首页 > 最新文献

Nature Plants最新文献

英文 中文
Modelling of climate impacts on opportunity crop productivity across Africa 模拟气候对整个非洲机会作物生产力的影响
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-12-01 DOI: 10.1038/s41477-025-02158-8
Opportunity crops in Africa show varied climate resilience, with several projected to outperform current staple crops under future climate scenarios. Root and tuber crops are notably resilient whereas legumes and vegetable crops face declines, especially in the Sahel, highlighting the need for targeted adaptation strategies.
非洲的机会作物表现出不同的气候适应能力,预计在未来气候情景下,几种机会作物的表现将超过目前的主要作物。块根和块茎作物具有显著的抗灾能力,而豆类和蔬菜作物却面临衰退,特别是在萨赫勒地区,这凸显了制定有针对性的适应战略的必要性。
{"title":"Modelling of climate impacts on opportunity crop productivity across Africa","authors":"","doi":"10.1038/s41477-025-02158-8","DOIUrl":"10.1038/s41477-025-02158-8","url":null,"abstract":"Opportunity crops in Africa show varied climate resilience, with several projected to outperform current staple crops under future climate scenarios. Root and tuber crops are notably resilient whereas legumes and vegetable crops face declines, especially in the Sahel, highlighting the need for targeted adaptation strategies.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2459-2460"},"PeriodicalIF":13.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factor-mediated recruitment of small interfering RNA production 转录因子介导的小干扰RNA的募集
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-12-01 DOI: 10.1038/s41477-025-02169-5
Pratheek Pandesha, R. Keith Slotkin
Decades of research in plants has established that the protein complexes that transcribe small interfering RNAs (siRNAs) are not targeted to DNA in a sequence-specific manner. Two independent studies uncover the recruitment of the key siRNA-producing protein RNA polymerase IV mediated by transcription factors to specific DNA sequences.
几十年的植物研究已经证实,转录小干扰rna (sirna)的蛋白质复合物并不以序列特异性的方式靶向DNA。两项独立的研究揭示了转录因子介导的关键sirna产生蛋白RNA聚合酶IV对特定DNA序列的招募。
{"title":"Transcription factor-mediated recruitment of small interfering RNA production","authors":"Pratheek Pandesha, R. Keith Slotkin","doi":"10.1038/s41477-025-02169-5","DOIUrl":"10.1038/s41477-025-02169-5","url":null,"abstract":"Decades of research in plants has established that the protein complexes that transcribe small interfering RNAs (siRNAs) are not targeted to DNA in a sequence-specific manner. Two independent studies uncover the recruitment of the key siRNA-producing protein RNA polymerase IV mediated by transcription factors to specific DNA sequences.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2453-2454"},"PeriodicalIF":13.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145645162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling the productivity of opportunity crops across Africa under climate change in support of the Vision for Adapted Crops and Soils 在气候变化背景下对非洲各地机会作物的生产力进行建模,以支持适应性作物和土壤愿景
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-27 DOI: 10.1038/s41477-025-02157-9
Jose Rafael Guarin, Meijian Yang, Dilys S. MacCarthy, Kevin Karl, Jonas Jägermeyr, Alex C. Ruane, Andres Castellano, Bright S. Freduah, Gershom O. Wesley, Stephen Narh, Elena Mendez Leal, Cynthia Rosenzweig
Addressing future agricultural challenges requires breeding cultivars with improved tolerance to evolving climatic conditions. Many African traditional and indigenous ‘opportunity crops’ have shown increased resilience to climate hazards, yet have received minimal developmental investment. Here the SIMPLE process-based crop model is used to assess the impact of future climate change on the productivity of 5 staple crops and 19 African opportunity crops under low- and high-emissions scenario projections. Roots and tubers show the highest resiliency, while vegetables are the most vulnerable. Cassava, teff, grass pea, sesame seed and finger millet are projected to have the largest productivity increases, while mung bean, lablab, amaranth, Bambara groundnut and maize productivity are projected to decrease substantially. Soybean and cowpea, important cash crops in Africa, are projected to have comparable losses. Crops grown in the Sahel appear most susceptible to climate change, while crops in East and Central Africa show greater resilience. These findings guide regional investments in opportunity crop development and support their inclusion in adaptation measures. African opportunity crops show varied climate resilience, with several projected to outperform staples. Roots and tubers are especially resilient, while legumes and vegetables face declines, particularly in the Sahel.
