such as surface functionalization with chemical groups resulted in strong bindings with drug molecules and a controlled rate in release [10]. As illustrated by Song and co-workers [11], functionalization of MCM-41 and SBA-15 with amino groups was a very operative method in controlling the release rate of ibuprofen. In this research, the ionic binding between carboxyl groups of ibuprofen and amino groups of functionalized surface of mesopores has a very effective impact on controlled release. Another method in controlling the rate of release is functionalization of surface with hydrophobic groups. Some researchers [12] functionalized the surface of SBA-15 with hydrophobic groups like octyl and octadecyl resulted in declining the pore size and hydrophilicity of the surface, the parameters which are so effective in controlling the release rate of erythromycin as a drug model.
{"title":"Mesoporous Materials in Drug Delivery","authors":"N. A. Aval","doi":"10.15406/JNMR.2016.04.00091","DOIUrl":"https://doi.org/10.15406/JNMR.2016.04.00091","url":null,"abstract":"As discussed formerly, pore size is very determinative in adsorption of drug molecules inside the mesoporous structure. The size of porosity can be changed in a broad range (2-50 nm) with altering the chain length of polymeric micelles which make the mesostructured appropriate for delivery of different size of bioactive molecules concluding small drug molecules and large proteins [7]. The size of pores is determinant not only on adsorption of diverse drug molecules but also on the rate of release [8]. Vallet-Regi and co-workers [9] synthesized two silica mesoporous structure (MCM-41 and SBA-15) with different surface area in application as a vehicle for alendronate as drug model in which the one with higher surface yielded to more loading efficacy. Some efforts have been done to have a controlled release of drug such as surface functionalization with chemical groups resulted in strong bindings with drug molecules and a controlled rate in release [10]. As illustrated by Song and co-workers [11], functionalization of MCM-41 and SBA-15 with amino groups was a very operative method in controlling the release rate of ibuprofen. In this research, the ionic binding between carboxyl groups of ibuprofen and amino groups of functionalized surface of mesopores has a very effective impact on controlled release. Another method in controlling the rate of release is functionalization of surface with hydrophobic groups. Some researchers [12] functionalized the surface of SBA-15 with hydrophobic groups like octyl and octadecyl resulted in declining the pore size and hydrophilicity of the surface, the parameters which are so effective in controlling the release rate of erythromycin as a drug model.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77689386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-17DOI: 10.15406/jnmr.2016.04.00089
K. Takeyasu, Katashi Deguchi, Jamie L. Gilmore, J. Hejna
The first observation of double-stranded DNA by atomic force microscopy in the late 1980’s greatly encouraged many biological researchers to jump into the nano-world. Here we briefly review the history of how AFM has been utilized to reveal nanometer-scale structures of DNA-protein complexes, and we highlight key technical developments that have accelerated applications of AFM to molecular biology, physiology, biophysics, and cell biology. Biology is a visual science. Understanding the ‘biological events’ around us through visualization and observation has always been a fundamental part of biological scientific inquiry. Since the early days in the 17th century, biological investigations of the fundamental components of biological systems have relied on microscopes, the resolution of which is limited to one half the wavelength of light. Electron microscopy (EM), invented in the 1920-1930’s, brought a hundred times greater resolution than the light microscope, and it continues to enable us to visualize biological materials in the nanometer range [1]. However, EM requires special specimen preparation and operational constraints, e.g., coating the sample with a fine layer of gold and observing it under vacuum. These limitations were in large part circumvented in the 1980’s by an altogether new concept. Shortly after Binnig invented atomic force microscopy (AFM) [2], Hansma [3] proposed many possible uses for AFM in biology [3]. However it took almost 20 years for it to become an indispensable technique in biological research that allows observations in solution without fixation of the specimen. Commercially available instruments equipped with a scanning method known as the tapping mode [4,5], have yielded unprecedented views of biological materials such as DNA and proteins in their native state. The subsequent invention of high-speed AFM [6], which can scan biological samples in solution with sub-second temporal resolution, was a landmark accomplishment that has contributed greatly to the establishment of nanobiology as a major field in bioscience [7].
