首页 > 最新文献

Nature Plants最新文献

英文 中文
Lysozyme-coated LDHs boost trait control 溶菌酶包被的LDHs促进性状控制
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-01-02 DOI: 10.1038/s41477-024-01874-x
Karl-Heinz Kogel
Coating RNA- or DNA-loaded layered double hydroxide nanosheets with lysozyme enhances their uptake by loosening the plant cell wall and stimulating endocytosis and membrane trafficking — with promising implications for both fundamental research and agricultural applications.
用溶菌酶包裹装载RNA或dna的层状双氢氧化物纳米片,通过放松植物细胞壁和刺激内吞作用和膜运输来增强它们的吸收,这在基础研究和农业应用中都有很好的应用前景。
{"title":"Lysozyme-coated LDHs boost trait control","authors":"Karl-Heinz Kogel","doi":"10.1038/s41477-024-01874-x","DOIUrl":"10.1038/s41477-024-01874-x","url":null,"abstract":"Coating RNA- or DNA-loaded layered double hydroxide nanosheets with lysozyme enhances their uptake by loosening the plant cell wall and stimulating endocytosis and membrane trafficking — with promising implications for both fundamental research and agricultural applications.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"9-10"},"PeriodicalIF":15.8,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How villin subclasses coordinate actin remodelling 绒毛蛋白亚类如何协调肌动蛋白重塑
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-18 DOI: 10.1038/s41477-024-01887-6
Raphael Trösch
{"title":"How villin subclasses coordinate actin remodelling","authors":"Raphael Trösch","doi":"10.1038/s41477-024-01887-6","DOIUrl":"10.1038/s41477-024-01887-6","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"6-6"},"PeriodicalIF":15.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time to end the vascular plant chauvinism 是时候结束维管植物沙文主义了
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-18 DOI: 10.1038/s41477-024-01876-9
Kathrin Rousk, Juan Carlos Villarreal A
{"title":"Time to end the vascular plant chauvinism","authors":"Kathrin Rousk, Juan Carlos Villarreal A","doi":"10.1038/s41477-024-01876-9","DOIUrl":"10.1038/s41477-024-01876-9","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"3-3"},"PeriodicalIF":15.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disclosure of country of origin in patent applications might not help to protect genetic resources and traditional knowledge 在专利申请中披露原产国可能无助于保护遗传资源和传统知识
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-18 DOI: 10.1038/s41477-024-01880-z
Sruthi Balaji, Allison Fish, Brad Sherman
{"title":"Disclosure of country of origin in patent applications might not help to protect genetic resources and traditional knowledge","authors":"Sruthi Balaji, Allison Fish, Brad Sherman","doi":"10.1038/s41477-024-01880-z","DOIUrl":"10.1038/s41477-024-01880-z","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"4-5"},"PeriodicalIF":15.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dry matters 干燥的问题
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-17 DOI: 10.1038/s41477-024-01889-4
December is traditionally a time for looking back at the year that has passed. For plant biology, drought has been a frequently raised topic in 2024 — and 2025 is unlikely to be any different.
十二月是回顾过去一年的传统时节。对于植物生物学来说,干旱是 2024 年经常提到的话题,2025 年也不会例外。
{"title":"Dry matters","authors":"","doi":"10.1038/s41477-024-01889-4","DOIUrl":"10.1038/s41477-024-01889-4","url":null,"abstract":"December is traditionally a time for looking back at the year that has passed. For plant biology, drought has been a frequently raised topic in 2024 — and 2025 is unlikely to be any different.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1839-1839"},"PeriodicalIF":15.8,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01889-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the genomic basis to empower sweet potato breeding 了解基因组基础,增强甘薯育种能力
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-16 DOI: 10.1038/s41477-024-01884-9
Deep genome sequencing and comprehensive phenotyping of 294 samples of hexaploid sweet potato identify genomic loci with an increase in the number of copies of alleles that enhance the expression of 23 agronomic traits during breeding. These findings offer valuable insights to guide trait improvement in sweet potato and other polyploid crops.
