Pub Date : 2024-07-19DOI: 10.1016/j.jplph.2024.154315
Huihui Fang, Yunxiang Zang
The significance of hydrogen sulfide (H2S) as a crucial gasotransmitter has been shown extensively in plants, and endogenous H2S is often modulated to activate H2S signaling when plants respond to numerous developmental and environmental cues. Consequently, elucidating the H2S physiological concentrations and the H2S generation intensity of plants is key to understanding the activation mechanism of H2S signaling, which has attracted increasing attention. Currently, a variety of reaction-based methods have been reported for monitoring H2S concentration in vivo and in vitro. In this review, we summarize and describe in detail several methods for quantifying and bioimaging endogenous H2S in plants systems, mainly the spectrophotometer-dependent methylene blue (MB) method and fluorescence probes, including the reaction mechanisms, design strategies, response principles, and application details. Moreover, we also summarize the advantages and disadvantages of these methods as well as the research scenarios in which they are applicable. We expect that this review will provide some guidelines on the selection of methods for H2S sensing and the comprehensive investigations into H2S signaling in plants.
{"title":"An overview of analytical methods for detecting endogenous hydrogen sulfide (H2S) in plants","authors":"Huihui Fang, Yunxiang Zang","doi":"10.1016/j.jplph.2024.154315","DOIUrl":"10.1016/j.jplph.2024.154315","url":null,"abstract":"<div><p>The significance of hydrogen sulfide (H<sub>2</sub>S) as a crucial gasotransmitter has been shown extensively in plants, and endogenous H<sub>2</sub>S is often modulated to activate H<sub>2</sub>S signaling when plants respond to numerous developmental and environmental cues. Consequently, elucidating the H<sub>2</sub>S physiological concentrations and the H<sub>2</sub>S generation intensity of plants is key to understanding the activation mechanism of H<sub>2</sub>S signaling, which has attracted increasing attention. Currently, a variety of reaction-based methods have been reported for monitoring H<sub>2</sub>S concentration <em>in vivo</em> and <em>in vitro</em>. In this review, we summarize and describe in detail several methods for quantifying and bioimaging endogenous H<sub>2</sub>S in plants systems, mainly the spectrophotometer-dependent methylene blue (MB) method and fluorescence probes, including the reaction mechanisms, design strategies, response principles, and application details. Moreover, we also summarize the advantages and disadvantages of these methods as well as the research scenarios in which they are applicable. We expect that this review will provide some guidelines on the selection of methods for H<sub>2</sub>S sensing and the comprehensive investigations into H<sub>2</sub>S signaling in plants.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"302 ","pages":"Article 154315"},"PeriodicalIF":4.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.jplph.2024.154314
Md Mahfuzur Rob , Delara Akhter , Tariqul Islam , Debu Kumar Bhattacharjya , Muhammad Saad Shoaib Khan , Faisal Islam , Jian Chen
Copper (Cu) is an indispensable micronutrient for plants, animals, and microorganisms and plays a vital role in different physiological processes. However, excessive Cu accumulation in agricultural soil, often through anthropogenic action, poses a potential risk to plant health and crop productivity. This review article provided a comprehensive overview of the available information regarding Cu dynamics in agricultural soils, major sources of Cu contamination, factors influencing its mobility and bioavailability, and mechanisms of Cu uptake and translocation in rice plants. This review examined the impact of Cu toxicity on the germination, growth, and photosynthesis of rice plants. It also highlighted molecular mechanisms underlying Cu stress signaling and the plant defense strategy, involving chelation, compartmentalization, and antioxidant responses. This review also identified significant areas that need further research, such as Cu uptake mechanism in rice, Cu signaling process, and the assessment of Cu-polluted paddy soil and rice toxicity under diverse environmental conditions. The development of rice varieties with reduced Cu accumulation through comprehensive breeding programs is also necessary. Regulatory measures, fungicide management, plant selection, soil and environmental investigation are recommended to prevent Cu buildup in agricultural lands to achieve sustainable agricultural goals.