20世纪80年代末,原子力显微镜首次观察到双链DNA,极大地鼓舞了许多生物学研究人员进入纳米世界。在这里,我们简要回顾了原子力显微镜用于揭示dna -蛋白质复合物纳米结构的历史,并重点介绍了加速原子力显微镜在分子生物学、生理学、生物物理学和细胞生物学中的应用的关键技术发展。生物学是一门视觉科学。通过可视化和观察来理解我们周围的“生物事件”一直是生物科学探索的基本组成部分。自17世纪早期以来,对生物系统基本组成部分的生物学研究一直依赖于显微镜,其分辨率仅限于光波长的一半。电子显微镜(EM)发明于20世纪20年代至30年代,它带来了比光学显微镜高100倍的分辨率,并继续使我们能够在纳米范围内可视化生物材料[1]。然而,EM需要特殊的样品制备和操作限制,例如,在样品上涂上一层细金并在真空下观察。在20世纪80年代,一种全新的概念在很大程度上规避了这些限制。在binning发明原子力显微镜(atomic force microscopy, AFM)[2]后不久,Hansma[3]提出了AFM在生物学中的许多可能用途[3]。然而,它花了将近20年的时间才成为生物学研究中不可或缺的技术,可以在溶液中观察而无需固定标本。商用仪器配备了一种被称为敲击模式的扫描方法[4,5],已经产生了前所未有的生物材料,如DNA和蛋白质在其天然状态的视图。随后发明的高速AFM[6]能够以亚秒级的时间分辨率扫描溶液中的生物样品,这是一项里程碑式的成就,为纳米生物学作为生物科学的一个主要领域的建立做出了巨大贡献[7]。
{"title":"Development of Nano-Biology with Atomic Force Microscopy","authors":"K. Takeyasu, Katashi Deguchi, Jamie L. Gilmore, J. Hejna","doi":"10.15406/jnmr.2016.04.00089","DOIUrl":"https://doi.org/10.15406/jnmr.2016.04.00089","url":null,"abstract":"The first observation of double-stranded DNA by atomic force microscopy in the late 1980’s greatly encouraged many biological researchers to jump into the nano-world. Here we briefly review the history of how AFM has been utilized to reveal nanometer-scale structures of DNA-protein complexes, and we highlight key technical developments that have accelerated applications of AFM to molecular biology, physiology, biophysics, and cell biology. \u0000 \u0000 Biology is a visual science. Understanding the ‘biological events’ around us through visualization and observation has always been a fundamental part of biological scientific inquiry. Since the early days in the 17th century, biological investigations of the fundamental components of biological systems have relied on microscopes, the resolution of which is limited to one half the wavelength of light. Electron microscopy (EM), invented in the 1920-1930’s, brought a hundred times greater resolution than the light microscope, and it continues to enable us to visualize biological materials in the nanometer range [1]. However, EM requires special specimen preparation and operational constraints, e.g., coating the sample with a fine layer of gold and observing it under vacuum. These limitations were in large part circumvented in the 1980’s by an altogether new concept. \u0000 \u0000 Shortly after Binnig invented atomic force microscopy (AFM) [2], Hansma [3] proposed many possible uses for AFM in biology [3]. However it took almost 20 years for it to become an indispensable technique in biological research that allows observations in solution without fixation of the specimen. Commercially available instruments equipped with a scanning method known as the tapping mode [4,5], have yielded unprecedented views of biological materials such as DNA and proteins in their native state. The subsequent invention of high-speed AFM [6], which can scan biological samples in solution with sub-second temporal resolution, was a landmark accomplishment that has contributed greatly to the establishment of nanobiology as a major field in bioscience [7].","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77280161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-11-04DOI: 10.15406/JNMR.2016.04.00087
Di Liu, Guofeng Wang
Lanthanide (Ln3+)-doped nanocrystals continue to receive significant interest due to the large number of applications in display devices, optical communication, solid-state lasers, catalysis, and biological labeling. It is well known that the Ln3+-doped nanocrystals can exhibit unique optical properties such as long fluorescence lifetime, large Stokes shift, single to multicolor emission and good luminescence efficiency combined with high photochemical stability of the hosts. Nano-sized phosphorescent or optoelectronic devices usually exhibit novel properties, depending on their structures, shapes, and sizes, such as tunable wavelengths, rapid responses, and high efficiencies. In terms of the mechanism of luminescence, the luminescence of Ln3+ ions can be divided into down-conversion and up-conversion emission processes. The down-conversion process is the conversion of higher-energy photons into lower-energy photons, which often requires two main components, an inorganic matrix (known as the host) and activated Ln3+ doping ions (activators). Among all the Ln3+-based host materials observed to date including oxides, phosphates, vanadates, oxides, and so on. The optical properties of Ln3+-doped nanocrystals depend critically on the hosts in which the Ln3+ reside, and thus it is important to seek for suitable host matrices to achieve desirable luminescence of Ln3+. In this review, we focus on the most recent advances in the development of the synthesis and applications of Ln3+-doped nanocrystals.
