Pub Date : 2024-05-24DOI: 10.1038/s43017-024-00563-9
Josefa Sepúlveda-Araya
Josefa Sepúlveda-Araya explains how microgravity surveys can be used to identify early warning signs of volcanic eruptions.
Josefa Sepúlveda-Araya 解释了如何利用微重力测量来识别火山爆发的早期预警信号。
{"title":"Monitoring volcanoes with microgravity surveys","authors":"Josefa Sepúlveda-Araya","doi":"10.1038/s43017-024-00563-9","DOIUrl":"10.1038/s43017-024-00563-9","url":null,"abstract":"Josefa Sepúlveda-Araya explains how microgravity surveys can be used to identify early warning signs of volcanic eruptions.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"416-416"},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141098833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1038/s43017-024-00562-w
Jacob P. VanderRoest
Jacob VanderRoest outlines the use of pyrocosms to identify specific molecules in burned soil from various ecosystems.
Jacob VanderRoest 简要介绍了利用高温分解态鉴定各种生态系统烧毁土壤中特定分子的方法。
{"title":"Using pyrocosms to determine fire impacts on soil molecules","authors":"Jacob P. VanderRoest","doi":"10.1038/s43017-024-00562-w","DOIUrl":"10.1038/s43017-024-00562-w","url":null,"abstract":"Jacob VanderRoest outlines the use of pyrocosms to identify specific molecules in burned soil from various ecosystems.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"415-415"},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141100760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1038/s43017-024-00564-8
Erin Scott, Eleni Wood
To explore career opportunities outside of academia, Nature Reviews Earth & Environment interviewed Eleni Wood about their career path from PhD student to a researcher at BBC Studios.
{"title":"From academia to a career in documentary film-making","authors":"Erin Scott, Eleni Wood","doi":"10.1038/s43017-024-00564-8","DOIUrl":"10.1038/s43017-024-00564-8","url":null,"abstract":"To explore career opportunities outside of academia, Nature Reviews Earth & Environment interviewed Eleni Wood about their career path from PhD student to a researcher at BBC Studios.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"414-414"},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141100614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1038/s43017-024-00555-9
Hector Linares Arroyo, Angela Abascal, Tobias Degen, Martin Aubé, Brian R. Espey, Geza Gyuk, Franz Hölker, Andreas Jechow, Monika Kuffer, Alejandro Sánchez de Miguel, Alexandre Simoneau, Ken Walczak, Christopher C. M. Kyba
Light pollution has increased globally, with 80% of the total population now living under light-polluted skies. In this Review, we elucidate the scope and importance of light pollution and discuss techniques to monitor it. In urban areas, light emissions from sources such as street lights lead to a zenith radiance 40 times larger than that of an unpolluted night sky. Non-urban areas account for over 50% of the total night-time light observed by satellites, with contributions from sources such as transportation networks and resource extraction. Artificial light can disturb the migratory and reproductive behaviours of animals even at the low illuminances from diffuse skyglow. Additionally, lighting (indoor and outdoor) accounts for 20% of global electricity consumption and 6% of CO2 emissions, leading to indirect environmental impacts and a financial cost. However, existing monitoring techniques can only perform a limited number of measurements throughout the night and lack spectral and spatial resolution. Therefore, satellites with improved spectral and spatial resolution are needed to enable time series analysis of light pollution trends throughout the night. Increasing light emissions threaten human and ecological health. This Review outlines existing measurements and projections of light pollution trends and impacts, as well as developments in ground-based and remote sensing techniques that are needed to improve them.
