Bastian Rödig, Diana Funkner, Thomas Frank, Ulrich Schürmann, Julian Rieder, Lorenz Kienle, Werner Kunz, Matthias Kellermeier
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process. To this end, solutions of soluble salts of metal cations (e.g., chlorides) and the respective anions (e.g., sodium carbonate or sulfide) are mixed in the presence of different amounts of sodium silicate at elevated pH levels. Upon mixing, metal carbonate/sulfide particles nucleate, and their subsequent growth causes a sensible decrease of pH in the vicinity. Dissolved silicate species respond to this local acidification by condensation reactions, which eventually lead to the formation of amorphous silica layers that encapsulate the metal carbonate/sulfide cores and, thus, effectively inhibit any further growth. The as-obtained carbonate nanodots can readily be converted into the corresponding metal oxides by secondary thermal treatment, during which their nanometric size is maintained. Although the described method clearly requires optimization towards actual applications, the results of this study highlight the potential of bottom-up self-assembly for the synthesis of functional nanoparticles at mild conditions.
{"title":"Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.","authors":"Bastian Rödig, Diana Funkner, Thomas Frank, Ulrich Schürmann, Julian Rieder, Lorenz Kienle, Werner Kunz, Matthias Kellermeier","doi":"10.3390/nano14242054","DOIUrl":"10.3390/nano14242054","url":null,"abstract":"<p><p>The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process. To this end, solutions of soluble salts of metal cations (e.g., chlorides) and the respective anions (e.g., sodium carbonate or sulfide) are mixed in the presence of different amounts of sodium silicate at elevated pH levels. Upon mixing, metal carbonate/sulfide particles nucleate, and their subsequent growth causes a sensible decrease of pH in the vicinity. Dissolved silicate species respond to this local acidification by condensation reactions, which eventually lead to the formation of amorphous silica layers that encapsulate the metal carbonate/sulfide cores and, thus, effectively inhibit any further growth. The as-obtained carbonate nanodots can readily be converted into the corresponding metal oxides by secondary thermal treatment, during which their nanometric size is maintained. Although the described method clearly requires optimization towards actual applications, the results of this study highlight the potential of bottom-up self-assembly for the synthesis of functional nanoparticles at mild conditions.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James R Hamilton, Raphael D Levine, Francoise Remacle
Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients. There are possible applications to the dynamics of systems of coupled coherent two-state systems, such as qubits, pumped by optical excitation and other addressing inputs. Thereby, the interaction of the system with the excitation is bilinear in the coherence between the two states and in the strength of the time-dependent excitation. The total Hamiltonian is a sum of such bilinear terms and of terms linear in the populations. The terms in the Hamiltonian form a basis for Lie algebra, which can be represented as coupled individual two-state systems, each using the population and the coherence between two states. Using the factorization approach of Wei and Norman, we construct a unitary quantum mechanical evolution operator that is a factored contribution of individual two-state systems. By that one can accurately propagate both the wave function and the density matrix with special relevance to quantum computing based on qubit architecture. Explicit examples are derived for the electronic dynamics in coupled semi-conducting nanoparticles that can be used as hardware for quantum technologies.
{"title":"Constructing Dynamical Symmetries for Quantum Computing: Applications to Coherent Dynamics in Coupled Quantum Dots.","authors":"James R Hamilton, Raphael D Levine, Francoise Remacle","doi":"10.3390/nano14242056","DOIUrl":"10.3390/nano14242056","url":null,"abstract":"<p><p>Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients. There are possible applications to the dynamics of systems of coupled coherent two-state systems, such as qubits, pumped by optical excitation and other addressing inputs. Thereby, the interaction of the system with the excitation is bilinear in the coherence between the two states and in the strength of the time-dependent excitation. The total Hamiltonian is a sum of such bilinear terms and of terms linear in the populations. The terms in the Hamiltonian form a basis for Lie algebra, which can be represented as coupled individual two-state systems, each using the population and the coherence between two states. Using the factorization approach of Wei and Norman, we construct a unitary quantum mechanical evolution operator that is a factored contribution of individual two-state systems. By that one can accurately propagate both the wave function and the density matrix with special relevance to quantum computing based on qubit architecture. Explicit examples are derived for the electronic dynamics in coupled semi-conducting nanoparticles that can be used as hardware for quantum technologies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The separation of oxygen (O2) and nitrogen (N2) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of sp and sp2 C atoms, as suitable membranes for separating O2 and N2 from air. By combining static density functional theory (DFT) calculations with molecular dynamics (MD) simulations, we address this issue through a comprehensive examination of the thermodynamic, kinetic, and dynamic aspects of the molecular diffusions across the nano-engineered pores of grazynes. The studied grazyne structures have demonstrated the ability to physisorb both O2 and N2, preventing material saturation, with diffusion rates exceeding 1 s-1 across a temperature range of 100-500 K. Moreover, they exhibit a selectivity of ca. 2 towards O2 at 300 K. Indeed, MD simulations with equimolar mixtures of O2:N2 indicated a selectivity towards O2 in both grazynes with ca. twice as many O2 filtered molecules in the [1],[2]{2}-grazyne and with O2 representing ca. 88% of the filtered gas in the [1],[2]{(0,0),2}-grazyne. [1],[2]{2}-grazyne shows higher permeability for both molecules compared to the other grazyne, with O₂ demonstrating particularly enhanced diffusion capacity across both membranes. Further MD simulations incorporating CO2 and Ar confirm O2 enrichment, particularly with [1],[2]{(0,0),2}-grazyne, which increased the presence of O2 in the filtered mixture by 26% with no evidence of CO2 molecules.
