Abstract. Ongoing digitalization in metrology and the ever-growing complexity of measurement systems have increased the effort required to create complex software for uncertainty estimation. To address this issue, a general structure for uncertainty estimation software will be presented in this work. The structure was derived from the Virtual Coordinate Measuring Machine (VCMM), which is a well-established tool for uncertainty estimation in the field of coordinate metrology. To make it easy to apply the software structure to specific projects, a supporting software library was created. The library is written in a portable and extensible way using the C++ programming language. The software structure and library proposed can be used in different domains of metrology. The library provides all the components necessary for uncertainty estimation (i.e., random number generators and GUM S1-compliant routines). Only the project-specific parts of the software must be developed by potential users. To verify the usability of the software structure and the library, a Virtual Planck-Balance, which is the digital metrological twin of a Kibble balance, is currently being developed.
{"title":"Structure of digital metrological twins as software for uncertainty estimation","authors":"I. Poroskun, C. Rothleitner, D. Heißelmann","doi":"10.5194/jsss-11-75-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-75-2022","url":null,"abstract":"Abstract. Ongoing digitalization in metrology and the ever-growing complexity of measurement systems have increased the effort required to create complex software for uncertainty estimation. To address this issue, a general structure for uncertainty estimation software will be presented in this work. The structure was derived from the Virtual Coordinate Measuring Machine (VCMM), which is a well-established tool for uncertainty estimation in the field of coordinate metrology. To make it easy to apply the software structure to specific projects, a supporting software library was created. The library is written in a portable and extensible way using the C++ programming language. The software structure and library proposed can be used in different domains of metrology. The library provides all the components necessary for uncertainty estimation (i.e., random number generators and GUM S1-compliant routines). Only the project-specific parts of the software must be developed by potential users. To verify the usability of the software structure and the library, a Virtual Planck-Balance, which is the digital metrological twin of a Kibble balance, is currently being developed.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48955407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Pohl, P. Meindl, J. Hollandt, U. Johannsen, L. Werner
Abstract. The Physikalisch-Technische Bundesanstalt (PTB) expanded its capabilities for the calibration of the spectral responsivity s(λ) in the spectral range between 1.5 µm and 14 µm, traceable to the International System of Units (SI), with pyroelectric detectors as transfer standards. The pyroelectric transfer standards were calibrated absolutely against two independent primary radiometric standards, regarding their spectral responsivity s(λ). The first approach uses infrared laser sources at one of the PTB's cryogenic substitution radiometer facilities, which is a primary detector standard for the measurement of radiant power. The second approach uses a blackbody radiator with a temperature of about 1200 K, whose radiation can be calculated by Planck's law and is, in addition, spectrally selected by accurately characterized optical bandpass filters. Due to their measurement principle, pyroelectric detectors can only measure temporal changes in the input radiant power and are, therefore, operated with a chopper wheel to chop the incident radiation. The detector signal, which is typically measured with a lock-in amplifier, depends not only on the amplitude but also on the temporal shape of the chopped radiant power. It is shown that the calculation of the radiant power used for the determination of the spectral responsivity must be based on an accurate approximation of the temporal shape of the chopped radiant flux at the detector. This shape is different for both applied primary methods. It is further shown that the particularities of the lock-in-technique have to be considered in the calculation of the spectral responsivity, including the correct calculation of the detector signal. The results of the calibration with both approaches are consistent, and the realized measurement uncertainty is in the range between 1 % and 14 %. The pyroelectric detectors were thereby established as transfer detectors for the SI traceable measurement of radiant power in the near-infrared (NIR) and mid-infrared (MIR).