{"title":"Monitoring, trends and impacts of light pollution","authors":"Hector Linares Arroyo, Angela Abascal, Tobias Degen, Martin Aubé, Brian R. Espey, Geza Gyuk, Franz Hölker, Andreas Jechow, Monika Kuffer, Alejandro Sánchez de Miguel, Alexandre Simoneau, Ken Walczak, Christopher C. M. Kyba","doi":"10.1038/s43017-024-00555-9","DOIUrl":"10.1038/s43017-024-00555-9","url":null,"abstract":"Light pollution has increased globally, with 80% of the total population now living under light-polluted skies. In this Review, we elucidate the scope and importance of light pollution and discuss techniques to monitor it. In urban areas, light emissions from sources such as street lights lead to a zenith radiance 40 times larger than that of an unpolluted night sky. Non-urban areas account for over 50% of the total night-time light observed by satellites, with contributions from sources such as transportation networks and resource extraction. Artificial light can disturb the migratory and reproductive behaviours of animals even at the low illuminances from diffuse skyglow. Additionally, lighting (indoor and outdoor) accounts for 20% of global electricity consumption and 6% of CO2 emissions, leading to indirect environmental impacts and a financial cost. However, existing monitoring techniques can only perform a limited number of measurements throughout the night and lack spectral and spatial resolution. Therefore, satellites with improved spectral and spatial resolution are needed to enable time series analysis of light pollution trends throughout the night. Increasing light emissions threaten human and ecological health. This Review outlines existing measurements and projections of light pollution trends and impacts, as well as developments in ground-based and remote sensing techniques that are needed to improve them.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"417-430"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1038/s43017-024-00554-w
Guoqing Zhang, Jonathan L. Carrivick, Adam Emmer, Dan H. Shugar, Georg Veh, Xue Wang, Celeste Labedz, Martin Mergili, Nico Mölg, Matthias Huss, Simon Allen, Shin Sugiyama, Natalie Lützow
Global glacier mass loss has accelerated, producing more and larger glacial lakes. Many of these glacial lakes are a source of glacial lake outburst floods (GLOFs), which pose threats to people and infrastructure. In this Review, we synthesize global changes in glacial lakes and GLOFs. More than 110,000 glacial lakes currently exist, covering a total area of ~15,000 km2, having increased in area by ~22% dec–1 from 1990 to 2020. More than 10 million people are exposed to the impacts of GLOFs, commonly associated with dam failure or wave overtopping associated with mass movements. Although data limitations are substantial, more than 3,000 GLOFs have been recorded from 850 to 2022, particularly in Alaska (24%), High Mountain Asia (HMA; 18%) and Iceland (19%), the majority (64.8%) being from ice-dammed lakes. Recorded GLOFs have increased in most glaciated mountain regions of the world, with ongoing deglaciation and lake expansion expected to increase GLOF frequency further. In HMA, GLOF hazards are projected to triple by 2100, but changes in other regions will likely be lower given topographic constraints on lake evolution. Future research should prioritize acquiring field data on lake and dam properties, producing globally coordinated multi-temporal lake mapping, and robust and efficient modelling of GLOFs for comprehensive hazard assessment and response planning. Warmer temperatures enhance formation of glacial lakes that can suddenly and catastrophically release as a glacial lake outburst flood (GLOF), threatening downstream lives and infrastructure. This Review outlines observed and projected changes in glacial lakes and GLOFs, reporting that both will increase with ongoing deglaciation.
{"title":"Characteristics and changes of glacial lakes and outburst floods","authors":"Guoqing Zhang, Jonathan L. Carrivick, Adam Emmer, Dan H. Shugar, Georg Veh, Xue Wang, Celeste Labedz, Martin Mergili, Nico Mölg, Matthias Huss, Simon Allen, Shin Sugiyama, Natalie Lützow","doi":"10.1038/s43017-024-00554-w","DOIUrl":"10.1038/s43017-024-00554-w","url":null,"abstract":"Global glacier mass loss has accelerated, producing more and larger glacial lakes. Many of these glacial lakes are a source of glacial lake outburst floods (GLOFs), which pose threats to people and infrastructure. In this Review, we synthesize global changes in glacial lakes and GLOFs. More than 110,000 glacial lakes currently exist, covering a total area of ~15,000 km2, having increased in area by ~22% dec–1 from 1990 to 2020. More than 10 million people are exposed to the impacts of GLOFs, commonly associated with dam failure or wave overtopping associated with mass movements. Although data