首页 > 最新文献

Nature Reviews Earth & Environment最新文献

英文 中文
Timing of initial collision and suturing processes in the Himalaya and Zagros 喜马拉雅和扎格罗斯地区初始碰撞和缝合过程的时间
Pub Date : 2025-05-01 DOI: 10.1038/s43017-025-00669-8
Chao Wang, Lin Ding, Zhongyu Xiong, Mark B. Allen, Andrew K. Laskowski, Eduardo Garzanti, Qinghai Zhang, Fulong Cai, Houqi Wang, Peiping Song, Yipeng Li, Fan Ping, Alex Farnsworth, Daniel J. Lunt, Paul J. Valdes, Zhenyu Li, Chen Wu, Muhammad Qasim
The Tibetan and Iranian plateaus are the two most prominent orogenic plateaus on the present Earth built by continental collision. However, the timings of initial collision and suturing in the Himalaya and Zagros remain debated. In this Review, we summarize the timings, similarities and differences between the India–Eurasia collision and the Arabia–Eurasia collision, by comparing their sedimentary, magmatic, metamorphic, structural and palaeomagnetic records. The India–Eurasia collision is tightly constrained to have initiated in the central Himalaya at 65–59 Ma, possibly progressing towards the western and eastern Himalayas by 55–50 Ma. By contrast, the initial collision in the Zagros is loosely constrained to ~34 Ma, with a possibility of diachronous collision, younging to the southeast. Similarities between the two collisions include pre-collisional accretionary tectonism and magmatism, syn-collisional deformation and sedimentation, and crustal thickening. Apparent differences in lithospheric dynamics, deformation styles and metamorphism are attributed to variations in convergence rates, durations and magnitudes. Future research should focus on data-driven modelling and geophysical imaging beneath the Tibetan and Iranian plateaus to further quantify the geodynamic processes and driving forces contributing to continuous plate convergence, plateau formation and their surface impacts. The collision of the Indian, Arabian and Eurasian plates formed the Tibetan and Iranian plateaus, but its timing and processes remain debated. This Review explores the evidence behind initial collision estimates and discusses the tectonic and geodynamic implications.
然而,喜马拉雅山脉和扎格罗斯山脉最初碰撞和缝合的时间仍然存在争议。本文通过对印度-欧亚大陆碰撞与阿拉伯-欧亚大陆碰撞的沉积、岩浆、变质、构造和古地磁记录的比较,总结了它们的时代、异同。印度-欧亚大陆碰撞被严格限制在65-59 Ma时起源于喜马拉雅中部,可能在55-50 Ma时向喜马拉雅西部和东部推进。相比之下,Zagros的初始碰撞被松散地限制在~34 Ma,有可能发生在东南方向的跨时碰撞。两次碰撞的相似之处包括碰撞前的增生构造和岩浆作用、碰撞时的变形和沉积作用以及地壳增厚。岩石圈动力学、变形样式和变质作用的明显差异归因于收敛速率、持续时间和震级的不同。本文探讨了初步碰撞估计背后的证据,并讨论了构造和地球动力学意义。
{"title":"Timing of initial collision and suturing processes in the Himalaya and Zagros","authors":"Chao Wang, Lin Ding, Zhongyu Xiong, Mark B. Allen, Andrew K. Laskowski, Eduardo Garzanti, Qinghai Zhang, Fulong Cai, Houqi Wang, Peiping Song, Yipeng Li, Fan Ping, Alex Farnsworth, Daniel J. Lunt, Paul J. Valdes, Zhenyu Li, Chen Wu, Muhammad Qasim","doi":"10.1038/s43017-025-00669-8","DOIUrl":"10.1038/s43017-025-00669-8","url":null,"abstract":"The Tibetan and Iranian plateaus are the two most prominent orogenic plateaus on the present Earth built by continental collision. However, the timings of initial collision and suturing in the Himalaya and Zagros remain debated. In this Review, we summarize the timings, similarities and differences between the India–Eurasia collision and the Arabia–Eurasia collision, by comparing their sedimentary, magmatic, metamorphic, structural and palaeomagnetic records. The India–Eurasia collision is tightly constrained to have initiated in the central Himalaya at 65–59 Ma, possibly progressing towards the western and eastern Himalayas by 55–50 Ma. By contrast, the initial collision in the Zagros is loosely constrained to ~34 Ma, with a possibility of diachronous collision, younging to the southeast. Similarities between the two collisions include pre-collisional accretionary tectonism and magmatism, syn-collisional deformation and sedimentation, and crustal thickening. Apparent