要解决未来农业面临的挑战,需要培育对不断变化的气候条件具有更好耐受性的品种。许多非洲传统和本土的“机会作物”显示出对气候灾害的抵御能力增强,但得到的发展投资却很少。本文利用SIMPLE过程作物模型评估了在低排放和高排放情景预测下,未来气候变化对5种主要作物和19种非洲机会作物生产力的影响。根和块茎表现出最高的弹性,而蔬菜是最脆弱的。预计木薯、苔麸、草豆、芝麻和小米的生产力增幅最大,而绿豆、lablab、苋菜、Bambara花生和玉米的生产力预计将大幅下降。大豆和豇豆是非洲重要的经济作物,预计也会有类似的损失。生长在萨赫勒地区的作物似乎最容易受到气候变化的影响,而东非和中非的作物则表现出更强的适应能力。这些发现指导了区域对机会作物开发的投资,并支持将其纳入适应措施。非洲机会作物表现出不同的气候适应能力,其中几种作物预计表现优于主食作物。根和块茎的抗灾力特别强,而豆类和蔬菜面临衰退,特别是在萨赫勒地区。
{"title":"Modelling the productivity of opportunity crops across Africa under climate change in support of the Vision for Adapted Crops and Soils","authors":"Jose Rafael Guarin, Meijian Yang, Dilys S. MacCarthy, Kevin Karl, Jonas Jägermeyr, Alex C. Ruane, Andres Castellano, Bright S. Freduah, Gershom O. Wesley, Stephen Narh, Elena Mendez Leal, Cynthia Rosenzweig","doi":"10.1038/s41477-025-02157-9","DOIUrl":"10.1038/s41477-025-02157-9","url":null,"abstract":"Addressing future agricultural challenges requires breeding cultivars with improved tolerance to evolving climatic conditions. Many African traditional and indigenous ‘opportunity crops’ have shown increased resilience to climate hazards, yet have received minimal developmental investment. Here the SIMPLE process-based crop model is used to assess the impact of future climate change on the productivity of 5 staple crops and 19 African opportunity crops under low- and high-emissions scenario projections. Roots and tubers show the highest resiliency, while vegetables are the most vulnerable. Cassava, teff, grass pea, sesame seed and finger millet are projected to have the largest productivity increases, while mung bean, lablab, amaranth, Bambara groundnut and maize productivity are projected to decrease substantially. Soybean and cowpea, important cash crops in Africa, are projected to have comparable losses. Crops grown in the Sahel appear most susceptible to climate change, while crops in East and Central Africa show greater resilience. These findings guide regional investments in opportunity crop development and support their inclusion in adaptation measures. African opportunity crops show varied climate resilience, with several projected to outperform staples. Roots and tubers are especially resilient, while legumes and vegetables face declines, particularly in the Sahel.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2476-2486"},"PeriodicalIF":13.6,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phyllotaxis by emerging apical vasculature 根尖血管形成的叶状排列
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-27 DOI: 10.1038/s41477-025-02175-7
Raphael Trösch
{"title":"Phyllotaxis by emerging apical vasculature","authors":"Raphael Trösch","doi":"10.1038/s41477-025-02175-7","DOIUrl":"10.1038/s41477-025-02175-7","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2444-2444"},"PeriodicalIF":13.6,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Striking convergent selection history of wheat and barley and its potential for breeding 作者更正:小麦和大麦惊人的趋同选择历史及其育种潜力
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-24 DOI: 10.1038/s41477-025-02182-8