limitations are substantial, more than 3,000 GLOFs have been recorded from 850 to 2022, particularly in Alaska (24%), High Mountain Asia (HMA; 18%) and Iceland (19%), the majority (64.8%) being from ice-dammed lakes. Recorded GLOFs have increased in most glaciated mountain regions of the world, with ongoing deglaciation and lake expansion expected to increase GLOF frequency further. In HMA, GLOF hazards are projected to triple by 2100, but changes in other regions will likely be lower given topographic constraints on lake evolution. Future research should prioritize acquiring field data on lake and dam properties, producing globally coordinated multi-temporal lake mapping, and robust and efficient modelling of GLOFs for comprehensive hazard assessment and response planning. Warmer temperatures enhance formation of glacial lakes that can suddenly and catastrophically release as a glacial lake outburst flood (GLOF), threatening downstream lives and infrastructure. This Review outlines observed and projected changes in glacial lakes and GLOFs, reporting that both will increase with ongoing deglaciation.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"447-462"},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1038/s43017-024-00548-8
Alandra Marie Lopez, Claudia Christine E. Avila, Jacob P. VanderRoest, Holly K. Roth, Scott Fendorf, Thomas Borch
Wildfires act as important ecosystem controls and can benefit fire-adapted biomes by promoting habitat heterogeneity, seed germination and disease control. However, the frequency of high-severity fires and the extent of total burn area have increased since the 1970s, transforming both the organic and inorganic composition of soil. In this Review, we outline the molecular-scale transformations and biogeochemical interactions of soil organic matter (SOM) and metals induced by wildfires and explore their impacts on post-fire human health and ecosystem recovery. Wildfires enhance organic matter solubility and increase the number of nitrogen-containing SOM molecules by up to 32%. Additionally, wildfires can double the concentration of toxic polycyclic aromatic hydrocarbons (PAHs) in soil and induce the formation of toxic metal species such as As(III) and Cr(VI) through redox reactions. In post-fire environments, pyrogenic organic matter is susceptible to microbial degradation and can interact with soil minerals to influence metal redox cycling. Moreover, post-fire products such as karrikins and PAHs promote and inhibit revegetation, respectively, influencing ecosystem recovery. Improved techniques to monitor changes in the soil and the surrounding ecosystem are needed to better understand and mitigate the negative effects of wildfires. Wildfires are important ecosystem regulators and can benefit many fire-prone ecosystems, but extreme fires can leave soils vulnerable to nutrient loss and contaminant transformations. This Review discusses fire-induced impacts on soil chemistry and post-fire soil, air and water recovery.
{"title":"Molecular insights and impacts of wildfire-induced soil chemical changes","authors":"Alandra Marie Lopez, Claudia Christine E. Avila, Jacob P. VanderRoest, Holly K. Roth, Scott Fendorf, Thomas Borch","doi":"10.1038/s43017-024-00548-8","DOIUrl":"10.1038/s43017-024-00548-8","url":null,"abstract":"Wildfires act as important ecosystem controls and can benefit fire-adapted biomes by promoting habitat heterogeneity, seed germination and disease control. However, the frequency of high-severity fires and the extent of total burn area have increased since the 1970s, transforming both the organic and inorganic composition of soil. In this Review, we outline the molecular-scale transformations and biogeochemical interactions of soil organic matter (SOM) and metals induced by wildfires and explore their impacts on post-fire human health and ecosystem recovery. Wildfires enhance organic matter solubility and increase the number of nitrogen-containing SOM molecules by up to 32%. Additionally, wildfires can double the concentration of toxic polycyclic aromatic hydrocarbons (PAHs) in soil and induce the formation of toxic metal species such as As(III) and Cr(VI) through redox reactions. In post-fire environments, pyrogenic organic matter is susceptible to microbial degradation and can interact with soil minerals to influence metal redox cycling. Moreover, post-fire products such as karrikins and PAHs promote and inhibit revegetation, respectively, influencing ecosystem recovery. Improved techniques to monitor changes in the soil and the surrounding ecosystem are needed to better understand and mitigate the negative effects of wildfires. Wildfires are important ecosystem regulators and can benefit many fire-prone ecosystems, but extreme fires can leave soils vulnerable to nutrient loss and contaminant transformations. This Review discusses fire-induced impacts on soil chemistry and post-fire soil, air and water recovery.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"431-446"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1038/s43017-024-00551-z