{"title":"Selective O<sub>2</sub>/N<sub>2</sub> Separation Using Grazyne Membranes: A Computational Approach Combining Density Functional Theory and Molecular Dynamics.","authors":"Adrià Calzada, Francesc Viñes, Pablo Gamallo","doi":"10.3390/nano14242053","DOIUrl":"10.3390/nano14242053","url":null,"abstract":"<p><p>The separation of oxygen (O<sub>2</sub>) and nitrogen (N<sub>2</sub>) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of <i>sp</i> and <i>sp</i><sup>2</sup> C atoms, as suitable membranes for separating O<sub>2</sub> and N<sub>2</sub> from air. By combining static density functional theory (DFT) calculations with molecular dynamics (MD) simulations, we address this issue through a comprehensive examination of the thermodynamic, kinetic, and dynamic aspects of the molecular diffusions across the nano-engineered pores of grazynes. The studied grazyne structures have demonstrated the ability to physisorb both O<sub>2</sub> and N<sub>2</sub>, preventing material saturation, with diffusion rates exceeding 1 s<sup>-1</sup> across a temperature range of 100-500 K. Moreover, they exhibit a selectivity of <i>ca.</i> 2 towards O<sub>2</sub> at 300 K. Indeed, MD simulations with equimolar mixtures of O<sub>2</sub>:N<sub>2</sub> indicated a selectivity towards O<sub>2</sub> in both grazynes with <i>ca</i>. twice as many O<sub>2</sub> filtered molecules in the [1],[2]{2}-grazyne and with O<sub>2</sub> representing ca. 88% of the filtered gas in the [1],[2]{(0,0),2}-grazyne. [1],[2]{2}-grazyne shows higher permeability for both molecules compared to the other grazyne, with O₂ demonstrating particularly enhanced diffusion capacity across both membranes. Further MD simulations incorporating CO<sub>2</sub> and Ar confirm O<sub>2</sub> enrichment, particularly with [1],[2]{(0,0),2}-grazyne, which increased the presence of O<sub>2</sub> in the filtered mixture by 26% with no evidence of CO<sub>2</sub> molecules.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered. Here we show how the addition of different amounts of Au (between 1 and 5 wt%) on Cu2O-SnO2 nanospheres affects the thermal electronic nose performance. Interestingly, the best performance is not achieved with the material offering the highest intrinsic selectivity. This confirms the importance of specific studies, since the performance of chemoresistive gas sensors does not linearly affect the performance of the electronic nose. By optimizing the amount of Au, the device achieved a perfect classification of the tested gases (acetone, ethanol, and toluene) and a good concentration estimation (with a mean absolute percentage error around 16%). These performances, combined with potentially smaller dimensions of less than 0.5 mm2, make this thermal electronic nose an ideal candidate for numerous applications, such as in the agri-food, environmental, and biomedical sectors.