Mamadou Dia Sow, Cristian Forestan, Caroline Pont, Peter Civan, Raffaella Battaglia, Michael Seidel, Clea Siguret, Pasquale Luca Curci, Alessandro Tondelli, Daniela Bustos Korts, Elisabetta Mazzucotelli, Thibault Leroy, Cécile Huneau, Manon Delahaye, Danara Ormanbekova, Matteo Bozzoli, Perle Guarino-Vignon, Caroline Schaal, Manon Cabanis, Marie Lelievre, Jean Cayrol, Davide Guerra, Domenica Nigro, Agata Gadaleta, Jennifer Ens, Krystalee Wiebe, Beth Shapiro, Richard E. Green, Fred van Eeuwijk, Micha Bayer, Joanne Russell, Ian Dawson, Robbie Waugh, Benjamin Kilian, Ludovic Orlando, Gabriella Sonnante, Curtis J. Pozniak, Roberto Tuberosa, Georg Haberer, Marco Maccaferri, Luigi Cattivelli, Jerome Salse
{"title":"Author Correction: Striking convergent selection history of wheat and barley and its potential for breeding","authors":"Mamadou Dia Sow, Cristian Forestan, Caroline Pont, Peter Civan, Raffaella Battaglia, Michael Seidel, Clea Siguret, Pasquale Luca Curci, Alessandro Tondelli, Daniela Bustos Korts, Elisabetta Mazzucotelli, Thibault Leroy, Cécile Huneau, Manon Delahaye, Danara Ormanbekova, Matteo Bozzoli, Perle Guarino-Vignon, Caroline Schaal, Manon Cabanis, Marie Lelievre, Jean Cayrol, Davide Guerra, Domenica Nigro, Agata Gadaleta, Jennifer Ens, Krystalee Wiebe, Beth Shapiro, Richard E. Green, Fred van Eeuwijk, Micha Bayer, Joanne Russell, Ian Dawson, Robbie Waugh, Benjamin Kilian, Ludovic Orlando, Gabriella Sonnante, Curtis J. Pozniak, Roberto Tuberosa, Georg Haberer, Marco Maccaferri, Luigi Cattivelli, Jerome Salse","doi":"10.1038/s41477-025-02182-8","DOIUrl":"10.1038/s41477-025-02182-8","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2581-2581"},"PeriodicalIF":13.6,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41477-025-02182-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145593505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and prospects of large DNA fragment editing in plants 植物DNA大片段编辑的研究进展与展望
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-24 DOI: 10.1038/s41477-025-02160-0
Yidi Zhao, Yingbo Liang, Zhongfu Ni, Qixin Sun, Yuan Zong, Yanpeng Wang
Structural variations drive plant genome evolution and shape agronomic traits. Manipulating structural variations has great potential to improve complex plant traits and enhance agricultural sustainability. Genome editing technologies have evolved from gene knockouts and base editing to the modification of short DNA fragments, and are now advancing towards the precise manipulation of large DNA fragments. This advancement facilitates targeted, large-scale genomic changes such as deletions, insertions, replacements, inversions, translocations and duplications. In this Review, we summarize recent advances in developing technologies for large DNA fragment editing and highlight their key applications in plants as well as their potential to accelerate crop improvement. Finally, we discuss the current challenges and future prospects for these technologies in plant science. Engineering genome structural variations can improve plant traits and support sustainable agriculture. This Review summarizes recent advances in large DNA fragment editing and discusses their applications and future prospects in precise breeding.