Emma M. Hill, Jamie W. McCaughey, Adam D. Switzer, David Lallemant, Yu Wang, Sharadha Sathiakumar
Anthropogenic climate change and modification of landscapes — such as deforestation, sediment movement, irrigation and sea-level rise — can destabilize natural systems and amplify hazards from earthquake-triggered landslides, liquefaction, tsunami and coastal flooding. In this Perspective, we examine the connections and feedbacks between human environmental modifications and secondary earthquake hazards to identify steps for hazard mitigation. Destabilization of slopes by vegetation removal, agricultural activities, steepening, loading and drainage disruption can amplify landslide hazards. For example, landslides were mainly triggered on deforested slopes after the 2010 and 2021 Haiti earthquakes. Liquefaction hazards are intensified by extensive irrigation and land reclamation, as exemplified by liquefaction causing >15 m of ground displacement in irrigated areas after the 2018 Palu earthquake. Degradation or removal of primary coastal vegetation and coral reefs, destruction of sand dunes, subsidence from groundwater withdrawal, and sea-level rise can increase tsunami inland reach. Restoration of natural coastal habitats could help decrease the maximum inland reach of tsunami, but their effectiveness depends on tsunami size. Sustainable farming practices, such as mixed crop cultivation and drip irrigation, can successfully reduce the saturation of soils and the liquefaction hazard in some situations. Future research should explore the potential of such sustainable practices and nature-based solutions in reducing earthquake-related hazards, in addition to their climate and ecosystem benefits. Human modifications to the environment can amplify the secondary impacts of earthquakes, such as landslides, liquefaction and tsunamis. This Perspective explores the relationships between environmental modification and earthquake-triggered hazards to identify potential solutions for hazard mitigation.
{"title":"Human amplification of secondary earthquake hazards through environmental modifications","authors":"Emma M. Hill, Jamie W. McCaughey, Adam D. Switzer, David Lallemant, Yu Wang, Sharadha Sathiakumar","doi":"10.1038/s43017-024-00551-z","DOIUrl":"10.1038/s43017-024-00551-z","url":null,"abstract":"Anthropogenic climate change and modification of landscapes — such as deforestation, sediment movement, irrigation and sea-level rise — can destabilize natural systems and amplify hazards from earthquake-triggered landslides, liquefaction, tsunami and coastal flooding. In this Perspective, we examine the connections and feedbacks between human environmental modifications and secondary earthquake hazards to identify steps for hazard mitigation. Destabilization of slopes by vegetation removal, agricultural activities, steepening, loading and drainage disruption can amplify landslide hazards. For example, landslides were mainly triggered on deforested slopes after the 2010 and 2021 Haiti earthquakes. Liquefaction hazards are intensified by extensive irrigation and land reclamation, as exemplified by liquefaction causing >15 m of ground displacement in irrigated areas after the 2018 Palu earthquake. Degradation or removal of primary coastal vegetation and coral reefs, destruction of sand dunes, subsidence from groundwater withdrawal, and sea-level rise can increase tsunami inland reach. Restoration of natural coastal habitats could help decrease the maximum inland reach of tsunami, but their effectiveness depends on tsunami size. Sustainable farming practices, such as mixed crop cultivation and drip irrigation, can successfully reduce the saturation of soils and the liquefaction hazard in some situations. Future research should explore the potential of such sustainable practices and nature-based solutions in reducing earthquake-related hazards, in addition to their climate and ecosystem benefits. Human modifications to the environment can amplify the secondary impacts of earthquakes, such as landslides, liquefaction and tsunamis. This Perspective explores the relationships between environmental modification and earthquake-triggered hazards to identify potential solutions for hazard mitigation.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 6","pages":"463-476"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1038/s43017-024-00559-5
Monica Alejandra Gomez Correa
Monica Alejandra Gomez Correa describes how the ostracod fossil record provides insight into changes in environmental conditions and their impact on marine ecosystems.