{"title":"Particularities of pyroelectric detectors in absolute measurements of chopped radiation shown for the example of a spectral responsivity calibration in the near- and mid-infrared spectral range at two primary radiometric standards","authors":"T. Pohl, P. Meindl, J. Hollandt, U. Johannsen, L. Werner","doi":"10.5194/jsss-11-61-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-61-2022","url":null,"abstract":"Abstract. The Physikalisch-Technische Bundesanstalt (PTB) expanded its capabilities for the calibration of the spectral responsivity s(λ) in the spectral range between 1.5 µm and 14 µm, traceable to the International System of Units (SI), with pyroelectric detectors as transfer standards. The pyroelectric transfer standards were calibrated absolutely against two independent primary radiometric standards, regarding their spectral responsivity s(λ). The first approach uses infrared laser sources at one of the PTB's cryogenic substitution radiometer facilities, which is a primary detector standard for the measurement of radiant power. The second approach uses a blackbody radiator with a temperature of about 1200 K, whose radiation can be calculated by Planck's law and is, in addition, spectrally selected by accurately characterized optical bandpass filters. Due to their measurement principle, pyroelectric detectors can only measure\u0000temporal changes in the input radiant power and are, therefore, operated with a chopper wheel to chop the incident radiation. The detector signal, which is typically measured with a lock-in amplifier, depends not only on the amplitude but also on the temporal shape of the chopped radiant power. It is shown that the calculation of the radiant power used for the determination of the spectral responsivity must be based on an accurate approximation of the temporal shape of the chopped radiant flux at the detector. This shape is different for both applied primary methods. It is further shown that the particularities of the lock-in-technique have to be considered in the calculation of the spectral responsivity, including the correct calculation of the detector signal. The results of the calibration with both approaches are consistent, and the\u0000realized measurement uncertainty is in the range between 1 % and 14 %.\u0000The pyroelectric detectors were thereby established as transfer detectors\u0000for the SI traceable measurement of radiant power in the near-infrared (NIR) and mid-infrared (MIR).\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48325500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Wulfmeier, Niklas Warnecke, L. Pasquini, H. Fritze, P. Knauth
Abstract. Proton-conducting polymers, such as sulfonated poly(ether ether ketone) (SPEEK), are of great industrial interest. Such proton exchange membranes show high tendencies for water and water vapor uptake. The incorporation of water not only leads to mass and dimensional changes, but also to changes in conductivity by several orders of magnitude. Both properties highly impact the potential application of the materials and, therefore, have to be known precisely. As hydration is diffusion controlled, thin films may behave differently to bulk specimens. However, the determination of small mass changes occurring in thin-film samples is very challenging. In this work, a new measurement setup is presented to simultaneously characterize the mass change and the conductivity of thin polymer films. The mass change is measured by resonant piezoelectric spectroscopy (RPS) with a nanobalance, which is based on high-precision piezoelectric resonators operating in thickness-shear mode (TSM). The mass resolution of this nanobalance is ±7.9 ng. Electrochemical impedance spectroscopy and an interdigitated electrode array are used for conductivity measurements. The approach is validated by comparing two SPEEK films with different degrees of sulfonation (DS). The relative humidity (RH) in the measurement setup was changed stepwise within the range ∼ 2 % < RH < ∼ 85 %. For both material compositions, DS = 0.5 and DS = 0.9, the mass uptake, the hydration number and the proton conductivity are presented and discussed depending on RH. This newly designed experimental setup allows for in situ characterization of the properties mentioned above; it can monitor not only the data for the stationary state, but also the dynamics of the hydration. To the authors' knowledge this is the first simultaneous and in situ measurement device for simultaneously sensing mass and conductivity change due to hydration of polymeric thin-film materials.
{"title":"In situ analysis of hydration and ionic conductivity of sulfonated poly(ether ether ketone) thin films using an interdigitated electrode array and a nanobalance","authors":"H. Wulfmeier, Niklas Warnecke, L. Pasquini, H. Fritze, P. Knauth","doi":"10.5194/jsss-11-51-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-51-2022","url":null,"abstract":"Abstract. Proton-conducting polymers, such as sulfonated poly(ether ether ketone) (SPEEK), are of great industrial interest. Such proton\u0000exchange membranes show high tendencies for water and water vapor uptake.\u0000The incorporation of water not only leads to mass and dimensional changes,\u0000but also to changes in conductivity by several orders of magnitude. Both\u0000properties highly impact the potential application of the materials and,\u0000therefore, have to be known precisely. As hydration is diffusion controlled,\u0000thin films may behave differently to bulk specimens. However, the\u0000determination of small mass changes occurring in thin-film samples is very\u0000challenging. In this work, a new measurement setup is presented to simultaneously\u0000characterize the mass change and the conductivity of thin polymer films. The\u0000mass change is measured by resonant piezoelectric spectroscopy (RPS) with a\u0000nanobalance, which is based on high-precision piezoelectric resonators operating in thickness-shear mode (TSM). The mass resolution of this\u0000nanobalance is ±7.9 ng. Electrochemical impedance spectroscopy and\u0000an interdigitated electrode array are used for conductivity measurements.\u0000The approach is validated by comparing two SPEEK films with different\u0000degrees of sulfonation (DS). The relative humidity (RH) in the measurement setup was changed stepwise within the range ∼ 2 % < RH < ∼ 85 %. For both material compositions,\u0000DS = 0.5 and DS = 0.9, the mass uptake, the hydration number and the\u0000proton conductivity are presented and discussed depending on RH. This newly designed experimental setup allows for in situ characterization of the\u0000properties mentioned above; it can monitor not only the data for the\u0000stationary state, but also the dynamics of the hydration. To the authors'\u0000knowledge this is the first simultaneous and in situ measurement device for\u0000simultaneously sensing mass and conductivity change due to hydration of\u0000polymeric thin-film materials.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46627219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Schmoll, S. Schramm, Tom Breitenstein, A. Kroll
Abstract. Three-dimensional thermography describes the fusion of geometry- and temperature-related sensor data. In the resulting 3D thermogram, thermal and spatial information of the measured object is available in one single model. Besides the simplified visualization of measurement results, the question arises how the additional data can be used to get further information. In this work, the Supplement information is used to calculate the surface heat dissipation caused by thermal radiation and natural convection. For this purpose, a 3D thermography system is presented, the calculation of the heat dissipation is described, and the first results for simply shaped measurement objects are presented.