differences in lithospheric dynamics, deformation styles and metamorphism are attributed to variations in convergence rates, durations and magnitudes. Future research should focus on data-driven modelling and geophysical imaging beneath the Tibetan and Iranian plateaus to further quantify the geodynamic processes and driving forces contributing to continuous plate convergence, plateau formation and their surface impacts. The collision of the Indian, Arabian and Eurasian plates formed the Tibetan and Iranian plateaus, but its timing and processes remain debated. This Review explores the evidence behind initial collision estimates and discusses the tectonic and geodynamic implications.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 5","pages":"357-376"},"PeriodicalIF":0.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What determines whether an environmental policy is implemented? 什么因素决定环境政策是否得到实施?
Pub Date : 2025-04-30 DOI: 10.1038/s43017-025-00678-7
Amy Myers Jaffe
Students at Concordian International School (aged 15–17, Thailand) ask Prof. Jaffe how policymakers determine and weigh the economic, social and environmental impacts of a policy proposal. 
泰国协和国际学校(Concordian International School)的学生(15-17岁)向Jaffe教授询问政策制定者如何确定和权衡一项政策提案的经济、社会和环境影响。
{"title":"What determines whether an environmental policy is implemented?","authors":"Amy Myers Jaffe","doi":"10.1038/s43017-025-00678-7","DOIUrl":"10.1038/s43017-025-00678-7","url":null,"abstract":"Students at Concordian International School (aged 15–17, Thailand) ask Prof. Jaffe how policymakers determine and weigh the economic, social and environmental impacts of a policy proposal. ","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 5","pages":"319-319"},"PeriodicalIF":0.0,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The global deforestation footprint of agriculture and forestry 农业和林业的全球毁林足迹
Pub Date : 2025-04-29 DOI: 10.1038/s43017-025-00660-3
Chris West, Gabriela Rabeschini, Chandrakant Singh, Thomas Kastner, Mairon Bastos Lima, Ahmad Dermawan, Simon Croft, U. Martin Persson
Global forest loss impacts climate, biodiversity and sustainable development goals. Deforestation footprinting attributes forest loss to commodity production and consumption, identifying global trends, drivers and hot spots to inform zero-deforestation policies. In this Review, we provide an overview of global deforestation footprinting approaches and their trends. Major economies, including Brazil, Indonesia, China, the United States and Europe, are responsible for most commodity-linked deforestation, with agriculture-linked deforestation in Brazil alone reaching over 12.8 million hectares between 2005 and 2015. Agriculture is a dominant driver of deforestation. For example, 86% of global deforestation occurring between 2001 and 2022 can be attributed to crop and cattle production. Footprinting of commodity-linked deforestation has contributed to the scope and implementation of supply chain regulation to mitigate forest loss. For example, footprint estimates have been used in risk assessments for EU and UK due diligence regulations. Although forest loss to agriculture is relatively well documented, a lack of data on non-agricultural drivers — such as mining and mangrove clearance for aquaculture — limits the scope of footprints in fully attributing total global forest loss to human activities. Future research should focus on methodological and data harmonization, transparency and sharing to enable footprinting approaches to cover a wider range of deforestation drivers. Deforestation footprints identify trade- and consumption-linked hot spots of forest loss. This Review synthesizes existing footprint assessments, finding that Brazil, Indonesia and China are major drivers of commodity-linked deforestation, but that estimates are influenced by method choice.