{"title":"Copper stress in rice: Perception, signaling, bioremediation and future prospects","authors":"Md Mahfuzur Rob , Delara Akhter , Tariqul Islam , Debu Kumar Bhattacharjya , Muhammad Saad Shoaib Khan , Faisal Islam , Jian Chen","doi":"10.1016/j.jplph.2024.154314","DOIUrl":"10.1016/j.jplph.2024.154314","url":null,"abstract":"<div><p>Copper (Cu) is an indispensable micronutrient for plants, animals, and microorganisms and plays a vital role in different physiological processes. However, excessive Cu accumulation in agricultural soil, often through anthropogenic action, poses a potential risk to plant health and crop productivity. This review article provided a comprehensive overview of the available information regarding Cu dynamics in agricultural soils, major sources of Cu contamination, factors influencing its mobility and bioavailability, and mechanisms of Cu uptake and translocation in rice plants. This review examined the impact of Cu toxicity on the germination, growth, and photosynthesis of rice plants. It also highlighted molecular mechanisms underlying Cu stress signaling and the plant defense strategy, involving chelation, compartmentalization, and antioxidant responses. This review also identified significant areas that need further research, such as Cu uptake mechanism in rice, Cu signaling process, and the assessment of Cu-polluted paddy soil and rice toxicity under diverse environmental conditions. The development of rice varieties with reduced Cu accumulation through comprehensive breeding programs is also necessary. Regulatory measures, fungicide management, plant selection, soil and environmental investigation are recommended to prevent Cu buildup in agricultural lands to achieve sustainable agricultural goals.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"302 ","pages":"Article 154314"},"PeriodicalIF":4.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1016/j.jplph.2024.154313
Yanting Liang , Xiaoqian Yang , Chun Wang, Yanwei Wang
Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.
{"title":"miRNAs: Primary modulators of plant drought tolerance","authors":"Yanting Liang , Xiaoqian Yang , Chun Wang, Yanwei Wang","doi":"10.1016/j.jplph.2024.154313","DOIUrl":"https://doi.org/10.1016/j.jplph.2024.154313","url":null,"abstract":"<div><p>Drought is a principal environmental factor that affects the growth and development of plants. Accordingly, plants have evolved adaptive mechanisms to cope with adverse environmental conditions. One of the mechanisms is gene regulation mediated by microRNAs (miRNAs). miRNAs are regarded as primary modulators of gene expression at the post-transcriptional level and have been shown to participate in drought stress response, including ABA response, auxin signaling, antioxidant defense, and osmotic regulation through downregulating the corresponding targets. miRNA-based genetic reconstructions have the potential to improve the tolerance of plants to drought. However, there are few precise classification and discussion of miRNAs in specific response behaviors to drought stress and their applications. This review summarized and discussed the specific response behaviors of miRNAs under drought stress and the role of miRNAs as regulators in the response of plants to drought and highlighted that the modification of miRNAs might effectively improve the tolerance of plants to drought.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154313"},"PeriodicalIF":4.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1016/j.jplph.2024.154305
Mohammad Faizan , Aishwarya Singh , Abdullah Eren , Haider Sultan , Meenakshi Sharma , Ivica Djalovic , Goran Trivan
Human existence and the long-term viability of society depend on agriculture. Overuse of synthetic fertilizers results in increased contamination of the land, water, and atmosphere as well as financial constraints. In today's modern agriculture, environmentally friendly technology is becoming more and more significant as a substitute for conventional fertilizers and chemical pesticides. Using nanotechnology, agricultural output can be improved in terms of quality, biological support, financial stability, and environmental safety. There is a lot of promise for the sustainable application of nano-fertilizers in crop productivity and soil fertility, with little or no negative environmental effects. In this context, the present review provided an overview of the benefits of using nanofertilizers, its application and types. Mechanistic approach for increasing soil fertility and yield via nanofertilizers also described in detail. We concluded this article to compare the advantages of nanofertilizers over chemicals and nano-chemicals. Nonetheless, additional investigation is required to comprehend the effects and possible hazards of nanomaterials in the food production chain.