{"title":"Method and experimental investigation of surface heat dissipation measurement using 3D thermography","authors":"R. Schmoll, S. Schramm, Tom Breitenstein, A. Kroll","doi":"10.5194/jsss-11-41-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-41-2022","url":null,"abstract":"Abstract. Three-dimensional thermography describes the fusion of geometry- and temperature-related sensor data. In the resulting 3D thermogram, thermal and spatial information of the measured object is available in one single model. Besides the simplified visualization of measurement results, the question arises how the additional data can be used to get further information. In this work, the Supplement information is used to calculate the surface heat dissipation caused by thermal radiation and natural convection. For this purpose, a 3D thermography system is presented, the calculation of the heat dissipation is described, and the first results for simply shaped measurement objects are presented.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48020089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. Bees are recognized as an indispensable link in the human food chain and general ecological system. Numerous threats, from pesticides to parasites, endanger bees, enlarge the burden on hive keepers, and frequently lead to hive collapse. The Varroa destructor mite is a key threat to bee keeping, and the monitoring of hive infestation levels is of major concern for effective treatment. Continuous and unobtrusive monitoring of hive infestation levels along with other vital bee hive parameters is coveted, although there is currently no explicit sensor for this task. This problem is strikingly similar to issues such as condition monitoring or Industry 4.0 tasks, and sensors and machine learning bear the promise of viable solutions (e.g., creating a soft sensor for the task). In the context of our IndusBee4.0 project, following a bottom-up approach, a modular in-hive gas sensing system, denoted as BeE-Nose, based on common metal-oxide gas sensors (in particular, the Sensirion SGP30 and the Bosch Sensortec BME680) was deployed for a substantial part of the 2020 bee season in a single colony for a single measurement campaign. The ground truth of the Varroa population size was determined by repeated conventional method application. This paper is focused on application-specific invariant feature computation for daily hive activity characterization. The results of both gas sensors for Varroa infestation level estimation (VILE) and automated treatment need detection (ATND), as a thresholded or two-class interpretation of VILE, in the order of up to 95 % are presented. Future work strives to employ a richer sensor palette and evaluation approaches for several hives over a bee season.