结构变异驱动植物基因组进化并形成农艺性状。操纵结构变异具有改善复杂植物性状和提高农业可持续性的巨大潜力。基因组编辑技术已经从基因敲除和碱基编辑发展到短DNA片段的修饰,现在正朝着精确操纵大DNA片段的方向发展。这一进步促进了有针对性的大规模基因组变化,如缺失、插入、替换、倒位、易位和重复。本文综述了近年来DNA大片段编辑技术的研究进展,重点介绍了这些技术在植物中的主要应用以及它们在促进作物改良方面的潜力。最后,我们讨论了这些技术在植物科学中的当前挑战和未来前景。工程基因组结构变异可以改善植物性状,支持可持续农业。本文综述了DNA大片段编辑技术的最新进展,并对其在精密育种中的应用及前景进行了展望。
{"title":"Advances and prospects of large DNA fragment editing in plants","authors":"Yidi Zhao, Yingbo Liang, Zhongfu Ni, Qixin Sun, Yuan Zong, Yanpeng Wang","doi":"10.1038/s41477-025-02160-0","DOIUrl":"10.1038/s41477-025-02160-0","url":null,"abstract":"Structural variations drive plant genome evolution and shape agronomic traits. Manipulating structural variations has great potential to improve complex plant traits and enhance agricultural sustainability. Genome editing technologies have evolved from gene knockouts and base editing to the modification of short DNA fragments, and are now advancing towards the precise manipulation of large DNA fragments. This advancement facilitates targeted, large-scale genomic changes such as deletions, insertions, replacements, inversions, translocations and duplications. In this Review, we summarize recent advances in developing technologies for large DNA fragment editing and highlight their key applications in plants as well as their potential to accelerate crop improvement. Finally, we discuss the current challenges and future prospects for these technologies in plant science. Engineering genome structural variations can improve plant traits and support sustainable agriculture. This Review summarizes recent advances in large DNA fragment editing and discusses their applications and future prospects in precise breeding.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2461-2475"},"PeriodicalIF":13.6,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145582951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The spookiest plant 最诡异的植物
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-18 DOI: 10.1038/s41477-025-02165-9
The jack-o’-lantern, the carved pumpkin with the evil grin, has become the emblem of Halloween. This lantern has its historic roots in carved turnips, which have been used in folklore for hundreds of years.
南瓜灯,刻着邪恶的笑容的南瓜,已经成为万圣节的象征。这种灯笼的历史根源是雕刻的芜菁,在民间传说中已经使用了数百年。
{"title":"The spookiest plant","authors":"","doi":"10.1038/s41477-025-02165-9","DOIUrl":"10.1038/s41477-025-02165-9","url":null,"abstract":"The jack-o’-lantern, the carved pumpkin with the evil grin, has become the emblem of Halloween. This lantern has its historic roots in carved turnips, which have been used in folklore for hundreds of years.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 11","pages":"2183-2184"},"PeriodicalIF":13.6,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41477-025-02165-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145538063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emerging epitranscriptomic modification ac4C regulates plant development and stress adaptation 新出现的表观转录组修饰ac4C调节植物发育和逆境适应
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-18 DOI: 10.1038/s41477-025-02140-4
Jiayu Yao, Guiyu Xiao, Xuan Ma, Shugang Hui, Heyang Shang, Jisen Zhang, Qiutao Xu
N4-acetylcytidine is an evolutionarily conserved RNA modification that plays a key role in regulating transcript stability and translation. Although extensively studied in mammals, its prevalence and functional importance in plant transcriptomes remain unclear. Recent advances in transcriptome-wide mapping and functional characterization have revealed the important role of N4-acetylcytidine modification in plant-specific processes. Here we discuss how N4-acetylcytidine is deposited by plant writers, summarize its influence on plant development and adaptation, outline the major challenges and future directions in the field and highlight its potential applications for crop improvement. This Perspective highlights N4-acetylcytidine as an emerging RNA modification in plants that regulates development and stress responses by modulating mRNA stability, translation and splicing. Manipulation of N4-acetylcytidine offers promising strategies for crop improvement.