{"title":"Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous Cu<sub>2</sub>O-SnO<sub>2</sub> Nanospheres.","authors":"Matteo Tonezzer, Taro Ueda, Soichiro Torai, Koki Fujita, Yasuhiro Shimizu, Takeo Hyodo","doi":"10.3390/nano14242052","DOIUrl":"10.3390/nano14242052","url":null,"abstract":"<p><p>The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered. Here we show how the addition of different amounts of Au (between 1 and 5 wt%) on Cu<sub>2</sub>O-SnO<sub>2</sub> nanospheres affects the thermal electronic nose performance. Interestingly, the best performance is not achieved with the material offering the highest intrinsic selectivity. This confirms the importance of specific studies, since the performance of chemoresistive gas sensors does not linearly affect the performance of the electronic nose. By optimizing the amount of Au, the device achieved a perfect classification of the tested gases (acetone, ethanol, and toluene) and a good concentration estimation (with a mean absolute percentage error around 16%). These performances, combined with potentially smaller dimensions of less than 0.5 mm<sup>2</sup>, make this thermal electronic nose an ideal candidate for numerous applications, such as in the agri-food, environmental, and biomedical sectors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Ji, Yizhe Liu, Xiaoxiang Li, Yangzhe Xu, Ting Hu, Zhengzheng Li, Peng Tao, Tao Deng
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement. Herein, this work reports the employment of hybrid expanded graphite (EG) and carbon nanotubes (CNTs) to simultaneously realize leakage-proofness, high solar absorptance, high thermal conductivity, and large latent heat storage capacity. The PCM composites were prepared by directly mixing commercial high-temperature paraffin (HPA) powders, EG, and CNTs, followed by subsequent mechanical compression molding. The HPA-EG composites loaded with 20 wt% of EG could effectively suppress melting-induced leakage. After further compounding with 1 wt% of CNTs, the form-stable HPA-EG20-CNT1 composites achieved an axial and in-plane thermal conductivity of 4.15 W/m K and 18.22 W/m K, and a melting enthalpy of 165.4 J/g, respectively. Through increasing the loading of CNTs to 10 wt% in the top thin layer, we further prepared double-layer HPA-EG-CNT composites, which have a high surface solar absorptance of 92.9% for the direct conversion of concentrated solar illumination into storable latent heat. The charged composites could be combined with a thermoelectric generator to release the stored latent heat and generate electricity, which could power up small electric devices such as light-emitting diodes. This work demonstrates the potential for employing hybrid fillers to optimize the thermophysical properties and solar thermal harvesting performances of organic PCMs.
{"title":"Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.","authors":"Jie Ji, Yizhe Liu, Xiaoxiang Li, Yangzhe Xu, Ting Hu, Zhengzheng Li, Peng Tao, Tao Deng","doi":"10.3390/nano14242047","DOIUrl":"10.3390/nano14242047","url":null,"abstract":"<p><p>Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement. Herein, this work reports the employment of hybrid expanded graphite (EG) and carbon nanotubes (CNTs) to simultaneously realize leakage-proofness, high solar absorptance, high thermal conductivity, and large latent heat storage capacity. The PCM composites were prepared by directly mixing commercial high-temperature paraffin (HPA) powders, EG, and CNTs, followed by subsequent mechanical compression molding. The HPA-EG composites loaded with 20 wt% of EG could effectively suppress melting-induced leakage. After further compounding with 1 wt% of CNTs, the form-stable HPA-EG20-CNT1 composites achieved an axial and in-plane thermal conductivity of 4.15 W/m K and 18.22 W/m K, and a melting enthalpy of 165.4 J/g, respectively. Through increasing the loading of CNTs to 10 wt% in the top thin layer, we further prepared double-layer HPA-EG-CNT composites, which have a high surface solar absorptance of 92.9% for the direct conversion of concentrated solar illumination into storable latent heat. The charged composites could be combined with a thermoelectric generator to release the stored latent heat and generate electricity, which could power up small electric devices such as light-emitting diodes. This work demonstrates the potential for employing hybrid fillers to optimize the thermophysical properties and solar thermal harvesting performances of organic PCMs.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The continuous demand for multifunctional materials in industrial applications has driven the design of nanocomposites with new or enhanced properties [...].
{"title":"Editorial for Special Issue: \"Thin Films Based on Nanocomposites (2nd Edition)\".","authors":"Marcela Socol, Nicoleta Preda","doi":"10.3390/nano14242049","DOIUrl":"10.3390/nano14242049","url":null,"abstract":"<p><p>The continuous demand for multifunctional materials in industrial applications has driven the design of nanocomposites with new or enhanced properties [...].</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haijuan Mei, Wanli Wang, Junfeng Zhao, Weilong Zhong, Muyi Qiu, Jiayang Xu, Kailin Gao, Ge Liu, Jianchu Liang, Weiping Gong
W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.1 nm/min, and then increased to 11.5 nm/min with the increase in bias voltage. After applying a bias voltage to the substrate, the bombardment effect of sputtered ions was enhanced, and the films transformed from a smooth surface into a compact and rough surface. All the films exhibited a hexagonal wurtzite structure with a strong (002) preferred orientation and grew along the c-axis direction. When the bias voltage increased, both the residual stress and lattice parameter of the films gradually increased, and the maximum grain size of 43.4 nm was achieved at -100 V. When the bias voltage was below -300 V, all the films exhibited a high average transmittance of ~90% in the visible light region. As the bias voltage increased, the sheet resistance and resistivity of the films initially decreased and then gradually increased. The highest FOM of 5.8 × 10-4 Ω-1 was achieved at -100 V, possessing the best comprehensive photoelectric properties.
