Pub Date : 2024-09-06DOI: 10.1038/s41477-024-01786-w
Tien Van Vu, Ngan Thi Nguyen, Jihae Kim, Young Jong Song, Thu Hoai Nguyen, Jae-Yean Kim
Prime editing (PE) enables almost all types of precise genome editing in animals and plants. It has been successfully adapted to edit several plants with variable efficiency and versatility. However, this technique is inefficient for dicots for unknown reasons. Here, using new combinations of PE components, including an RNA chaperone and altered engineered prime editing guide RNAs driven by a PolII–PolIII composite promoter and a viral replicon system, we obtained up to 9.7% of the desired PE efficiency at the callus stage as assessed by targeted deep sequencing. Subsequently, we identified that up to 38.2% of transformants contained desired PE alleles in tomatoes and Arabidopsis, marking successful heritable PE transmission. Our PE tools also showed high accuracy, specificity and multiplexing capability, which unlocked the potential for practical PE applications in dicots, paving the way for transformative advancements in plant sciences. This study enhanced prime editing (PE) for dicot plants using new combinations of PE components delivered by a geminiviral replicon. This achieved up to 38.2% PE efficiency in tomatoes and Arabidopsis, enabling precise breeding applications in dicots.
Prime editing(PE)可对动物和植物进行几乎所有类型的精确基因组编辑。该技术已成功应用于多种植物的基因组编辑,具有不同的效率和多功能性。然而,这种技术在双子叶植物中效率低下,原因不明。在这里,我们使用了新的PE元件组合,包括RNA伴侣和由PolII-PolIII复合启动子和病毒复制子系统驱动的经过改造的主编辑引导RNA,通过靶向深度测序评估,我们在胼胝体阶段获得了高达9.7%的预期PE效率。随后,我们发现在番茄和拟南芥中,高达 38.2% 的转化体含有所需的 PE 等位基因,这标志着成功的 PE 遗传传递。我们的 PE 工具还表现出了高准确性、特异性和复用能力,为双子叶植物中 PE 的实际应用挖掘了潜力,为植物科学的变革性进步铺平了道路。
{"title":"Optimized dicot prime editing enables heritable desired edits in tomato and Arabidopsis","authors":"Tien Van Vu, Ngan Thi Nguyen, Jihae Kim, Young Jong Song, Thu Hoai Nguyen, Jae-Yean Kim","doi":"10.1038/s41477-024-01786-w","DOIUrl":"10.1038/s41477-024-01786-w","url":null,"abstract":"Prime editing (PE) enables almost all types of precise genome editing in animals and plants. It has been successfully adapted to edit several plants with variable efficiency and versatility. However, this technique is inefficient for dicots for unknown reasons. Here, using new combinations of PE components, including an RNA chaperone and altered engineered prime editing guide RNAs driven by a PolII–PolIII composite promoter and a viral replicon system, we obtained up to 9.7% of the desired PE efficiency at the callus stage as assessed by targeted deep sequencing. Subsequently, we identified that up to 38.2% of transformants contained desired PE alleles in tomatoes and Arabidopsis, marking successful heritable PE transmission. Our PE tools also showed high accuracy, specificity and multiplexing capability, which unlocked the potential for practical PE applications in dicots, paving the way for transformative advancements in plant sciences. This study enhanced prime editing (PE) for dicot plants using new combinations of PE components delivered by a geminiviral replicon. This achieved up to 38.2% PE efficiency in tomatoes and Arabidopsis, enabling precise breeding applications in dicots.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 10","pages":"1502-1513"},"PeriodicalIF":15.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41477-024-01782-0
Abnormal microbiota and autoimmunity have been observed in plants both in the laboratory and in nature. Our work establishes a connection between these phenomena, revealing an important role of the endogenous microbiota in modulating host immune homeostasis.