{"title":"Small molecule, big impacts: Nano-nutrients for sustainable agriculture and food security","authors":"Mohammad Faizan , Aishwarya Singh , Abdullah Eren , Haider Sultan , Meenakshi Sharma , Ivica Djalovic , Goran Trivan","doi":"10.1016/j.jplph.2024.154305","DOIUrl":"10.1016/j.jplph.2024.154305","url":null,"abstract":"<div><p>Human existence and the long-term viability of society depend on agriculture. Overuse of synthetic fertilizers results in increased contamination of the land, water, and atmosphere as well as financial constraints. In today's modern agriculture, environmentally friendly technology is becoming more and more significant as a substitute for conventional fertilizers and chemical pesticides. Using nanotechnology, agricultural output can be improved in terms of quality, biological support, financial stability, and environmental safety. There is a lot of promise for the sustainable application of nano-fertilizers in crop productivity and soil fertility, with little or no negative environmental effects. In this context, the present review provided an overview of the benefits of using nanofertilizers, its application and types. Mechanistic approach for increasing soil fertility and yield via nanofertilizers also described in detail. We concluded this article to compare the advantages of nanofertilizers over chemicals and nano-chemicals. Nonetheless, additional investigation is required to comprehend the effects and possible hazards of nanomaterials in the food production chain.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154305"},"PeriodicalIF":4.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salinity stress adversely impacts plant growth and development. Plant growth-promoting rhizobacteria (PGPR) are known to confer salinity stress tolerance in plants through several mechanisms. Here, we report the role of an abiotic stress-tolerant PGPR strain, Bacillus endophyticus J13, in promoting salinity stress tolerance in Arabidopsis thaliana, by elucidating its impact on physiological responses, polyamine (PA) and ethylene biosynthesis, and brassinosteroid signaling. Physiological analysis revealed that J13 can significantly improve the overall plant growth under salt stress by increasing the biomass, relative water content, and chlorophyll content, decreasing membrane damage and lipid peroxidation, and modulating proline homeostasis in plants. Evaluation of shoot polyamine levels upon J13 inoculation revealed an overall decrease in the levels of the three major PAs, putrescine (Put), spermidine (Spd), and spermine (Spm), under non-stressed conditions. Salt stress significantly increased the levels of Put and Spm, while decreasing the Spd levels in the plants. J13 inoculation under salt-stressed conditions, significantly decreased the Put levels, bringing them closer to those of the untreated control plants, whereas Spd and Spm levels did not change relative to the non-inoculated salt-stressed plants. The modulation of PA levels was accompanied by changes in the expressions of key PA biosynthetic genes under all treatments. Among the ethylene biosynthetic genes that we studied, ACS1 was induced by J13 inoculation under salt stress. J13 inoculation under salt stress resulted in the modulation of the expressions of BR-signaling genes, upregulating the expressions of the positive regulators of BR-signaling (BZR1 and BES2) and downregulating that of the negative regulator (BIN2). Our results provide a new avenue for J13-mediated salt stress amelioration in Arabidopsis, via tight control of polyamine and ethylene biosynthesis and enhanced brassinosteroid signaling.
盐度胁迫对植物的生长和发育有不利影响。众所周知,植物生长促进根瘤菌(PGPR)可通过多种机制赋予植物耐盐碱胁迫的能力。在这里,我们报告了一种耐受非生物胁迫的 PGPR 菌株--内生芽孢杆菌 J13 在促进拟南芥耐盐碱胁迫中的作用,阐明了它对生理反应、多胺(PA)和乙烯生物合成以及类黄铜素信号转导的影响。生理学分析表明,J13能提高植物的生物量、相对含水量和叶绿素含量,减少膜损伤和脂质过氧化反应,调节植物体内的脯氨酸平衡,从而显著改善植物在盐胁迫下的整体生长状况。对接种 J13 后嫩枝多胺水平的评估表明,在非胁迫条件下,三种主要多胺--腐胺(Put)、亚精胺(Spd)和精胺(Spm)的水平总体下降。盐胁迫明显增加了植株中 Put 和 Spm 的含量,同时降低了 Spd 的含量。在盐胁迫条件下接种 J13 能明显降低 Put 的含量,使其接近未处理的对照植株,而 Spd 和 Spm 的含量与未接种的盐胁迫植株相比没有变化。在所有处理下,PA 水平的调节都伴随着关键 PA 生物合成基因表达量的变化。在我们研究的乙烯生物合成基因中,盐胁迫下接种 J13 会诱导 ACS1。在盐胁迫下接种 J13 可调节 BR 信号转导基因的表达,上调 BR 信号转导正调控因子(BZR1 和 BES2)的表达,下调负调控因子(BIN2)的表达。我们的研究结果为 J13 介导的拟南芥盐胁迫改善提供了一条新途径,即通过严格控制多胺和乙烯的生物合成以及增强铜绿素类固醇信号转导。