{"title":"An in-hive soft sensor based on phase space features for Varroa infestation level estimation and treatment need detection","authors":"A. König","doi":"10.5194/jsss-11-29-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-29-2022","url":null,"abstract":"Abstract. Bees are recognized as an indispensable link in the human food chain and general ecological system.\u0000Numerous threats, from pesticides to parasites, endanger bees, enlarge the burden on hive keepers, and frequently lead to hive collapse.\u0000The Varroa destructor mite is a key threat to bee keeping, and the monitoring of hive infestation levels is\u0000of major concern for effective treatment. Continuous and unobtrusive monitoring of hive infestation levels along with other vital bee hive parameters is coveted, although there is currently no explicit sensor for this task. This problem is strikingly similar to issues such as\u0000condition monitoring or Industry 4.0 tasks, and sensors and machine learning bear the promise of viable solutions (e.g., creating a soft sensor for the task).\u0000In the context of our IndusBee4.0 project, following a bottom-up approach, a modular in-hive gas sensing system, denoted as BeE-Nose, based on common\u0000metal-oxide gas sensors (in particular, the Sensirion SGP30 and the Bosch Sensortec BME680) was deployed for a substantial part of the 2020\u0000bee season in a single colony for a single measurement campaign. The ground truth of the Varroa population size was determined by repeated conventional method application.\u0000This paper is focused on application-specific invariant feature computation for daily hive activity characterization.\u0000The results of both gas sensors for Varroa infestation level estimation (VILE) and automated treatment need detection (ATND), as a thresholded or two-class interpretation of VILE, in the order of up to 95 % are presented.\u0000Future work strives to employ a richer sensor palette and evaluation approaches for several hives over a bee season.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46895425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract. The design and fabrication of a dual electrochemical quartz crystal microbalance sensor unit with dissipation monitoring (EQCMD) for in situ monitoring of crystallization processes, such as the formation of zeolites from liquid media, is reported. The integrated temperature unit is based on Peltier elements and precision temperature sensors with accurate and fast temperature control. In this design, two thickness-shear mode quartz disk resonators are oppositely arranged, enabling the application of an electric field through the sample while concurrently being able to monitor the resonance frequencies and quality factors of both resonators. As demonstrated experimentally, this allows for the characterization of the sample by means of the viscosity, via the acoustic impedance, and the electrical conductivity. Monitoring zeolite formation based on these parameters, however, turned out to be challenging, mainly because the electrodes suffered from severe corrosion. Despite the use of chemically resistant materials and insulating coatings, the electrodes were attacked by the reaction medium, presumably due to surface defects. Furthermore, air bubbles, which developed over time and adhered persistently to the quartz surfaces, also had a negative influence on the measurement. Despite the encountered issues, we want to communicate our sensor design, as its basic functionality, including the dedicated electronics and software perform well, and reporting the observed issues will enable further progress in this field.
{"title":"Design of a dual electrochemical quartz crystal microbalance with dissipation monitoring","authors":"R. Ecker, N. Doppelhammer, B. Jakoby, E. Reichel","doi":"10.5194/jsss-11-21-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-21-2022","url":null,"abstract":"Abstract. The design and fabrication of a dual electrochemical quartz crystal microbalance sensor unit with dissipation monitoring (EQCMD) for in situ monitoring of crystallization processes, such as the formation of zeolites from liquid media, is reported. The integrated temperature unit is based on Peltier elements and precision temperature sensors with accurate and fast temperature control. In this design, two thickness-shear mode quartz disk resonators are oppositely arranged, enabling the application of an electric field through the sample while concurrently being able to monitor the resonance frequencies and quality factors of both resonators. As demonstrated experimentally, this allows for the characterization of the sample by means of the viscosity, via the acoustic impedance, and the electrical conductivity. Monitoring zeolite formation based on these parameters, however, turned out to be challenging, mainly because the electrodes suffered from severe corrosion. Despite the use of chemically resistant materials and insulating coatings, the electrodes were attacked by the reaction medium, presumably due to surface defects. Furthermore, air bubbles, which developed over time and adhered persistently to the quartz\u0000surfaces, also had a negative influence on the measurement. Despite the\u0000encountered issues, we want to communicate our sensor design, as its basic\u0000functionality, including the dedicated electronics and software perform\u0000well, and reporting the observed issues will enable further progress in this field.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49232693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Saeidi, B. Jakoby, G. Pühringer, A. Tortschanoff, G. Stocker, J. Spettel, T. Grille, R. Jannesari
Abstract. Plasmonic waveguides have attracted much attention owing to the associated high field intensity at the metal–dielectric interface and their ability to confine the modes at the nanometer scale. At the same time, they suffer from relatively high propagation loss, which is due to the presence of metal. Several alternative materials have been introduced to replace noble metals, such as transparent conductive oxides (TCOs). A particularly popular TCO is indium tin oxide (ITO), which is compatible with standard microelectromechanical systems (MEMS) technology. In this work, the feasibility of ITO as an alternative plasmonic material is investigated for infrared absorption sensing applications: we numerically design and optimize an ITO-based plasmonic slot waveguide for a wavelength of 4.26 µm, which is the absorption line of CO2. Our optimization is based on a figure of merit (FOM), which is defined as the confinement factor divided by the imaginary part of the effective mode index (i.e., the intrinsic damping of the mode). The obtained optimal FOM is 3.2, which corresponds to 9 µm and 49 % for the propagation length (characterizing the intrinsic damping) and the confinement factor, respectively.