{"title":"Unbalanced leaf microbiota can cause autoimmunity in plants","authors":"","doi":"10.1038/s41477-024-01782-0","DOIUrl":"10.1038/s41477-024-01782-0","url":null,"abstract":"Abnormal microbiota and autoimmunity have been observed in plants both in the laboratory and in nature. Our work establishes a connection between these phenomena, revealing an important role of the endogenous microbiota in modulating host immune homeostasis.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1291-1292"},"PeriodicalIF":15.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1038/s41477-024-01775-z
David Peris, José Mª Postigo-Mijarra, Enrique Peñalver, Jaume Pellicer, Conrad C. Labandeira, Constanza Peña-Kairath, Iván Pérez-Lorenzo, Hervé Sauquet, Xavier Delclòs, Eduardo Barrón
Thermogenesis in plants is the ability to raise their temperature above that of the surrounding air through metabolic processes, and is especially detected in reproductive organs. Warming benefits plants by facilitating the transmission of odours and compounds that attract insects. As a result, these plants increase their odds of being pollinated by the attracted insect. Modern thermogenesis has been reported in extant cycads and a small number of angiosperm lineages. Although thermogenesis is not directly preserved in the fossil record, it can be inferred by examining extant thermogenic plant lineages and comparing their features with those of the fossil record. We suggest that thermogenesis has probably occurred in seed plants for at least the past 200 million years, long before the origin of angiosperms. Thermogenesis in plants is an important factor that facilitated entomophilous pollination by enhancing the attraction of insects, complementary to other factors, thereby participating in the success of the two groups of organisms and providing many facets of past and recent reproductive biology for future exploration. Thermogenesis, which is present in a small but diverse range of extant plant lineages, increases the odds of pollination by providing heat rewards for insect pollinators and enhancing the transmission of attractants. In this Review, exploration of the fossil record uncovers the evolutionary history of thermogenic plants, revealing a close relationship with insect pollinators since the Palaeozoic era.
{"title":"The impact of thermogenesis on the origin of insect pollination","authors":"David Peris, José Mª Postigo-Mijarra, Enrique Peñalver, Jaume Pellicer, Conrad C. Labandeira, Constanza Peña-Kairath, Iván Pérez-Lorenzo, Hervé Sauquet, Xavier Delclòs, Eduardo Barrón","doi":"10.1038/s41477-024-01775-z","DOIUrl":"10.1038/s41477-024-01775-z","url":null,"abstract":"Thermogenesis in plants is the ability to raise their temperature above that of the surrounding air through metabolic processes, and is especially detected in reproductive organs. Warming benefits plants by facilitating the transmission of odours and compounds that attract insects. As a result, these plants increase their odds of being pollinated by the attracted insect. Modern thermogenesis has been reported in extant cycads and a small number of angiosperm lineages. Although thermogenesis is not directly preserved in the fossil record, it can be inferred by examining extant thermogenic plant lineages and comparing their features with those of the fossil record. We suggest that thermogenesis has probably occurred in seed plants for at least the past 200 million years, long before the origin of angiosperms. Thermogenesis in plants is an important factor that facilitated entomophilous pollination by enhancing the attraction of insects, complementary to other factors, thereby participating in the success of the two groups of organisms and providing many facets of past and recent reproductive biology for future exploration. Thermogenesis, which is present in a small but diverse range of extant plant lineages, increases the odds of pollination by providing heat rewards for insect pollinators and enhancing the transmission of attractants. In this Review, exploration of the fossil record uncovers the evolutionary history of thermogenic plants, revealing a close relationship with insect pollinators since the Palaeozoic era.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1297-1303"},"PeriodicalIF":15.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01775-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41477-024-01781-1
Dalin Yang, Hui Liu, Xiaojie Li, Yafeng Zhang, Xingwang Zhang, Huanhuan Yang, Mingyu Liu, Karen E. Koch, Donald R. McCarty, Shengying Li, Bao-Cai Tan
A transformation in plant cell wall evolution marked the emergence of grasses, grains and related species that now cover much of the globe. Their tough, less digestible cell walls arose from a new pattern of cross-linking between arabinoxylan polymers with distinctive ferulic acid residues. Despite extensive study, the biochemical mechanism of ferulic acid incorporation into cell walls remains unknown. Here we show that ferulic acid is transferred to arabinoxylans via an unexpected sucrose derivative, 3,6-O-diferuloyl sucrose (2-feruloyl-O-α-d-glucopyranosyl-(1′→2)-3,6-O-feruloyl-β-d-fructofuranoside), formed by a sucrose ferulate cycle. Sucrose gains ferulate units through sequential transfers from feruloyl-CoA, initially at the O-3 position of sucrose catalysed by a family of BAHD-type sucrose ferulic acid transferases (SFT1 to SFT4 in maize), then at the O-6 position by a feruloyl sucrose feruloyl transferase (FSFT), which creates 3,6-O-diferuloyl sucrose. An FSFT-deficient mutant of maize, disorganized wall 1 (dow1), sharply decreases cell wall arabinoxylan ferulic acid content, causes accumulation of 3-O-feruloyl sucrose (α-d-glucopyranosyl-(1′→2)-3-O-feruloyl-β-d-fructofuranoside) and leads to the abortion of embryos with defective cell walls. In vivo, isotope-labelled ferulic acid residues are transferred from 3,6-O-diferuloyl sucrose onto cell wall arabinoxylans. This previously unrecognized sucrose ferulate cycle resolves a long-standing mystery surrounding the evolution of the distinctive cell wall characteristics of cereal grains, biofuel crops and related commelinid species; identifies an unexpected role for sucrose as a ferulate group carrier in cell wall biosynthesis; and reveals a new paradigm for modifying cell wall polymers through ferulic acid incorporation. A key feature of the evolutionary transformation of grass cell walls is the cross-linking of interwoven arabinoxylans via ferulate units. This study discovered an unexpected sucrose ferulate cycle that mediates the feruloylation of arabinoxylan.