{"title":"Synthesis and Applications of Lanthanide-Doped Nanocrystals","authors":"Di Liu, Guofeng Wang","doi":"10.15406/JNMR.2016.04.00087","DOIUrl":"https://doi.org/10.15406/JNMR.2016.04.00087","url":null,"abstract":"Lanthanide (Ln3+)-doped nanocrystals continue to receive significant interest due to the large number of applications in display devices, optical communication, solid-state lasers, catalysis, and biological labeling. It is well known that the Ln3+-doped nanocrystals can exhibit unique optical properties such as long fluorescence lifetime, large Stokes shift, single to multicolor emission and good luminescence efficiency combined with high photochemical stability of the hosts. Nano-sized phosphorescent or optoelectronic devices usually exhibit novel properties, depending on their structures, shapes, and sizes, such as tunable wavelengths, rapid responses, and high efficiencies. In terms of the mechanism of luminescence, the luminescence of Ln3+ ions can be divided into down-conversion and up-conversion emission processes. The down-conversion process is the conversion of higher-energy photons into lower-energy photons, which often requires two main components, an inorganic matrix (known as the host) and activated Ln3+ doping ions (activators). Among all the Ln3+-based host materials observed to date including oxides, phosphates, vanadates, oxides, and so on. The optical properties of Ln3+-doped nanocrystals depend critically on the hosts in which the Ln3+ reside, and thus it is important to seek for suitable host matrices to achieve desirable luminescence of Ln3+. In this review, we focus on the most recent advances in the development of the synthesis and applications of Ln3+-doped nanocrystals.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91359361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-29DOI: 10.15406/JNMR.2016.04.00086
N. A. C. Lah, M. Samykano, S. Trigueros
In the recent years, noble metal particles such as gold (Au) and silver (Ag) have been used progressively as efficient and safe nanoscale drug carriers in treating malignant as cites of cancerous cells. These single crystal structures of functionalised thearapeutic particles with the size less than 100 nm in diameter had proven offered an excellent function to modulate the oxidative stress and toxicity at affected membrane cells particularly to achieve the site-specific delivery of drugs. This mini-review will highlight the current advances of Au and Ag nanoscale particles as smart chemotherapeutic molecule carriers to these malignancies in impeding cancer cell activities locally. The paper also reviewed valuable insights of their efficacy in maintaining and precisely control the drugs release level within the therapeutic windows.
{"title":"Nanoscale metal particles as nanocarriers in targeted drug delivery system","authors":"N. A. C. Lah, M. Samykano, S. Trigueros","doi":"10.15406/JNMR.2016.04.00086","DOIUrl":"https://doi.org/10.15406/JNMR.2016.04.00086","url":null,"abstract":"In the recent years, noble metal particles such as gold (Au) and silver (Ag) have been used progressively as efficient and safe nanoscale drug carriers in treating malignant as cites of cancerous cells. These single crystal structures of functionalised thearapeutic particles with the size less than 100 nm in diameter had proven offered an excellent function to modulate the oxidative stress and toxicity at affected membrane cells particularly to achieve the site-specific delivery of drugs. This mini-review will highlight the current advances of Au and Ag nanoscale particles as smart chemotherapeutic molecule carriers to these malignancies in impeding cancer cell activities locally. The paper also reviewed valuable insights of their efficacy in maintaining and precisely control the drugs \u0000release level within the therapeutic windows.","PeriodicalId":16465,"journal":{"name":"Journal of Nanomedicine Research","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86888228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}