Pub Date : 2025-01-02DOI: 10.1038/s41477-024-01874-x
Karl-Heinz Kogel
Coating RNA- or DNA-loaded layered double hydroxide nanosheets with lysozyme enhances their uptake by loosening the plant cell wall and stimulating endocytosis and membrane trafficking — with promising implications for both fundamental research and agricultural applications.
{"title":"Lysozyme-coated LDHs boost trait control","authors":"Karl-Heinz Kogel","doi":"10.1038/s41477-024-01874-x","DOIUrl":"10.1038/s41477-024-01874-x","url":null,"abstract":"Coating RNA- or DNA-loaded layered double hydroxide nanosheets with lysozyme enhances their uptake by loosening the plant cell wall and stimulating endocytosis and membrane trafficking — with promising implications for both fundamental research and agricultural applications.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"9-10"},"PeriodicalIF":15.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1038/s41477-024-01876-9
Kathrin Rousk, Juan Carlos Villarreal A
{"title":"Time to end the vascular plant chauvinism","authors":"Kathrin Rousk, Juan Carlos Villarreal A","doi":"10.1038/s41477-024-01876-9","DOIUrl":"10.1038/s41477-024-01876-9","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"3-3"},"PeriodicalIF":15.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1038/s41477-024-01880-z
Sruthi Balaji, Allison Fish, Brad Sherman
{"title":"Disclosure of country of origin in patent applications might not help to protect genetic resources and traditional knowledge","authors":"Sruthi Balaji, Allison Fish, Brad Sherman","doi":"10.1038/s41477-024-01880-z","DOIUrl":"10.1038/s41477-024-01880-z","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"4-5"},"PeriodicalIF":15.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1038/s41477-024-01889-4
December is traditionally a time for looking back at the year that has passed. For plant biology, drought has been a frequently raised topic in 2024 — and 2025 is unlikely to be any different.
{"title":"Dry matters","authors":"","doi":"10.1038/s41477-024-01889-4","DOIUrl":"10.1038/s41477-024-01889-4","url":null,"abstract":"December is traditionally a time for looking back at the year that has passed. For plant biology, drought has been a frequently raised topic in 2024 — and 2025 is unlikely to be any different.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1839-1839"},"PeriodicalIF":15.8,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01889-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1038/s41477-024-01884-9
Deep genome sequencing and comprehensive phenotyping of 294 samples of hexaploid sweet potato identify genomic loci with an increase in the number of copies of alleles that enhance the expression of 23 agronomic traits during breeding. These findings offer valuable insights to guide trait improvement in sweet potato and other polyploid crops.
{"title":"Understanding the genomic basis to empower sweet potato breeding","authors":"","doi":"10.1038/s41477-024-01884-9","DOIUrl":"10.1038/s41477-024-01884-9","url":null,"abstract":"Deep genome sequencing and comprehensive phenotyping of 294 samples of hexaploid sweet potato identify genomic loci with an increase in the number of copies of alleles that enhance the expression of 23 agronomic traits during breeding. These findings offer valuable insights to guide trait improvement in sweet potato and other polyploid crops.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"14-15"},"PeriodicalIF":15.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1038/s41477-024-01873-y
Xiangbo Zhang, Chaochen Tang, Bingzhi Jiang, Rong Zhang, Ming Li, Yaoyao Wu, Zhufang Yao, Lifei Huang, Zhongxia Luo, Hongda Zou, Yiling Yang, Minyi Wu, Ao Chen, Shan Wu, Xingliang Hou, Xu Liu, Zhangjun Fei, Junjie Fu, Zhangying Wang
Allele dosage plays a key role in the phenotypic variation of polyploids. Here we present a genome-wide variation map of hexaploid sweet potato that captures allele dosage information, constructed from deep sequencing of 294 hexaploid accessions. Genome-wide association studies identified quantitative trait loci with dosage effects on 23 agronomic traits. Our analyses reveal that sweet potato breeding has progressively increased the dosage of favourable alleles to enhance trait performance. Notably, the Mesoamerican gene pool has evolved towards higher dosages of favourable alleles at multiple loci, which have been increasingly introgressed into modern Chinese cultivars. We substantiated the breeding-driven dosage accumulation through transgenic validation of IbEXPA4, an expansin gene influencing tuberous root weight. In addition, we explored causative sequence variations that alter the expression of the Orange gene, which regulates flesh colour. Our findings illuminate the breeding history of sweet potato and establish a foundation for leveraging allele dosages in polyploid breeding practices. Deep genome sequencing and comprehensive phenotyping of 294 hexaploid sweet potato accessions reveal the effect of allele dosage on phenotypic variation, offering valuable insights into the breeding history of sweet potato.