全球森林损失影响气候、生物多样性和可持续发展目标。毁林足迹将森林损失归因于商品生产和消费,确定全球趋势、驱动因素和热点,为零毁林政策提供信息。在这篇综述中,我们概述了全球森林砍伐足迹方法及其趋势。包括巴西、印度尼西亚、中国、美国和欧洲在内的主要经济体应对大多数与商品相关的森林砍伐负责,仅巴西在2005年至2015年期间,与农业相关的森林砍伐就超过了1280万公顷。农业是森林砍伐的主要驱动因素。例如,2001年至2022年期间全球86%的森林砍伐可归因于农作物和牲畜生产。与商品相关的森林砍伐的足迹有助于扩大供应链法规的范围和实施,以减轻森林损失。例如,足迹估计已被用于欧盟和英国尽职调查法规的风险评估。虽然对农业造成的森林损失有较好的记录,但缺乏关于非农业驱动因素的数据——例如采矿和为水产养殖而砍伐红树林——限制了将全球森林损失总量完全归因于人类活动的足迹范围。未来的研究应侧重于方法和数据的统一、透明度和共享,以使足迹方法能够涵盖更广泛的森林砍伐驱动因素。森林砍伐足迹确定了与贸易和消费相关的森林损失热点。本综述综合了现有的足迹评估,发现巴西、印度尼西亚和中国是与商品相关的森林砍伐的主要驱动因素,但这些估计受到方法选择的影响。
{"title":"The global deforestation footprint of agriculture and forestry","authors":"Chris West, Gabriela Rabeschini, Chandrakant Singh, Thomas Kastner, Mairon Bastos Lima, Ahmad Dermawan, Simon Croft, U. Martin Persson","doi":"10.1038/s43017-025-00660-3","DOIUrl":"10.1038/s43017-025-00660-3","url":null,"abstract":"Global forest loss impacts climate, biodiversity and sustainable development goals. Deforestation footprinting attributes forest loss to commodity production and consumption, identifying global trends, drivers and hot spots to inform zero-deforestation policies. In this Review, we provide an overview of global deforestation footprinting approaches and their trends. Major economies, including Brazil, Indonesia, China, the United States and Europe, are responsible for most commodity-linked deforestation, with agriculture-linked deforestation in Brazil alone reaching over 12.8 million hectares between 2005 and 2015. Agriculture is a dominant driver of deforestation. For example, 86% of global deforestation occurring between 2001 and 2022 can be attributed to crop and cattle production. Footprinting of commodity-linked deforestation has contributed to the scope and implementation of supply chain regulation to mitigate forest loss. For example, footprint estimates have been used in risk assessments for EU and UK due diligence regulations. Although forest loss to agriculture is relatively well documented, a lack of data on non-agricultural drivers — such as mining and mangrove clearance for aquaculture — limits the scope of footprints in fully attributing total global forest loss to human activities. Future research should focus on methodological and data harmonization, transparency and sharing to enable footprinting approaches to cover a wider range of deforestation drivers. Deforestation footprints identify trade- and consumption-linked hot spots of forest loss. This Review synthesizes existing footprint assessments, finding that Brazil, Indonesia and China are major drivers of commodity-linked deforestation, but that estimates are influenced by method choice.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 5","pages":"325-341"},"PeriodicalIF":0.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Terrestrial water storage in 2023 作者更正:2023年陆地储水量
Pub Date : 2025-04-23 DOI: 10.1038/s43017-025-00680-z
Bailing Li, Matthew Rodell
{"title":"Author Correction: Terrestrial water storage in 2023","authors":"Bailing Li, Matthew Rodell","doi":"10.1038/s43017-025-00680-z","DOIUrl":"10.1038/s43017-025-00680-z","url":null,"abstract":"","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 6","pages":"434-434"},"PeriodicalIF":0.0,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s43017-025-00680-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Atmospheric rivers in Antarctica 出版商更正:南极洲的大气河流
Pub Date : 2025-04-17 DOI: 10.1038/s43017-025-00679-6
Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Rebecca Baiman, J. E. Barrett, Léonard Barthelemy, Burcu Boza, Deniz Bozkurt, Mathieu Casado, Anastasiia Chyhareva, Kyle R. Clem, Francis Codron, Rajashree Tri Datta, Claudio Durán-Alarcón, Diana Francis, Andrew O. Hoffman, Marlen Kolbe, Svitlana Krakovska, Gabrielle Linscott, Michelle L. Maclennan, Kyle S. Mattingly, Ye Mu, Benjamin Pohl, Christophe Leroy-Dos Santos, Christine A. Shields, Emir Toker, Andrew C. Winters, Ziqi Yin, Xun Zou, Chen Zhang, Zhenhai Zhang