{"title":"Effect of Bias Voltage on the Microstructure and Photoelectric Properties of W-Doped ZnO Films.","authors":"Haijuan Mei, Wanli Wang, Junfeng Zhao, Weilong Zhong, Muyi Qiu, Jiayang Xu, Kailin Gao, Ge Liu, Jianchu Liang, Weiping Gong","doi":"10.3390/nano14242050","DOIUrl":"10.3390/nano14242050","url":null,"abstract":"<p><p>W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.1 nm/min, and then increased to 11.5 nm/min with the increase in bias voltage. After applying a bias voltage to the substrate, the bombardment effect of sputtered ions was enhanced, and the films transformed from a smooth surface into a compact and rough surface. All the films exhibited a hexagonal wurtzite structure with a strong (002) preferred orientation and grew along the c-axis direction. When the bias voltage increased, both the residual stress and lattice parameter of the films gradually increased, and the maximum grain size of 43.4 nm was achieved at -100 V. When the bias voltage was below -300 V, all the films exhibited a high average transmittance of ~90% in the visible light region. As the bias voltage increased, the sheet resistance and resistivity of the films initially decreased and then gradually increased. The highest <i>F<sub>OM</sub></i> of 5.8 × 10<sup>-4</sup> Ω<sup>-1</sup> was achieved at -100 V, possessing the best comprehensive photoelectric properties.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677324/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses. This transformation enhanced the density of holes (h+) as primary charge carriers and resulted in the most negative conduction band (CB) position (-0.822 V vs. NHE), which facilitated the generation of superoxide radicals (·O2-) and enhanced photocatalytic activity. Among the samples, the BiOI-0.25-60 NSs (synthesized with 0.25 g of mannitol at 60 °C) exhibited the highest performance, characterized by the largest specific surface area (24.46 m2/g), optimal band gap energy (2.28 eV), and efficient photogenerated charge separation. Photocatalytic experiments demonstrated that BiOI-0.25-60 NSs achieved superior methylene blue (MB) degradation efficiency of 96.5% under simulated sunlight, 1.14 times higher than BiOI-0-70 NSs. Additionally, BiOI-0.25-60 NSs effectively degraded tetracycline (TC), 2,4-dichlorophenol (2,4-D), and rhodamine B (Rh B). Key factors such as photocatalyst concentration, MB concentration, and solution pH were analyzed, and the BiOI-0.25-60 NSs demonstrated excellent recyclability, retaining over 94.3% of their activity after three cycles. Scavenger tests further identified ·O2- and h+ as the dominant active species driving the photocatalytic process. In this study, the pivotal role of mannitol in modulating the semiconductor characteristics of BiOI nanomaterials is underscored, particularly in promoting the n-type to p-type transition and enhancing photocatalytic efficiency. These findings provide a valuable strategy for designing high-performance p-type photocatalysts for environmental remediation applications.