{"title":"Modulation of plant polyamine and ethylene biosynthesis; and brassinosteroid signaling during Bacillus endophyticus J13-mediated salinity tolerance in Arabidopsis thaliana","authors":"P.T. Nikhil, Umema Faiz, Raunak Sharma, Sridev Mohapatra","doi":"10.1016/j.jplph.2024.154304","DOIUrl":"https://doi.org/10.1016/j.jplph.2024.154304","url":null,"abstract":"<div><p>Salinity stress adversely impacts plant growth and development. Plant growth-promoting rhizobacteria (PGPR) are known to confer salinity stress tolerance in plants through several mechanisms. Here, we report the role of an abiotic stress-tolerant PGPR strain, <em>Bacillus endophyticus</em> J13, in promoting salinity stress tolerance in <em>Arabidopsis thaliana</em>, by elucidating its impact on physiological responses, polyamine (PA) and ethylene biosynthesis, and brassinosteroid signaling. Physiological analysis revealed that J13 can significantly improve the overall plant growth under salt stress by increasing the biomass, relative water content, and chlorophyll content, decreasing membrane damage and lipid peroxidation, and modulating proline homeostasis in plants. Evaluation of shoot polyamine levels upon J13 inoculation revealed an overall decrease in the levels of the three major PAs, putrescine (Put), spermidine (Spd), and spermine (Spm), under non-stressed conditions. Salt stress significantly increased the levels of Put and Spm, while decreasing the Spd levels in the plants. J13 inoculation under salt-stressed conditions, significantly decreased the Put levels, bringing them closer to those of the untreated control plants, whereas Spd and Spm levels did not change relative to the non-inoculated salt-stressed plants. The modulation of PA levels was accompanied by changes in the expressions of key PA biosynthetic genes under all treatments. Among the ethylene biosynthetic genes that we studied, <em>ACS1</em> was induced by J13 inoculation under salt stress. J13 inoculation under salt stress resulted in the modulation of the expressions of BR-signaling genes, upregulating the expressions of the positive regulators of BR-signaling (<em>BZR1</em> and <em>BES2</em>) and downregulating that of the negative regulator (<em>BIN2</em>). Our results provide a new avenue for J13-mediated salt stress amelioration in Arabidopsis, via tight control of polyamine and ethylene biosynthesis and enhanced brassinosteroid signaling.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154304"},"PeriodicalIF":4.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.jplph.2024.154301
Parneet K. Toora , Pham Anh Tuan , Tran-Nguyen Nguyen , Ana Badea , Belay T. Ayele
Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.
脱落酸(ABA)和赤霉素(GA)是种子休眠的主要调节因子,种子休眠是一种与收获前萌发密切相关的适应性性状。本研究考察了表现出一系列休眠表型的大麦基因型种子中 ABA 和 GA 代谢基因的转录调控以及 ABA 和 GA 水平的调节。我们观察到种子萌发的遗传变异与胚胎 ABA 水平之间存在很强的负相关(r = 0.85),这是由 HvNCED1 和/或 HvCYP707A 基因的转录调控决定的。种子萌发的变化与 GA 水平(r = 0.64)之间明显存在很强的正相关性,这是由 GA 生物合成基因 HvGA20ox2 和/或 HvGA3oxs 以及 GA 分解基因 HvGA2ox3 和/或 HvGA3ox6 的转录调控介导的。对基因型中 ABA 和 GA 水平的调节导致 ABA 与 GA 水平比值的增加,而这一比值与种子萌发呈极强的负相关(r = 0.84),这突出表明了 ABA/GA 比值的变化在决定大麦种子休眠遗传变异中的重要性。我们的研究结果总体上表明,特定 ABA 和 GA 代谢基因的转录调控是 ABA/GA 比值和种子休眠遗传变异的基础,反映了这些基因可能被用作提高大麦收获前抗萌发性的分子工具。
{"title":"Modulation in the ratio of abscisic acid to gibberellin level determines genetic variation of seed dormancy in barley (Hordeum vulgare L.)","authors":"Parneet K. Toora , Pham Anh Tuan , Tran-Nguyen Nguyen , Ana Badea , Belay T. Ayele","doi":"10.1016/j.jplph.2024.154301","DOIUrl":"10.1016/j.jplph.2024.154301","url":null,"abstract":"<div><p>Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (<em>r</em> = 0.85), which is regulated by transcriptional modulation of <em>HvNCED1</em> and/or <em>HvCYP707A</em> genes. A strong positive correlation was evident between variation in seed germination and GA level (<em>r</em> = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, <em>HvGA20ox2</em> and/or <em>HvGA3ox</em>s, and GA catabolism genes, <em>HvGA2ox3</em> and/or <em>HvGA3ox6</em>. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (<em>r</em> = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154301"},"PeriodicalIF":4.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0176161724001329/pdfft?md5=4ac036dfc62a154b4144afc461524027&pid=1-s2.0-S0176161724001329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1016/j.jplph.2024.154303
Margit Drapal , Tatiana M. Ovalle Rivera , Jorge Luis Luna Meléndez , Laura Perez-Fons , Thierry Tran , Dominique Dufour , Luis Augusto Becerra Lopez-Lavalle , Paul D. Fraser