{"title":"Publisher Correction: Atmospheric rivers in Antarctica","authors":"Jonathan D. Wille, Vincent Favier, Irina V. Gorodetskaya, Cécile Agosta, Rebecca Baiman, J. E. Barrett, Léonard Barthelemy, Burcu Boza, Deniz Bozkurt, Mathieu Casado, Anastasiia Chyhareva, Kyle R. Clem, Francis Codron, Rajashree Tri Datta, Claudio Durán-Alarcón, Diana Francis, Andrew O. Hoffman, Marlen Kolbe, Svitlana Krakovska, Gabrielle Linscott, Michelle L. Maclennan, Kyle S. Mattingly, Ye Mu, Benjamin Pohl, Christophe Leroy-Dos Santos, Christine A. Shields, Emir Toker, Andrew C. Winters, Ziqi Yin, Xun Zou, Chen Zhang, Zhenhai Zhang","doi":"10.1038/s43017-025-00679-6","DOIUrl":"10.1038/s43017-025-00679-6","url":null,"abstract":"","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 6","pages":"433-433"},"PeriodicalIF":0.0,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s43017-025-00679-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging resilience analyses for law and policy 利用法律和政策的弹性分析
Pub Date : 2025-04-16 DOI: 10.1038/s43017-025-00676-9
Johanna Sophie Buerkert
Johanna Buerkert explains how resilience analyses can be used to implement laws that support the capacity of socio-ecological systems to cope with stressors.
Johanna Buerkert解释了弹性分析如何用于实施支持社会生态系统应对压力源的能力的法律。
{"title":"Leveraging resilience analyses for law and policy","authors":"Johanna Sophie Buerkert","doi":"10.1038/s43017-025-00676-9","DOIUrl":"10.1038/s43017-025-00676-9","url":null,"abstract":"Johanna Buerkert explains how resilience analyses can be used to implement laws that support the capacity of socio-ecological systems to cope with stressors.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 5","pages":"324-324"},"PeriodicalIF":0.0,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terrestrial water storage in 2024 2024年的陆地储水量
Pub Date : 2025-04-11 DOI: 10.1038/s43017-025-00659-w
Bailing Li, Matthew Rodell, Himanshu Save
Global terrestrial water storage (TWS) anomalies continue to decrease, reaching a record low of –7,404 km3 in 2024, a reduction of 796 km3 from 2023. TWS gains in Africa, Australia, Europe, and central and western Antarctica were offset by substantial losses in northwestern Canada, South America, southern Africa and Greenland.
全球陆地储水量(TWS)异常持续减少,2024年达到历史最低点- 7404 km3,比2023年减少796 km3。非洲、澳大利亚、欧洲和南极洲中部和西部的TWS收益被加拿大西北部、南美洲、南部非洲和格陵兰岛的大量损失所抵消。
{"title":"Terrestrial water storage in 2024","authors":"Bailing Li, Matthew Rodell, Himanshu Save","doi":"10.1038/s43017-025-00659-w","DOIUrl":"10.1038/s43017-025-00659-w","url":null,"abstract":"Global terrestrial water storage (TWS) anomalies continue to decrease, reaching a record low of –7,404 km3 in 2024, a reduction of 796 km3 from 2023. TWS gains in Africa, Australia, Europe, and central and western Antarctica were offset by substantial losses in northwestern Canada, South America, southern Africa and Greenland.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 4","pages":"261-263"},"PeriodicalIF":0.0,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vegetation greenness in 2024 2024年的植被绿度
Pub Date : 2025-04-11 DOI: 10.1038/s43017-025-00656-z
Yanchen Gui, Kai Wang, Chris Huntingford, Shankai Wei, Xiangyi Li, Ranga B. Myneni, Shilong Piao
2024 witnessed record-high global vegetation greenness, far outpacing the previous high set in 2020. A total of 67.7% of vegetated land surfaces experienced greening, notably in Eurasian and tropical grasslands, and global croplands.