对294个六倍体甘薯样本进行深度基因组测序和综合表型分析,确定了在育种过程中等位基因拷贝数增加的基因组位点,这些等位基因可提高23个农艺性状的表达。这些发现为指导甘薯和其他多倍体作物的性状改良提供了宝贵的见解。
{"title":"Understanding the genomic basis to empower sweet potato breeding","authors":"","doi":"10.1038/s41477-024-01884-9","DOIUrl":"10.1038/s41477-024-01884-9","url":null,"abstract":"Deep genome sequencing and comprehensive phenotyping of 294 samples of hexaploid sweet potato identify genomic loci with an increase in the number of copies of alleles that enhance the expression of 23 agronomic traits during breeding. These findings offer valuable insights to guide trait improvement in sweet potato and other polyploid crops.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"14-15"},"PeriodicalIF":15.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refining polyploid breeding in sweet potato through allele dosage enhancement 通过增加等位基因剂量来改进甘薯多倍体育种
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-12 DOI: 10.1038/s41477-024-01873-y
Xiangbo Zhang, Chaochen Tang, Bingzhi Jiang, Rong Zhang, Ming Li, Yaoyao Wu, Zhufang Yao, Lifei Huang, Zhongxia Luo, Hongda Zou, Yiling Yang, Minyi Wu, Ao Chen, Shan Wu, Xingliang Hou, Xu Liu, Zhangjun Fei, Junjie Fu, Zhangying Wang
Allele dosage plays a key role in the phenotypic variation of polyploids. Here we present a genome-wide variation map of hexaploid sweet potato that captures allele dosage information, constructed from deep sequencing of 294 hexaploid accessions. Genome-wide association studies identified quantitative trait loci with dosage effects on 23 agronomic traits. Our analyses reveal that sweet potato breeding has progressively increased the dosage of favourable alleles to enhance trait performance. Notably, the Mesoamerican gene pool has evolved towards higher dosages of favourable alleles at multiple loci, which have been increasingly introgressed into modern Chinese cultivars. We substantiated the breeding-driven dosage accumulation through transgenic validation of IbEXPA4, an expansin gene influencing tuberous root weight. In addition, we explored causative sequence variations that alter the expression of the Orange gene, which regulates flesh colour. Our findings illuminate the breeding history of sweet potato and establish a foundation for leveraging allele dosages in polyploid breeding practices. Deep genome sequencing and comprehensive phenotyping of 294 hexaploid sweet potato accessions reveal the effect of allele dosage on phenotypic variation, offering valuable insights into the breeding history of sweet potato.
等位基因剂量在多倍体表型变异中起关键作用。本文通过对294份六倍体甘薯的深度测序,绘制了一份包含等位基因剂量信息的六倍体甘薯全基因组变异图谱。全基因组关联研究确定了23个农艺性状的剂量效应数量性状位点。我们的分析表明,甘薯育种逐渐增加有利等位基因的剂量,以提高性状性能。值得注意的是,中美洲的基因库已经在多个位点上向更高剂量的有利等位基因进化,这些等位基因越来越多地渗入现代中国品种。我们通过对影响块根重量的扩张蛋白基因IbEXPA4的转基因验证,证实了育种驱动的剂量积累。此外,我们探索了改变橙色基因表达的致病序列变异,该基因调节肉色。我们的发现阐明了甘薯的育种历史,并为多倍体育种实践中利用等位基因剂量奠定了基础。
{"title":"Refining polyploid breeding in sweet potato through allele dosage enhancement","authors":"Xiangbo Zhang, Chaochen Tang, Bingzhi Jiang, Rong Zhang, Ming Li, Yaoyao Wu, Zhufang Yao, Lifei Huang, Zhongxia Luo, Hongda Zou, Yiling Yang, Minyi Wu, Ao Chen, Shan Wu, Xingliang Hou, Xu Liu, Zhangjun Fei, Junjie Fu, Zhangying Wang","doi":"10.1038/s41477-024-01873-y","DOIUrl":"10.1038/s41477-024-01873-y","url":null,"abstract":"Allele dosage plays a key role in the phenotypic variation of polyploids. Here we present a genome-wide variation map of hexaploid sweet potato that captures allele dosage information, constructed from deep sequencing of 294 hexaploid accessions. Genome-wide association studies identified quantitative trait loci with dosage effects on 23 agronomic traits. Our analyses reveal that sweet potato breeding has progressively increased the dosage of favourable alleles to enhance trait performance. Notably, the Mesoamerican gene pool has evolved towards higher dosages of favourable alleles at multiple loci, which have been increasingly introgressed into modern Chinese cultivars. We substantiated the breeding-driven dosage accumulation through transgenic validation of IbEXPA4, an expansin gene influencing tuberous root weight. In addition, we explored causative sequence variations that alter the expression of the Orange gene, which regulates flesh colour. Our findings illuminate the breeding history of sweet potato and establish a foundation for leveraging allele dosages in polyploid breeding practices. Deep genome sequencing and comprehensive phenotyping of 294 hexaploid sweet potato accessions reveal the effect of allele dosage on phenotypic variation, offering valuable insights into the breeding history of sweet potato.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"36-48"},"PeriodicalIF":15.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of a SHOOTMERISTEMLESS transcription factor binding site promotes fruit shape determination SHOOTMERISTEMLESS转录因子结合位点的进化促进了果实形状的决定
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-12 DOI: 10.1038/s41477-024-01854-1
Zhi-Cheng Hu, Mateusz Majda, Hao-Ran Sun, Yao Zhang, Yi-Ning Ding, Quan Yuan, Tong-Bing Su, Tian-Feng Lü, Feng Gao, Gui-Xia Xu, Richard S. Smith, Lars Østergaard, Yang Dong
In animals and plants, organ shape is primarily determined during primordium development by carefully coordinated growth and cell division1–3. Rare examples of post-primordial change in morphology (reshaping) exist that offer tractable systems for the study of mechanisms required for organ shape determination and diversification. One such example is morphogenesis in Capsella fruits whose heart-shaped appearance emerges by reshaping of the ovate spheroid gynoecium upon fertilization4. Here we use whole-organ live-cell imaging and single-cell RNA sequencing (scRNA-seq) analysis to show that Capsella fruit shape determination is based on dynamic changes in cell growth and cell division coupled with local maintenance of meristematic identity. At the molecular level, we reveal an auxin-induced mechanism that is required for morphological alteration and ultimately determined by a single cis-regulatory element. This element resides in the promoter of the Capsella rubella SHOOTMERISTEMLESS5 (CrSTM) gene. The CrSTM meristem identity factor positively regulates its own expression through binding to this element, thereby providing a feed-forward loop at the position and time of protrusion emergence to form the heart. Independent evolution of the STM-binding element in STM promoters across Brassicaceae species correlates with those undergoing a gynoecium-to-fruit shape change. Accordingly, genetic and phenotypic studies show that the STM-binding element is required to facilitate the shape transition and suggest a conserved molecular mechanism for organ morphogenesis. This study identifies a molecular mechanism promoting fruit shape variation. Local meristem identity is maintained through autoregulatory activation of the STM gene to allow post-fertilization changes in fruit morphology.