Cassava (Manihot esculenta Crantz) produces edible roots, a major carbohydrate source feeding more than 800 million people in Africa, Latin America, Oceania and Asia. Post-harvest physiological deterioration (PPD) renders harvested cassava roots unpalatable and unmarketable. Decades of research on PPD have elucidated several genetic, enzymatic and metabolic processes involved. Breeding populations were established to enable verification of robust biomarkers for PPD resistance. For comparison, these PPD populations have been cultivated concurrently with diversity population for carotenoid (β-carotene) content. Results highlighted a significant variation of the chemotypes due to environmental factors. Less than 3% of the detected molecular features showed consistent trends between the two harvest years and were putatively identified as phenylpropanoid derived compounds (e.g. caffeoyl rutinoside). The data corroborated that ∼20 μg β-carotene/g DW can reduced the PPD response of the cassava roots to a score of ∼1. Correlation analysis showed a significant correlation of β-carotene content at harvest to PPD response (R2 -0.55). However, the decrease of β-carotene over storage was not significantly correlated to initial content or PPD response. Volatile analysis observed changes of apocarotenoids derived from β-carotene, lipid oxidation products (alkanes, alcohols and carbonyls and esters) and terpenes. The majority of these volatiles (>90%) showed no significant correlation to β-carotene or PPD. Observed data indicated an increase (∼2-fold) of alkanes in varieties with β-carotene >10 μg/g DW and a decrease (∼60%) in varieties with less β-carotene. Fatty acid methyl esters with a chain length > C9 were detected solely after storage and show lower levels in varieties with higher β-carotene content. In combination with correlation values to PPD (R2 ∼0.3; P-value >0.05), the data indicated a more efficient ROS quenching mechanism in PPD resistant varieties.
{"title":"Biochemical characterisation of a cassava (Manihot esculenta crantz) diversity panel for post-harvest physiological deterioration; metabolite involvement and environmental influence","authors":"Margit Drapal , Tatiana M. Ovalle Rivera , Jorge Luis Luna Meléndez , Laura Perez-Fons , Thierry Tran , Dominique Dufour , Luis Augusto Becerra Lopez-Lavalle , Paul D. Fraser","doi":"10.1016/j.jplph.2024.154303","DOIUrl":"10.1016/j.jplph.2024.154303","url":null,"abstract":"<div><p>Cassava (<em>Manihot esculenta</em> Crantz) produces edible roots, a major carbohydrate source feeding more than 800 million people in Africa, Latin America, Oceania and Asia. Post-harvest physiological deterioration (PPD) renders harvested cassava roots unpalatable and unmarketable. Decades of research on PPD have elucidated several genetic, enzymatic and metabolic processes involved. Breeding populations were established to enable verification of robust biomarkers for PPD resistance. For comparison, these PPD populations have been cultivated concurrently with diversity population for carotenoid (β-carotene) content. Results highlighted a significant variation of the chemotypes due to environmental factors. Less than 3% of the detected molecular features showed consistent trends between the two harvest years and were putatively identified as phenylpropanoid derived compounds (e.g. caffeoyl rutinoside). The data corroborated that ∼20 μg β-carotene/g DW can reduced the PPD response of the cassava roots to a score of ∼1. Correlation analysis showed a significant correlation of β-carotene content at harvest to PPD response (R<sup>2</sup> -0.55). However, the decrease of β-carotene over storage was not significantly correlated to initial content or PPD response. Volatile analysis observed changes of apocarotenoids derived from β-carotene, lipid oxidation products (alkanes, alcohols and carbonyls and esters) and terpenes. The majority of these volatiles (>90%) showed no significant correlation to β-carotene or PPD. Observed data indicated an increase (∼2-fold) of alkanes in varieties with β-carotene >10 μg/g DW and a decrease (∼60%) in varieties with less β-carotene. Fatty acid methyl esters with a chain length > C9 were detected solely after storage and show lower levels in varieties with higher β-carotene content. In combination with correlation values to PPD (R<sup>2</sup> ∼0.3; <em>P</em>-value >0.05), the data indicated a more efficient ROS quenching mechanism in PPD resistant varieties.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154303"},"PeriodicalIF":4.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.jplph.2024.154300
Lingshang Lin , Jiajing Qiu , Long Zhang , Cunxu Wei
FLO2 is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new flo2 allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new flo2 allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of flo2 mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of FLO2 significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 flo2 mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different flo2 mutants. This study could add helpful information for the roles of flo2 alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.