{"title":"A sucrose ferulate cycle linchpin for ferulyolation of arabinoxylans in plant commelinids","authors":"Dalin Yang, Hui Liu, Xiaojie Li, Yafeng Zhang, Xingwang Zhang, Huanhuan Yang, Mingyu Liu, Karen E. Koch, Donald R. McCarty, Shengying Li, Bao-Cai Tan","doi":"10.1038/s41477-024-01781-1","DOIUrl":"10.1038/s41477-024-01781-1","url":null,"abstract":"A transformation in plant cell wall evolution marked the emergence of grasses, grains and related species that now cover much of the globe. Their tough, less digestible cell walls arose from a new pattern of cross-linking between arabinoxylan polymers with distinctive ferulic acid residues. Despite extensive study, the biochemical mechanism of ferulic acid incorporation into cell walls remains unknown. Here we show that ferulic acid is transferred to arabinoxylans via an unexpected sucrose derivative, 3,6-O-diferuloyl sucrose (2-feruloyl-O-α-d-glucopyranosyl-(1′→2)-3,6-O-feruloyl-β-d-fructofuranoside), formed by a sucrose ferulate cycle. Sucrose gains ferulate units through sequential transfers from feruloyl-CoA, initially at the O-3 position of sucrose catalysed by a family of BAHD-type sucrose ferulic acid transferases (SFT1 to SFT4 in maize), then at the O-6 position by a feruloyl sucrose feruloyl transferase (FSFT), which creates 3,6-O-diferuloyl sucrose. An FSFT-deficient mutant of maize, disorganized wall 1 (dow1), sharply decreases cell wall arabinoxylan ferulic acid content, causes accumulation of 3-O-feruloyl sucrose (α-d-glucopyranosyl-(1′→2)-3-O-feruloyl-β-d-fructofuranoside) and leads to the abortion of embryos with defective cell walls. In vivo, isotope-labelled ferulic acid residues are transferred from 3,6-O-diferuloyl sucrose onto cell wall arabinoxylans. This previously unrecognized sucrose ferulate cycle resolves a long-standing mystery surrounding the evolution of the distinctive cell wall characteristics of cereal grains, biofuel crops and related commelinid species; identifies an unexpected role for sucrose as a ferulate group carrier in cell wall biosynthesis; and reveals a new paradigm for modifying cell wall polymers through ferulic acid incorporation. A key feature of the evolutionary transformation of grass cell walls is the cross-linking of interwoven arabinoxylans via ferulate units. This study discovered an unexpected sucrose ferulate cycle that mediates the feruloylation of arabinoxylan.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1389-1399"},"PeriodicalIF":15.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1038/s41477-024-01787-9
Rebecca A. Smith, John Ralph
Cell walls in grasses contain arabinoxylan polysaccharides decorated with ferulate groups but the mechanism by which the ferulate is attached to arabinoxylans has long remained unknown. A new study shows that ferulate is transferred to arabinoxylan from a 3,6-di-O-feruloyl sucrose intermediate formed in a sucrose ferulate cycle.
{"title":"Cycling ferulate in monocot cell walls","authors":"Rebecca A. Smith, John Ralph","doi":"10.1038/s41477-024-01787-9","DOIUrl":"10.1038/s41477-024-01787-9","url":null,"abstract":"Cell walls in grasses contain arabinoxylan polysaccharides decorated with ferulate groups but the mechanism by which the ferulate is attached to arabinoxylans has long remained unknown. A new study shows that ferulate is transferred to arabinoxylan from a 3,6-di-O-feruloyl sucrose intermediate formed in a sucrose ferulate cycle.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1284-1286"},"PeriodicalIF":15.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1038/s41477-024-01790-0
Kun Guo, Petr Pyšek, Milan Chytrý, Jan Divíšek, Martina Sychrová, Zdeňka Lososová, Mark van Kleunen, Simon Pierce, Wen-Yong Guo
Elton’s biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction–naturalization–invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton’s biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature. According to Elton’s biotic resistance hypothesis, species-rich communities are more resistant to plant invasion. Guo et al. examine a dataset of over 12,000 vegetation plots and report that the influence of resident community richness and relatedness on invasion resistance varies in direction and magnitude along the introduction–naturalization–invasion continuum.