n4 -乙酰胞苷是一种进化保守的RNA修饰,在调节转录物稳定性和翻译中起关键作用。尽管在哺乳动物中进行了广泛的研究,但其在植物转录组中的流行程度和功能重要性尚不清楚。近年来在转录组全图谱和功能表征方面的研究进展揭示了n4 -乙酰胞苷修饰在植物特异性过程中的重要作用。在此,我们讨论了n4 -乙酰胞苷是如何被植物作家沉积的,总结了它对植物发育和适应的影响,概述了该领域的主要挑战和未来方向,并强调了它在作物改良中的潜在应用。这篇文章强调了n4 -乙酰胞苷作为一种新兴的RNA修饰物,通过调节mRNA的稳定性、翻译和剪接来调节植物的发育和胁迫反应。操纵n4 -乙酰胞苷为作物改良提供了有前途的策略。
{"title":"The emerging epitranscriptomic modification ac4C regulates plant development and stress adaptation","authors":"Jiayu Yao, Guiyu Xiao, Xuan Ma, Shugang Hui, Heyang Shang, Jisen Zhang, Qiutao Xu","doi":"10.1038/s41477-025-02140-4","DOIUrl":"10.1038/s41477-025-02140-4","url":null,"abstract":"N4-acetylcytidine is an evolutionarily conserved RNA modification that plays a key role in regulating transcript stability and translation. Although extensively studied in mammals, its prevalence and functional importance in plant transcriptomes remain unclear. Recent advances in transcriptome-wide mapping and functional characterization have revealed the important role of N4-acetylcytidine modification in plant-specific processes. Here we discuss how N4-acetylcytidine is deposited by plant writers, summarize its influence on plant development and adaptation, outline the major challenges and future directions in the field and highlight its potential applications for crop improvement. This Perspective highlights N4-acetylcytidine as an emerging RNA modification in plants that regulates development and stress responses by modulating mRNA stability, translation and splicing. Manipulation of N4-acetylcytidine offers promising strategies for crop improvement.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 11","pages":"2200-2203"},"PeriodicalIF":13.6,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145538106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SCEP3 initiates synapsis and implements crossover interference in Arabidopsis 在拟南芥中,SCEP3启动突触并实现交叉干扰
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-18 DOI: 10.1038/s41477-025-02155-x
Paul J. Seear, Henry J. A. Dowling, Maja Szymańska-Lejman, Wojciech Dziegielewski, Simona Debilio, F. Chris H. Franklin, Kevin D. Corbett, Owen R. Davies, Piotr A. Ziolkowski, James D. Higgins
The synaptonemal complex (SC) is a meiosis-specific tripartite proteinaceous structure that regulates the number and positions of crossovers (COs). Here we characterize SCEP3, a new Arabidopsis SC component that is essential for CO assurance, promoting positive CO interference and preventing negative CO interference. SCEP3 localizes to the chromosome axes as numerous foci at leptotene, of which a small proportion cluster as large foci that initiate synapsis. SCEP3 then relocates to the central region of the SC as ZYP1 polymerizes. In the absence of SCEP3, homologues align but do not synapse. In the scep3 mutants, COs increase in number towards the chromosome ends and are more likely to cluster together. SCEP3 encodes an 801-amino-acid intrinsically disordered protein that is structurally similar to SIX6OS1 in mammals and SYP-4 in nematodes, containing phenylalanine repeats at the amino terminus and a carboxy-terminal coiled-coil, suggesting that it is a fundamentally conserved SC component across kingdoms. SCEP3 is a new synaptonemal complex protein that prevents clustering of crossovers during meiosis in Arabidopsis, so that every pair of homologous chromosomes receives at least one ‘obligate’ crossover.