2024年全球植被绿化率创历史新高,远远超过了2020年创下的上一个新高。67.7%的植被地表出现了绿化,特别是在欧亚和热带草原,以及全球农田。
{"title":"Vegetation greenness in 2024","authors":"Yanchen Gui, Kai Wang, Chris Huntingford, Shankai Wei, Xiangyi Li, Ranga B. Myneni, Shilong Piao","doi":"10.1038/s43017-025-00656-z","DOIUrl":"10.1038/s43017-025-00656-z","url":null,"abstract":"2024 witnessed record-high global vegetation greenness, far outpacing the previous high set in 2020. A total of 67.7% of vegetated land surfaces experienced greening, notably in Eurasian and tropical grasslands, and global croplands.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 4","pages":"255-257"},"PeriodicalIF":0.0,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme terrestrial heat in 2024 2024年地球极端高温
Pub Date : 2025-04-11 DOI: 10.1038/s43017-025-00661-2
Roshan Jha, Sarah E. Perkins-Kirkpatrick, Deepti Singh, Joyce Kimutai, Renata Libonati, Arpita Mondal
2024 shattered temperature records, surpassing 2023’s historic highs to become the warmest year ever recorded. Extreme heatwaves hit West Africa in February, South America and Eastern Europe in March, Southeast Asia in April, and Mexico in June.
2024年打破了气温记录,超过了2023年的历史高点,成为有记录以来最热的一年。极端热浪于2月袭击西非,3月袭击南美和东欧,4月袭击东南亚,6月袭击墨西哥。
{"title":"Extreme terrestrial heat in 2024","authors":"Roshan Jha, Sarah E. Perkins-Kirkpatrick, Deepti Singh, Joyce Kimutai, Renata Libonati, Arpita Mondal","doi":"10.1038/s43017-025-00661-2","DOIUrl":"10.1038/s43017-025-00661-2","url":null,"abstract":"2024 shattered temperature records, surpassing 2023’s historic highs to become the warmest year ever recorded. Extreme heatwaves hit West Africa in February, South America and Eastern Europe in March, Southeast Asia in April, and Mexico in June.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 4","pages":"234-236"},"PeriodicalIF":0.0,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sea level rise in 2024 2024年海平面上升
Pub Date : 2025-04-11 DOI: 10.1038/s43017-025-00667-w
Benjamin D. Hamlington, Severine Fournier, Philip R. Thompson, Marta Marcos
Global sea level rose 0.59 cm in 2024 relative to 2023, reaching a total increase of 10.5 cm over the 31-year satellite record of sea level. Regionally, over 40% of the ocean reached its highest annual sea level value in 2024.
与2023年相比,2024年全球海平面上升了0.59厘米,与31年的卫星海平面记录相比,海平面总上升了10.5厘米。从区域来看,超过40%的海洋在2024年达到了最高的年海平面值。
{"title":"Sea level rise in 2024","authors":"Benjamin D. Hamlington, Severine Fournier, Philip R. Thompson, Marta Marcos","doi":"10.1038/s43017-025-00667-w","DOIUrl":"10.1038/s43017-025-00667-w","url":null,"abstract":"Global sea level rose 0.59 cm in 2024 relative to 2023, reaching a total increase of 10.5 cm over the 31-year satellite record of sea level. Regionally, over 40% of the ocean reached its highest annual sea level value in 2024.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"6 4","pages":"246-248"},"PeriodicalIF":0.0,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Earth & Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1