{"title":"Stage dependence of Elton’s biotic resistance hypothesis of biological invasions","authors":"Kun Guo, Petr Pyšek, Milan Chytrý, Jan Divíšek, Martina Sychrová, Zdeňka Lososová, Mark van Kleunen, Simon Pierce, Wen-Yong Guo","doi":"10.1038/s41477-024-01790-0","DOIUrl":"10.1038/s41477-024-01790-0","url":null,"abstract":"Elton’s biotic resistance hypothesis posits that species-rich communities are more resistant to invasion. However, it remains unknown how species, phylogenetic and functional richness, along with environmental and human-impact factors, collectively affect plant invasion as alien species progress along the introduction–naturalization–invasion continuum. Using data from 12,056 local plant communities of the Czech Republic, this study reveals varying effects of these factors on the presence and richness of alien species at different invasion stages, highlighting the complexity of the invasion process. Specifically, we demonstrate that although species richness and functional richness of resident communities had mostly negative effects on alien species presence and richness, the strength and sometimes also direction of these effects varied along the continuum. Our study not only underscores that evidence for or against Elton’s biotic resistance hypothesis may be stage-dependent but also suggests that other invasion hypotheses should be carefully revisited given their potential stage-dependent nature. According to Elton’s biotic resistance hypothesis, species-rich communities are more resistant to plant invasion. Guo et al. examine a dataset of over 12,000 vegetation plots and report that the influence of resident community richness and relatedness on invasion resistance varies in direction and magnitude along the introduction–naturalization–invasion continuum.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 10","pages":"1484-1492"},"PeriodicalIF":15.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41477-024-01724-w
Leandro Quadrana
Transposable elements frequently invade centromeres, yet their influence on centromere function has long been enigmatic. A new study reveals that epigenetic silencing of centromeric transposable elements is essential for chromosome cohesion and proper segregation during cell division.
{"title":"A centromere’s obsession with transposons","authors":"Leandro Quadrana","doi":"10.1038/s41477-024-01724-w","DOIUrl":"10.1038/s41477-024-01724-w","url":null,"abstract":"Transposable elements frequently invade centromeres, yet their influence on centromere function has long been enigmatic. A new study reveals that epigenetic silencing of centromeric transposable elements is essential for chromosome cohesion and proper segregation during cell division.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1282-1283"},"PeriodicalIF":15.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1038/s41477-024-01773-1
Atsushi Shimada, Jonathan Cahn, Evan Ernst, Jason Lynn, Daniel Grimanelli, Ian Henderson, Tetsuji Kakutani, Robert A. Martienssen
Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs in mutants in DECREASE IN DNA METHYLATION1 (DDM1). Here we show that mutants that lose both DDM1 and RNA-dependent RNA polymerase have pleiotropic developmental defects and mis-segregate chromosome 5 during mitosis. Fertility and segregation defects are epigenetically inherited with centromere 5, and can be rescued by directing artificial small RNAs to ATHILA5 retrotransposons that interrupt tandem satellite repeats. Epigenetically activated short interfering RNAs promote pericentromeric condensation, chromosome cohesion and chromosome segregation in mitosis. We propose that insertion of ATHILA silences centromeric transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs in the absence of DDM1. Parallels are made with the fission yeast Schizosaccharomyces pombe, where chromosome cohesion depends on RNA interference, and with humans, where chromosome segregation depends on both RNA interference and HELLSDDM1. Centromeric satellite repeats on Arabidopsis chromosome 5 are interrupted by ATHILA5 retrotransposons, and cohesion is compromised in ddm1 chromatin remodelling mutants that have also lost RNAi. Mis-segregation is epigenetically inherited but can be rescued by ATHILA5 small RNA.