{"title":"Reconstructing end-Permian mass extinction conditions using the ostracod record","authors":"Monica Alejandra Gomez Correa","doi":"10.1038/s43017-024-00559-5","DOIUrl":"10.1038/s43017-024-00559-5","url":null,"abstract":"Monica Alejandra Gomez Correa describes how the ostracod fossil record provides insight into changes in environmental conditions and their impact on marine ecosystems.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 5","pages":"333-333"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1038/s43017-024-00558-6
Graham Simpkins, Nina Ridder
To explore career opportunities outside of academia, Nature Reviews Earth & Environment interviewed Nina Ridder about their career path from a postdoctoral scholar to a Senior Climate Advisor at Suncorp Group Limited.
{"title":"From academia to a career in insurance","authors":"Graham Simpkins, Nina Ridder","doi":"10.1038/s43017-024-00558-6","DOIUrl":"10.1038/s43017-024-00558-6","url":null,"abstract":"To explore career opportunities outside of academia, Nature Reviews Earth & Environment interviewed Nina Ridder about their career path from a postdoctoral scholar to a Senior Climate Advisor at Suncorp Group Limited.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 5","pages":"332-332"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-25DOI: 10.1038/s43017-024-00540-2
Nicolas Eckert, Christophe Corona, Florie Giacona, Johan Gaume, Stephanie Mayer, Alec van Herwijnen, Pascal Hagenmuller, Markus Stoffel
In the rapidly evolving mountain cryosphere, snow avalanches threaten livelihoods, settlements and infrastructure. In this Review, we analyse past and projected impacts of climate change on avalanche activity and the associated risks. The limited availability of comprehensive datasets, the potential confounding factors and the limitations of statistical approaches can make it difficult to identify trends in avalanche activity. However, available data indicate a general decrease in avalanche number, size, seasonality and active paths at low elevations, and an increase in the proportion of wet avalanches relative to dry avalanches. Increased snowfall at high elevations can lead to peaks in avalanche activity and an increase in the number of wet and slush-like avalanches. Activity patterns gradually shift from low to high elevations under continued warming. These changes affect avalanche risk; however, risk is also influenced by factors such as land use and the growth or decline of human settlements. The impact of these factors varies across diverse mountain environments, making it challenging to predict how risk will evolve under a changing climate. Therefore, future research should aim to couple an improved systemic understanding of the impacts of these factors with slope-scale projections of avalanche hazards and risks to support sustainable mountain development and adaptation strategies. Avalanche conditions and related risks are influenced by ongoing changes in temperature and precipitation. This Review synthesizes existing data, approaches and results to highlight dominant patterns of change and how they are linked to climate change and other socio-environmental factors.
{"title":"Climate change impacts on snow avalanche activity and related risks","authors":"Nicolas Eckert, Christophe Corona, Florie Giacona, Johan Gaume, Stephanie Mayer, Alec van Herwijnen, Pascal Hagenmuller, Markus Stoffel","doi":"10.1038/s43017-024-00540-2","DOIUrl":"10.1038/s43017-024-00540-2","url":null,"abstract":"In the rapidly evolving mountain cryosphere, snow avalanches threaten livelihoods, settlements and infrastructure. In this Review, we analyse past and projected impacts of climate change on avalanche activity and the associated risks. The limited availability of comprehensive datasets, the potential confounding factors and the limitations of statistical approaches can make it difficult to identify trends in avalanche activity. However, available data indicate a general decrease in avalanche number, size, seasonality and active paths at low elevations, and an increase in the proportion of wet avalanches relative to dry avalanches. Increased snowfall at high elevations can lead to peaks in avalanche activity and an increase in the number of wet and slush-like avalanches. Activity patterns gradually shift from low to high elevations under continued warming. These changes affect avalanche risk; however, risk is also influenced by factors such as land use and the growth or decline of human settlements. The impact of these factors varies across diverse mountain environments, making it challenging to predict how risk will evolve under a changing climate. Therefore, future research should aim to couple an improved systemic understanding of the impacts of these factors with slope-scale projections of avalanche hazards and risks to support sustainable mountain development and adaptation strategies. Avalanche conditions and related risks are influenced by ongoing changes in temperature and precipitation. This Review synthesizes existing data, approaches and results to highlight dominant patterns of change and how they are linked to climate change and other socio-environmental factors.","PeriodicalId":18921,"journal":{"name":"Nature Reviews Earth & Environment","volume":"5 5","pages":"369-389"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140657175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}