{"title":"Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity.","authors":"Shuo Yang, Wenhui Li, Kaiyue Li, Ping Huang, Yuquan Zhuo, Keyan Liu, Ziwen Yang, Donglai Han","doi":"10.3390/nano14242048","DOIUrl":"10.3390/nano14242048","url":null,"abstract":"<p><p>Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses. This transformation enhanced the density of holes (h<sup>+</sup>) as primary charge carriers and resulted in the most negative conduction band (CB) position (-0.822 V vs. NHE), which facilitated the generation of superoxide radicals (·O<sup>2-</sup>) and enhanced photocatalytic activity. Among the samples, the BiOI-0.25-60 NSs (synthesized with 0.25 g of mannitol at 60 °C) exhibited the highest performance, characterized by the largest specific surface area (24.46 m<sup>2</sup>/g), optimal band gap energy (2.28 eV), and efficient photogenerated charge separation. Photocatalytic experiments demonstrated that BiOI-0.25-60 NSs achieved superior methylene blue (MB) degradation efficiency of 96.5% under simulated sunlight, 1.14 times higher than BiOI-0-70 NSs. Additionally, BiOI-0.25-60 NSs effectively degraded tetracycline (TC), 2,4-dichlorophenol (2,4-D), and rhodamine B (Rh B). Key factors such as photocatalyst concentration, MB concentration, and solution pH were analyzed, and the BiOI-0.25-60 NSs demonstrated excellent recyclability, retaining over 94.3% of their activity after three cycles. Scavenger tests further identified ·O<sup>2-</sup> and h<sup>+</sup> as the dominant active species driving the photocatalytic process. In this study, the pivotal role of mannitol in modulating the semiconductor characteristics of BiOI nanomaterials is underscored, particularly in promoting the n-type to p-type transition and enhancing photocatalytic efficiency. These findings provide a valuable strategy for designing high-performance p-type photocatalysts for environmental remediation applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11679262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mobinul Islam, Md Shahriar Ahmed, Sua Yun, Hae-Yong Kim, Kyung-Wan Nam
Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials. Additionally, radiation-induced nanomaterials are more cost effective and energy efficient. This technology is also having a positive impact on the environment, as materials are being produced with fewer emissions, less energy, and less waste. This cutting-edge technology is opening up new possibilities and has become an attractive option for many industries, from medical advancements to energy storage. It is also helping to make the world a better place by reducing our carbon footprint and preserving natural resources. This review aims to meticulously point out the synthesis approach and highlights significant progress in generating radiation-induced nanomaterials with tunable and complex morphologies. This comprehensive review article is essential for researchers to design innovative materials for advancements in health care, electronics, energy storage, and environmental remediation.
{"title":"Harnessing Radiation for Nanotechnology: A Comprehensive Review of Techniques, Innovations, and Application.","authors":"Mobinul Islam, Md Shahriar Ahmed, Sua Yun, Hae-Yong Kim, Kyung-Wan Nam","doi":"10.3390/nano14242051","DOIUrl":"10.3390/nano14242051","url":null,"abstract":"<p><p>Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials. Additionally, radiation-induced nanomaterials are more cost effective and energy efficient. This technology is also having a positive impact on the environment, as materials are being produced with fewer emissions, less energy, and less waste. This cutting-edge technology is opening up new possibilities and has become an attractive option for many industries, from medical advancements to energy storage. It is also helping to make the world a better place by reducing our carbon footprint and preserving natural resources. This review aims to meticulously point out the synthesis approach and highlights significant progress in generating radiation-induced nanomaterials with tunable and complex morphologies. This comprehensive review article is essential for researchers to design innovative materials for advancements in health care, electronics, energy storage, and environmental remediation.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review explores a method of visualizing a demagnetization field (Hd) within a thin-foiled Nd2Fe14B specimen using electron holography observation. Mapping the Hd is critical in electron holography as it provides the only information on magnetic flux density. The Hd map within a Nd2Fe14B thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity. Furthermore, this review examines the application of the wavelet hidden Markov model (WHMM) for noise suppression in thin-foiled Nd2Fe14B crystals. The results show significant suppression of artificial phase jumps in the reconstructed phase images due to the poor visibility of electron holograms under the narrowest fringe spacing required for spatial resolution in electron holography. These techniques substantially enhance the precision of phase analysis and are applicable to a wide range of magnetic materials, enabling more accurate magnetic characterization.
{"title":"Electron Holography for Advanced Characterization of Permanent Magnets: Demagnetization Field Mapping and Enhanced Precision in Phase Analysis.","authors":"Sujin Lee","doi":"10.3390/nano14242046","DOIUrl":"10.3390/nano14242046","url":null,"abstract":"<p><p>This review explores a method of visualizing a demagnetization field (<i>H<sub>d</sub></i>) within a thin-foiled Nd<sub>2</sub>Fe<sub>14</sub>B specimen using electron holography observation. Mapping the <i>H<sub>d</sub></i> is critical in electron holography as it provides the only information on magnetic flux density. The <i>H<sub>d</sub></i> map within a Nd<sub>2</sub>Fe<sub>14</sub>B thin foil, derived from this method, showed good agreement with the micromagnetic simulation result, providing valuable insights related to coercivity. Furthermore, this review examines the application of the wavelet hidden Markov model (WHMM) for noise suppression in thin-foiled Nd<sub>2</sub>Fe<sub>14</sub>B crystals. The results show significant suppression of artificial phase jumps in the reconstructed phase images due to the poor visibility of electron holograms under the narrowest fringe spacing required for spatial resolution in electron holography. These techniques substantially enhance the precision of phase analysis and are applicable to a wide range of magnetic materials, enabling more accurate magnetic characterization.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 24","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}