{"title":"Retrotransposon addiction promotes centromere function via epigenetically activated small RNAs","authors":"Atsushi Shimada, Jonathan Cahn, Evan Ernst, Jason Lynn, Daniel Grimanelli, Ian Henderson, Tetsuji Kakutani, Robert A. Martienssen","doi":"10.1038/s41477-024-01773-1","DOIUrl":"10.1038/s41477-024-01773-1","url":null,"abstract":"Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs in mutants in DECREASE IN DNA METHYLATION1 (DDM1). Here we show that mutants that lose both DDM1 and RNA-dependent RNA polymerase have pleiotropic developmental defects and mis-segregate chromosome 5 during mitosis. Fertility and segregation defects are epigenetically inherited with centromere 5, and can be rescued by directing artificial small RNAs to ATHILA5 retrotransposons that interrupt tandem satellite repeats. Epigenetically activated short interfering RNAs promote pericentromeric condensation, chromosome cohesion and chromosome segregation in mitosis. We propose that insertion of ATHILA silences centromeric transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs in the absence of DDM1. Parallels are made with the fission yeast Schizosaccharomyces pombe, where chromosome cohesion depends on RNA interference, and with humans, where chromosome segregation depends on both RNA interference and HELLSDDM1. Centromeric satellite repeats on Arabidopsis chromosome 5 are interrupted by ATHILA5 retrotransposons, and cohesion is compromised in ddm1 chromatin remodelling mutants that have also lost RNAi. Mis-segregation is epigenetically inherited but can be rescued by ATHILA5 small RNA.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1304-1316"},"PeriodicalIF":15.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01773-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petal senescence in flowering plants is a type of programmed cell death with highly regulated onset and progression. A NAM/ATAF1,2/CUC2 transcription factor, EPHEMERAL1 (EPH1), has been identified as a key regulator of petal senescence in Japanese morning glory (Ipomoea nil). Here we used a novel chemical approach to delay petal senescence in Japanese morning glory by inhibiting the DNA-binding activity of EPH1. A cell-free high-throughput screening system and subsequent bioassays found two tetrafluorophthalimide-based compounds, Everlastin1 and Everlastin2, that inhibited the EPH1–DNA interaction and delayed petal senescence. The inhibitory mechanism was due to the suppression of EPH1 dimerization. RNA-sequencing analysis revealed that the chemical treatment strongly suppressed the expression of programmed cell death- and autophagy-related genes. These results suggest that a chemical approach targeting a transcription factor can regulate petal senescence. Transcription factors are regarded as desirable targets for drug discovery. Here novel chemical compounds that delay flower petal aging were identified by a cell-free high-throughput screening system targeting EPHEMERAL1, a NAC transcription factor.
开花植物的花瓣衰老是一种程序性细胞死亡,其发生和发展受到高度调控。一种 NAM/ATAF1,2/CUC2 转录因子 EPHEMERAL1(EPH1)已被确定为日本牵牛花(Ipomoea nil)花瓣衰老的关键调节因子。在这里,我们采用了一种新的化学方法,通过抑制 EPH1 的 DNA 结合活性来延缓日本牵牛花的花瓣衰老。通过无细胞高通量筛选系统和随后的生物测定,我们发现了两种基于四氟邻苯二甲酰亚胺的化合物 Everlastin1 和 Everlastin2,它们能抑制 EPH1 与 DNA 的相互作用并延缓花瓣衰老。其抑制机制是由于抑制了 EPH1 的二聚化。RNA 序列分析表明,化学处理强烈抑制了程序性细胞死亡和自噬相关基因的表达。这些结果表明,针对转录因子的化学方法可以调节花瓣的衰老。
{"title":"A chemical approach to extend flower longevity of Japanese morning glory via inhibition of master senescence regulator EPHEMERAL1","authors":"Kenichi Shibuya, Akira Nozawa, Chikako Takahashi, Tatsuya Sawasaki","doi":"10.1038/s41477-024-01767-z","DOIUrl":"10.1038/s41477-024-01767-z","url":null,"abstract":"Petal senescence in flowering plants is a type of programmed cell death with highly regulated onset and progression. A NAM/ATAF1,2/CUC2 transcription factor, EPHEMERAL1 (EPH1), has been identified as a key regulator of petal senescence in Japanese morning glory (Ipomoea nil). Here we used a novel chemical approach to delay petal senescence in Japanese morning glory by inhibiting the DNA-binding activity of EPH1. A cell-free high-throughput screening system and subsequent bioassays found two tetrafluorophthalimide-based compounds, Everlastin1 and Everlastin2, that inhibited the EPH1–DNA interaction and delayed petal senescence. The inhibitory mechanism was due to the suppression of EPH1 dimerization. RNA-sequencing analysis revealed that the chemical treatment strongly suppressed the expression of programmed cell death- and autophagy-related genes. These results suggest that a chemical approach targeting a transcription factor can regulate petal senescence. Transcription factors are regarded as desirable targets for drug discovery. Here novel chemical compounds that delay flower petal aging were identified by a cell-free high-throughput screening system targeting EPHEMERAL1, a NAC transcription factor.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1377-1388"},"PeriodicalIF":15.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}