突触复合体(SC)是减数分裂特异性的三方蛋白结构,调节交叉(COs)的数量和位置。在这里,我们对拟南芥SC中的一种新成分SCEP3进行了表征,该成分对CO保证、促进CO正向干扰和防止CO负干扰至关重要。SCEP3定位于染色体轴上,在瘦素上有许多病灶,其中一小部分聚集为启动突触的大病灶。当ZYP1聚合时,SCEP3会重新定位到SC的中心区域。在没有SCEP3的情况下,同源物排列但不突触。在scep3突变体中,COs在染色体末端的数量增加,并且更容易聚集在一起。SCEP3编码一种含有801个氨基酸的内在无序蛋白,其结构类似于哺乳动物中的SIX6OS1和线虫中的SYP-4,在氨基端含有苯丙氨酸重复序列,在羧基端含有卷曲线圈,这表明它是一个跨界的基本保守的SC成分。
{"title":"SCEP3 initiates synapsis and implements crossover interference in Arabidopsis","authors":"Paul J. Seear, Henry J. A. Dowling, Maja Szymańska-Lejman, Wojciech Dziegielewski, Simona Debilio, F. Chris H. Franklin, Kevin D. Corbett, Owen R. Davies, Piotr A. Ziolkowski, James D. Higgins","doi":"10.1038/s41477-025-02155-x","DOIUrl":"10.1038/s41477-025-02155-x","url":null,"abstract":"The synaptonemal complex (SC) is a meiosis-specific tripartite proteinaceous structure that regulates the number and positions of crossovers (COs). Here we characterize SCEP3, a new Arabidopsis SC component that is essential for CO assurance, promoting positive CO interference and preventing negative CO interference. SCEP3 localizes to the chromosome axes as numerous foci at leptotene, of which a small proportion cluster as large foci that initiate synapsis. SCEP3 then relocates to the central region of the SC as ZYP1 polymerizes. In the absence of SCEP3, homologues align but do not synapse. In the scep3 mutants, COs increase in number towards the chromosome ends and are more likely to cluster together. SCEP3 encodes an 801-amino-acid intrinsically disordered protein that is structurally similar to SIX6OS1 in mammals and SYP-4 in nematodes, containing phenylalanine repeats at the amino terminus and a carboxy-terminal coiled-coil, suggesting that it is a fundamentally conserved SC component across kingdoms. SCEP3 is a new synaptonemal complex protein that prevents clustering of crossovers during meiosis in Arabidopsis, so that every pair of homologous chromosomes receives at least one ‘obligate’ crossover.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2531-2547"},"PeriodicalIF":13.6,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41477-025-02155-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145536111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomolecular condensates translate pathogen signals into stomatal closure 生物分子凝聚物将病原体信号转化为气孔关闭
IF 13.6 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-11-18 DOI: 10.1038/s41477-025-02156-w
Biomolecular condensates organize immune signalling, yet their roles in stomata remain unclear. We show that, in guard cells, the RNA-binding protein SAIR1 forms biomolecular condensates upon pathogen perception, which enhance the translation of defence-related mRNAs to prompt stomatal closure. This mechanism probably provides a rapid, frontline immune response in plants.
生物分子凝聚物组织免疫信号,但它们在气孔中的作用尚不清楚。我们发现,在防御细胞中,rna结合蛋白SAIR1在病原体感知时形成生物分子凝聚物,从而增强防御相关mrna的翻译,从而促进气孔关闭。这一机制可能为植物提供了快速的一线免疫反应。
{"title":"Biomolecular condensates translate pathogen signals into stomatal closure","authors":"","doi":"10.1038/s41477-025-02156-w","DOIUrl":"10.1038/s41477-025-02156-w","url":null,"abstract":"Biomolecular condensates organize immune signalling, yet their roles in stomata remain unclear. We show that, in guard cells, the RNA-binding protein SAIR1 forms biomolecular condensates upon pathogen perception, which enhance the translation of defence-related mRNAs to prompt stomatal closure. This mechanism probably provides a rapid, frontline immune response in plants.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 12","pages":"2457-2458"},"PeriodicalIF":13.6,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145536109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Plants
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1