{"title":"Numerical analysis of an infrared gas sensor utilizing an indium-tin-oxide-based plasmonic slot waveguide","authors":"P. Saeidi, B. Jakoby, G. Pühringer, A. Tortschanoff, G. Stocker, J. Spettel, T. Grille, R. Jannesari","doi":"10.5194/jsss-11-15-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-15-2022","url":null,"abstract":"Abstract. Plasmonic waveguides have attracted much attention owing\u0000to the associated high field intensity at the metal–dielectric interface and\u0000their ability to confine the modes at the nanometer scale. At the same time,\u0000they suffer from relatively high propagation loss, which is due to the\u0000presence of metal. Several alternative materials have been introduced to\u0000replace noble metals, such as transparent conductive oxides (TCOs). A\u0000particularly popular TCO is indium tin oxide (ITO), which is compatible with\u0000standard microelectromechanical systems (MEMS) technology. In this work, the feasibility of ITO as an\u0000alternative plasmonic material is investigated for infrared absorption sensing\u0000applications: we numerically design and optimize an ITO-based\u0000plasmonic slot waveguide for a wavelength of 4.26 µm, which is the absorption\u0000line of CO2. Our optimization is based on a figure of merit (FOM), which\u0000is defined as the confinement factor divided by the imaginary part of the effective mode\u0000index (i.e., the intrinsic damping of the mode). The obtained optimal FOM is\u00003.2, which corresponds to 9 µm and 49 % for the propagation length\u0000(characterizing the intrinsic damping) and the confinement factor,\u0000respectively.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47702285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dennis Vollberg, P. Gibson, G. Schultes, Hans-Werner Groh, T. Heinze
Abstract. Our approach of a closed-loop combustion control is built on an intensively evaluated robust cylinder pressure sensor with integrated smart electronics and an openly programmed engine control unit. The presented pressure sensor consists of a steel membrane and a highly strain-sensitive thin film with laser-welded electrical contacts. All components are optimized for reliable operation at high temperatures. The sensor setup safely converts the in-cylinder pressure of a combustion engine at temperatures of up to 200 ∘C into the desired electrical values. Furthermore, the embedded smart electronics provides a fast analogue to digital conversion and subsequently computes significant combustion parameters in real time, based on implemented thermodynamic equations, namely the 50 % mass fraction burned, the indicated mean effective pressure, the maximum pressure and a digital value, which represents the intensity of knocking. Only these aggregated parameters – not the running pressure values – are sent to the engine control unit. The data communication between the smart sensor and the engine control unit is based on the controller area network bus system, which is widely spread in the automotive industry and allows a robust data transfer minimizing electrical interferences. The established closed-loop combustion control is able to control the ignition angle in accordance with the 50 % mass fraction burned at a certain crankshaft angle. With this loop, the combustion engine is controlled and run efficiently even if the ignition angle is intentionally incorrectly adjusted. The controlled and automatic correction of simulated ageing effects is demonstrated as well as the self-adjustment of an efficient operation when different fuels are used. In addition, our approach saves the computing capacity of the engine control unit by outsourcing the data processing to the sensor system.