{"title":"Identification and analysis of nine new flo2 allelic mutants in rice","authors":"Lingshang Lin , Jiajing Qiu , Long Zhang , Cunxu Wei","doi":"10.1016/j.jplph.2024.154300","DOIUrl":"10.1016/j.jplph.2024.154300","url":null,"abstract":"<div><p><em>FLO2</em> is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new <em>flo2</em> allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new <em>flo2</em> allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of <em>flo2</em> mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of <em>FLO2</em> significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 <em>flo2</em> mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different <em>flo2</em> mutants. This study could add helpful information for the roles of <em>flo2</em> alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154300"},"PeriodicalIF":4.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.jplph.2024.154302
Shimaa Ibrahim, Mohammed M. Mira , Robert D. Hill, Claudio Stasolla
High temperature stress during flowering adversely affects plant fertility, decreasing plant productivity. Daily cycles of heat stress (HS), imposed on Brassica napus L. plants by slowly ramping the temperature from 23 °C to 35 °C before lowering back to pre-stress conditions, inhibited flower and silique formation, with fewer seeds per silique during the stress period, as well as decreased pollen viability. Heat stress also elevated the transcripts and protein levels of class 1 phytoglobin BnPgb1, with the protein accumulating preferentially within the anther walls. Over-expression of BnPgb1 was sufficient to attenuate the reduction in plant fertility at high temperatures while its down-regulation exacerbated the effects of HS. Relative to WT anthers, the rise in ROS and ROS-induced damage caused by HS was limited when BnPgb1 was over-expressed, and this was linked to changes in antioxidant responses. High temperatures reduced the level of ascorbic acid (AsA) in anthers by favoring its oxidation via ascorbate oxidase (AOA) and limiting its regeneration through suppression of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). Anthers of heat-stressed plants over-expressing BnPgb1 retained a higher AsA content with concomitant increased activities of DHAR, MDHAR, ascorbate peroxidase (APX) and superoxide dismutase (SOD). These changes suggest that BnPgb1 potentiates antioxidant responses during HS which mitigate the depression of fertility.
{"title":"The Brassica napus phytoglobin 1 (BnPgb1) mitigates the decrease in plant fertility resulting from high temperature stress","authors":"Shimaa Ibrahim, Mohammed M. Mira , Robert D. Hill, Claudio Stasolla","doi":"10.1016/j.jplph.2024.154302","DOIUrl":"10.1016/j.jplph.2024.154302","url":null,"abstract":"<div><p>High temperature stress during flowering adversely affects plant fertility, decreasing plant productivity. Daily cycles of heat stress (HS), imposed on <em>Brassica napus</em> L. plants by slowly ramping the temperature from 23 °C to 35 °C before lowering back to pre-stress conditions, inhibited flower and silique formation, with fewer seeds per silique during the stress period, as well as decreased pollen viability. Heat stress also elevated the transcripts and protein levels of class 1 phytoglobin <em>BnPgb1,</em> with the protein accumulating preferentially within the anther walls. Over-expression of <em>BnPgb1</em> was sufficient to attenuate the reduction in plant fertility at high temperatures while its down-regulation exacerbated the effects of HS. Relative to WT anthers, the rise in ROS and ROS-induced damage caused by HS was limited when <em>BnPgb1</em> was over-expressed, and this was linked to changes in antioxidant responses. High temperatures reduced the level of ascorbic acid (AsA) in anthers by favoring its oxidation via ascorbate oxidase (AOA) and limiting its regeneration through suppression of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR). Anthers of heat-stressed plants over-expressing <em>BnPgb1</em> retained a higher AsA content with concomitant increased activities of DHAR, MDHAR, ascorbate peroxidase (APX) and superoxide dismutase (SOD). These changes suggest that BnPgb1 potentiates antioxidant responses during HS which mitigate the depression of fertility.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"300 ","pages":"Article 154302"},"PeriodicalIF":4.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.jplph.2024.154298