在动物和植物中,器官形状主要是在原基发育过程中通过精心协调的生长和细胞分裂决定的。存在一些罕见的后原始形态变化(重塑)的例子,为研究器官形状确定和多样化所需的机制提供了可处理的系统。一个这样的例子是小油菜果实的形态发生,其心形外观是在受精后卵形球形雌蕊的重塑中形成的。在这里,我们使用全器官活细胞成像和单细胞RNA测序(scRNA-seq)分析表明,甘蓝果实形状的决定是基于细胞生长和细胞分裂的动态变化,以及局部分生组织特性的维持。在分子水平上,我们揭示了生长素诱导的机制,这是形态学改变所必需的,最终由单个顺式调节元件决定。该元件位于风疹shoomeristemless5 (CrSTM)基因的启动子中。CrSTM分生组织身份因子通过与该元件结合正向调节自身表达,从而在突起出现的位置和时间提供前馈回路形成心脏。十字花科植物STM启动子中STM结合元件的独立进化与那些经历雌蕊到果实形状变化的物种有关。因此,遗传和表型研究表明,stm结合元件是促进形状转变所必需的,并提示器官形态发生的保守分子机制。
{"title":"Evolution of a SHOOTMERISTEMLESS transcription factor binding site promotes fruit shape determination","authors":"Zhi-Cheng Hu, Mateusz Majda, Hao-Ran Sun, Yao Zhang, Yi-Ning Ding, Quan Yuan, Tong-Bing Su, Tian-Feng Lü, Feng Gao, Gui-Xia Xu, Richard S. Smith, Lars Østergaard, Yang Dong","doi":"10.1038/s41477-024-01854-1","DOIUrl":"10.1038/s41477-024-01854-1","url":null,"abstract":"In animals and plants, organ shape is primarily determined during primordium development by carefully coordinated growth and cell division1–3. Rare examples of post-primordial change in morphology (reshaping) exist that offer tractable systems for the study of mechanisms required for organ shape determination and diversification. One such example is morphogenesis in Capsella fruits whose heart-shaped appearance emerges by reshaping of the ovate spheroid gynoecium upon fertilization4. Here we use whole-organ live-cell imaging and single-cell RNA sequencing (scRNA-seq) analysis to show that Capsella fruit shape determination is based on dynamic changes in cell growth and cell division coupled with local maintenance of meristematic identity. At the molecular level, we reveal an auxin-induced mechanism that is required for morphological alteration and ultimately determined by a single cis-regulatory element. This element resides in the promoter of the Capsella rubella SHOOTMERISTEMLESS5 (CrSTM) gene. The CrSTM meristem identity factor positively regulates its own expression through binding to this element, thereby providing a feed-forward loop at the position and time of protrusion emergence to form the heart. Independent evolution of the STM-binding element in STM promoters across Brassicaceae species correlates with those undergoing a gynoecium-to-fruit shape change. Accordingly, genetic and phenotypic studies show that the STM-binding element is required to facilitate the shape transition and suggest a conserved molecular mechanism for organ morphogenesis. This study identifies a molecular mechanism promoting fruit shape variation. Local meristem identity is maintained through autoregulatory activation of the STM gene to allow post-fertilization changes in fruit morphology.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"11 1","pages":"23-35"},"PeriodicalIF":15.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01854-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterns of forest disturbance 森林扰动模式
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-10 DOI: 10.1038/s41477-024-01885-8
Catherine Walker
{"title":"Patterns of forest disturbance","authors":"Catherine Walker","doi":"10.1038/s41477-024-01885-8","DOIUrl":"10.1038/s41477-024-01885-8","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1850-1850"},"PeriodicalIF":15.8,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yoda screams again 尤达又尖叫起来
IF 15.8 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-12-09 DOI: 10.1038/s41477-024-01886-7
Guillaume Tena
{"title":"Yoda screams again","authors":"Guillaume Tena","doi":"10.1038/s41477-024-01886-7","DOIUrl":"10.1038/s41477-024-01886-7","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1851-1851"},"PeriodicalIF":15.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Plants
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1