{"title":"Smart in-cylinder pressure sensor for closed-loop combustion control","authors":"Dennis Vollberg, P. Gibson, G. Schultes, Hans-Werner Groh, T. Heinze","doi":"10.5194/jsss-11-1-2022","DOIUrl":"https://doi.org/10.5194/jsss-11-1-2022","url":null,"abstract":"Abstract. Our approach of a closed-loop combustion control is built on an intensively evaluated robust cylinder pressure sensor with integrated smart\u0000electronics and an openly programmed engine control unit. The presented\u0000pressure sensor consists of a steel membrane and a highly strain-sensitive thin film with laser-welded electrical contacts. All components are\u0000optimized for reliable operation at high temperatures. The sensor setup\u0000safely converts the in-cylinder pressure of a combustion engine at\u0000temperatures of up to 200 ∘C into the desired electrical values.\u0000Furthermore, the embedded smart electronics provides a fast analogue to digital conversion and subsequently computes significant combustion parameters in real time, based on implemented thermodynamic equations,\u0000namely the 50 % mass fraction burned, the indicated mean effective\u0000pressure, the maximum pressure and a digital value, which represents the\u0000intensity of knocking. Only these aggregated parameters – not the running\u0000pressure values – are sent to the engine control unit. The data\u0000communication between the smart sensor and the engine control unit is based\u0000on the controller area network bus system, which is widely spread in the\u0000automotive industry and allows a robust data transfer minimizing electrical\u0000interferences. The established closed-loop combustion control is able to control the ignition angle in accordance with the 50 % mass fraction burned\u0000at a certain crankshaft angle. With this loop, the combustion engine is\u0000controlled and run efficiently even if the ignition angle is intentionally\u0000incorrectly adjusted. The controlled and automatic correction of simulated\u0000ageing effects is demonstrated as well as the self-adjustment of an efficient operation when different fuels are used. In addition, our approach saves the computing capacity of the engine control unit by outsourcing the data processing to the sensor system.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47857693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-13DOI: 10.5194/jsss-10-289-2021
D. Hutzschenreuter, Bernd Müller, Jan Loewe, R. Klobučar
Abstract. The digital transformation in the field of sensors and sensor systems fosters an increasing exchange and interoperation of measurement data by machines. The data of measurement need to be uniformly structured based on The International System of Units (SI) with appropriate information on measurement uncertainty. This work presents a concept for an online validation system that can be used by humans and software to efficiently classify the agreement of XML-structured data with relevant recommendations for measurement data. The system is within the TraCIM (Traceability for Computationally-Intensive Metrology) validation platform which was developed for software validation in metrology where high standards of quality management must be met.
{"title":"Validation of SI-based digital data of measurement using the TraCIM system","authors":"D. Hutzschenreuter, Bernd Müller, Jan Loewe, R. Klobučar","doi":"10.5194/jsss-10-289-2021","DOIUrl":"https://doi.org/10.5194/jsss-10-289-2021","url":null,"abstract":"Abstract. The digital transformation in the field of sensors and sensor systems fosters an increasing exchange and interoperation of measurement data by machines. The data of measurement need to be uniformly structured based on The International System of Units (SI) with appropriate information on measurement uncertainty. This work presents a concept for an online validation system that can be used by humans and software to efficiently classify the agreement of XML-structured data with relevant recommendations for measurement data. The system is within the TraCIM (Traceability for Computationally-Intensive Metrology) validation platform which was developed for software validation in metrology where high standards of quality management must be met.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42870070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-10DOI: 10.5194/jsss-10-281-2021
Marwa Othmen, Radwen Bahri, Slaheddine Najar, A. Hannachi
Abstract. This article aims to present equipment designed and developed to study the effective thermal conductivity of composite panels. The composite panel used is a rigid polyurethane foam covered with a layer of aluminum on both sides. The panel is mounted in the test chamber equipped with several sensors and actuators connected via an Arduino platform. Tests have been carried out by applying heat to impose various interior temperatures. Sensors at different locations are used to monitor and record temperatures in and around the composite panel during heating and natural cooling. A model, based on the Fourier equations of thermal conduction and natural convection heat transfer for the steady state, was developed to assess the effective thermal conductivity. The performance of the system was confirmed using temperature signals through the panels for thermal characterization of composite materials. The determined effective thermal conductivity obtained was in agreement with the experimental values reported in the technical data sheets with relative deviations of less than 10 %.
{"title":"Monitor and control test room for investigating thermal performance of panels incorporating phase-change material","authors":"Marwa Othmen, Radwen Bahri, Slaheddine Najar, A. Hannachi","doi":"10.5194/jsss-10-281-2021","DOIUrl":"https://doi.org/10.5194/jsss-10-281-2021","url":null,"abstract":"Abstract. This article aims to present equipment designed and\u0000developed to study the effective thermal conductivity of composite panels.\u0000The composite panel used is a rigid polyurethane foam covered with a layer\u0000of aluminum on both sides. The panel is mounted in the test chamber\u0000equipped with several sensors and actuators connected via an Arduino\u0000platform. Tests have been carried out by applying heat to impose\u0000various interior temperatures. Sensors at different locations are used to\u0000monitor and record temperatures in and around the composite panel during\u0000heating and natural cooling. A model, based on the Fourier equations of\u0000thermal conduction and natural convection heat transfer for the\u0000steady state, was developed to assess the effective thermal conductivity.\u0000The performance of the system was confirmed using temperature signals\u0000through the panels for thermal characterization of composite materials. The\u0000determined effective thermal conductivity obtained was in agreement with the\u0000experimental values reported in the technical data sheets with relative\u0000deviations of less than 10 %.\u0000","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45789009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}