Shumaila Rasool , Birgit Jensen , Thomas G. Roitsch , Nicolai V. Meyling
Seed inoculation with entomopathogenic fungi (EPF) causes plant-mediated effects against arthropod herbivores, but the responses vary among EPF isolates. We used a wheat model system with three isolates representing Beauveria bassiana and Metarhizium spp. causing either negative or positive effects against the aphid Rhopalosiphum padi. Activities of six carbohydrate enzymes increased in plants showing biomass build-up after EPF inoculations. However, only aldolase activity showed positive correlation with R. padi numbers. Plants inoculated with M. robertsii hosted fewest aphids and showed increased activity of superoxide dismutase, implying a defense strategy of resistance towards herbivores. In M. brunneum-inoculated plants, hosting most R. padi, activities of catalase and glutathione reductase were increased suggesting enhanced detoxification responses towards aphids. However, M. brunneum simultaneously increased plant growth indicating that this isolate may cause the plant to tolerate herbivory. EPF seed inoculants may therefore mediate either tolerance or resistance towards biotic stress in plants in an isolate-dependent manner.
用昆虫病原真菌(EPF)进行种子接种会产生植物介导的抗节肢动物食草动物效应,但不同的 EPF 分离物所产生的反应各不相同。我们使用了一个小麦模型系统,其中的三种分离物分别代表 Beauveria bassiana 和 Metarhizium spp.,它们对蚜虫 Rhopalosiphum padi 产生了负面或正面的影响。接种 EPF 后,植物体内六种碳水化合物酶的活性增加,显示生物量增加。然而,只有醛缩酶活性与 R. padi 的数量呈正相关。接种了罗伯茨酵母菌的植株蚜虫数量最少,超氧化物歧化酶的活性也有所提高,这意味着它们采取了抵抗食草动物的防御策略。在接种了 M. brunneum 的植株中,寄主 R. padi 最多,过氧化氢酶和谷胱甘肽还原酶的活性增加,表明对蚜虫的解毒反应增强。不过,M. brunneum 同时也提高了植物的生长,表明这种分离物可能会使植物耐受草食性。因此,EPF 种子接种剂可能以依赖分离物的方式介导植物对生物胁迫的耐受性或抵抗性。
{"title":"Enzyme regulation patterns in fungal inoculated wheat may reflect resistance and tolerance towards an insect herbivore","authors":"Shumaila Rasool , Birgit Jensen , Thomas G. Roitsch , Nicolai V. Meyling","doi":"10.1016/j.jplph.2024.154298","DOIUrl":"10.1016/j.jplph.2024.154298","url":null,"abstract":"<div><p>Seed inoculation with entomopathogenic fungi (EPF) causes plant-mediated effects against arthropod herbivores, but the responses vary among EPF isolates. We used a wheat model system with three isolates representing <em>Beauveria bassiana</em> and <em>Metarhizium</em> spp. causing either negative or positive effects against the aphid <em>Rhopalosiphum padi</em>. Activities of six carbohydrate enzymes increased in plants showing biomass build-up after EPF inoculations. However, only aldolase activity showed positive correlation with <em>R. padi</em> numbers. Plants inoculated with <em>M. robertsii</em> hosted fewest aphids and showed increased activity of superoxide dismutase, implying a defense strategy of resistance towards herbivores. In <em>M. brunneum</em>-inoculated plants, hosting most <em>R. padi</em>, activities of catalase and glutathione reductase were increased suggesting enhanced detoxification responses towards aphids. However, <em>M. brunneum</em> simultaneously increased plant growth indicating that this isolate may cause the plant to tolerate herbivory. EPF seed inoculants may therefore mediate either tolerance or resistance towards biotic stress in plants in an isolate-dependent manner.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"300 ","pages":"Article 154298"},"PeriodicalIF":4.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0176161724001299/pdfft?md5=f63bc2ba2e3438a84591ed32b42320ce&pid=1-s2.0-S0176161724001299-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141457607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}