{"title":"Refining polyploid breeding in sweet potato through allele dosage enhancement","authors":"Xiangbo Zhang, Chaochen Tang, Bingzhi Jiang, Rong Zhang, Ming Li, Yaoyao Wu, Zhufang Yao, Lifei Huang, Zhongxia Luo, Hongda Zou, Yiling Yang, Minyi Wu, Ao Chen, Shan Wu, Xingliang Hou, Xu Liu, Zhangjun Fei, Junjie Fu, Zhangying Wang","doi":"10.1038/s41477-024-01873-y","DOIUrl":"10.1038/s41477-024-01873-y","url":null,"abstract":"Allele dosage plays a key role in the phenotypic variation of polyploids. Here we present a genome-wide variation map of hexaploid sweet potato that captures allele dosage information, constructed from deep sequencing of 294 hexaploid accessions. Genome-wide association studies identified quantitative trait loci with dosage effects on 23 agronomic traits. Our analyses reveal that sweet potato breeding has progressively increased the dosage of favourable alleles to enhance trait performance. Notably, the Mesoamerican gene pool has evolved towards higher dosages of favourable alleles at multiple loci, which have been increasingly introgressed into modern Chinese cultivars. We substantiated the breeding-driven dosage accumulation through transgenic validation of IbEXPA4, an expansin gene influencing tuberous root weight. In addition, we explored causative sequence variations that alter the expression of the Orange gene, which regulates flesh colour. Our findings illuminate the breeding history of sweet potato and establish a foundation for leveraging allele dosages in polyploid breeding practices. Deep genome sequencing and comprehensive phenotyping of 294 hexaploid sweet potato accessions reveal the effect of allele dosage on phenotypic variation, offering valuable insights into the breeding history of sweet potato.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"36-48"},"PeriodicalIF":15.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1038/s41477-024-01854-1
Zhi-Cheng Hu, Mateusz Majda, Hao-Ran Sun, Yao Zhang, Yi-Ning Ding, Quan Yuan, Tong-Bing Su, Tian-Feng Lü, Feng Gao, Gui-Xia Xu, Richard S. Smith, Lars Østergaard, Yang Dong
In animals and plants, organ shape is primarily determined during primordium development by carefully coordinated growth and cell division1–3. Rare examples of post-primordial change in morphology (reshaping) exist that offer tractable systems for the study of mechanisms required for organ shape determination and diversification. One such example is morphogenesis in Capsella fruits whose heart-shaped appearance emerges by reshaping of the ovate spheroid gynoecium upon fertilization4. Here we use whole-organ live-cell imaging and single-cell RNA sequencing (scRNA-seq) analysis to show that Capsella fruit shape determination is based on dynamic changes in cell growth and cell division coupled with local maintenance of meristematic identity. At the molecular level, we reveal an auxin-induced mechanism that is required for morphological alteration and ultimately determined by a single cis-regulatory element. This element resides in the promoter of the Capsella rubella SHOOTMERISTEMLESS5 (CrSTM) gene. The CrSTM meristem identity factor positively regulates its own expression through binding to this element, thereby providing a feed-forward loop at the position and time of protrusion emergence to form the heart. Independent evolution of the STM-binding element in STM promoters across Brassicaceae species correlates with those undergoing a gynoecium-to-fruit shape change. Accordingly, genetic and phenotypic studies show that the STM-binding element is required to facilitate the shape transition and suggest a conserved molecular mechanism for organ morphogenesis. This study identifies a molecular mechanism promoting fruit shape variation. Local meristem identity is maintained through autoregulatory activation of the STM gene to allow post-fertilization changes in fruit morphology.
{"title":"Evolution of a SHOOTMERISTEMLESS transcription factor binding site promotes fruit shape determination","authors":"Zhi-Cheng Hu, Mateusz Majda, Hao-Ran Sun, Yao Zhang, Yi-Ning Ding, Quan Yuan, Tong-Bing Su, Tian-Feng Lü, Feng Gao, Gui-Xia Xu, Richard S. Smith, Lars Østergaard, Yang Dong","doi":"10.1038/s41477-024-01854-1","DOIUrl":"10.1038/s41477-024-01854-1","url":null,"abstract":"In animals and plants, organ shape is primarily determined during primordium development by carefully coordinated growth and cell division1–3. Rare examples of post-primordial change in morphology (reshaping) exist that offer tractable systems for the study of mechanisms required for organ shape determination and diversification. One such example is morphogenesis in Capsella fruits whose heart-shaped appearance emerges by reshaping of the ovate spheroid gynoecium upon fertilization4. Here we use whole-organ live-cell imaging and single-cell RNA sequencing (scRNA-seq) analysis to show that Capsella fruit shape determination is based on dynamic changes in cell growth and cell division coupled with local maintenance of meristematic identity. At the molecular level, we reveal an auxin-induced mechanism that is required for morphological alteration and ultimately determined by a single cis-regulatory element. This element resides in the promoter of the Capsella rubella SHOOTMERISTEMLESS5 (CrSTM) gene. The CrSTM meristem identity factor positively regulates its own expression through binding to this element, thereby providing a feed-forward loop at the position and time of protrusion emergence to form the heart. Independent evolution of the STM-binding element in STM promoters across Brassicaceae species correlates with those undergoing a gynoecium-to-fruit shape change. Accordingly, genetic and phenotypic studies show that the STM-binding element is required to facilitate the shape transition and suggest a conserved molecular mechanism for organ morphogenesis. This study identifies a molecular mechanism promoting fruit shape variation. Local meristem identity is maintained through autoregulatory activation of the STM gene to allow post-fertilization changes in fruit morphology.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"23-35"},"PeriodicalIF":15.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01854-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}