首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
Senescence-coupled differentiation selectively eliminates cancer-prone stem cells 衰老耦合分化选择性地消除易患癌症的干细胞。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-07 DOI: 10.1038/s41556-025-01783-x
Ageing and cancer are often seen as divergent tissue fates. In our study, we identify a protective programme, called senescence-coupled differentiation (or seno-differentiation), that eliminates cancer-prone stem cells by pushing them to differentiate. Whether melanocyte stem cells follow this path or bypass it under carcinogenic stress determines tissue outcomes: hair greying or melanoma development.
衰老和癌症通常被视为不同的组织命运。在我们的研究中,我们确定了一种保护程序,称为衰老偶联分化(或seno-differentiation),通过推动它们分化来消除易患癌症的干细胞。黑素细胞干细胞是遵循这条路径还是在致癌压力下绕过它,决定了组织的结果:头发变白或黑色素瘤的发展。
{"title":"Senescence-coupled differentiation selectively eliminates cancer-prone stem cells","authors":"","doi":"10.1038/s41556-025-01783-x","DOIUrl":"10.1038/s41556-025-01783-x","url":null,"abstract":"Ageing and cancer are often seen as divergent tissue fates. In our study, we identify a protective programme, called senescence-coupled differentiation (or seno-differentiation), that eliminates cancer-prone stem cells by pushing them to differentiate. Whether melanocyte stem cells follow this path or bypass it under carcinogenic stress determines tissue outcomes: hair greying or melanoma development.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1605-1606"},"PeriodicalIF":19.1,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145241097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational regulation in stress biology 应激生物学中的翻译调控。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-07 DOI: 10.1038/s41556-025-01765-z
Naomi R. Genuth, Andrew Dillin
Organisms must constantly respond to stress to maintain homeostasis, and the successful implementation of cellular stress responses is directly linked to lifespan regulation. In this Review we examine how three age-associated stressors—loss of proteostasis, oxidative damage and dysregulated nutrient sensing—alter protein synthesis. We describe how these stressors inflict cellular damage via their effects on translation and how translational changes can serve as both sensors and responses to the stressor. Finally, we compare stress-induced translational programmes to protein synthesis alterations that occur with age and discuss whether these changes are adaptive or deleterious to longevity and healthy ageing. This Review discusses the effects of three age-associated stressors—loss of proteostasis, oxidative damage and dysregulated nutrient sensing—on global protein synthesis and highlights how altered translation is used by the cell as a stress sensor.
生物体必须不断地对压力作出反应以维持体内平衡,而细胞应激反应的成功实施与寿命调节直接相关。在这篇综述中,我们研究了三种与年龄相关的应激因素——蛋白质平衡丧失、氧化损伤和营养感知失调——如何改变蛋白质合成。我们描述了这些压力源如何通过它们对翻译的影响造成细胞损伤,以及翻译变化如何同时作为传感器和对压力源的反应。最后,我们将压力诱导的翻译程序与随着年龄增长而发生的蛋白质合成改变进行比较,并讨论这些变化对长寿和健康衰老是适应性的还是有害的。
{"title":"Translational regulation in stress biology","authors":"Naomi R. Genuth, Andrew Dillin","doi":"10.1038/s41556-025-01765-z","DOIUrl":"10.1038/s41556-025-01765-z","url":null,"abstract":"Organisms must constantly respond to stress to maintain homeostasis, and the successful implementation of cellular stress responses is directly linked to lifespan regulation. In this Review we examine how three age-associated stressors—loss of proteostasis, oxidative damage and dysregulated nutrient sensing—alter protein synthesis. We describe how these stressors inflict cellular damage via their effects on translation and how translational changes can serve as both sensors and responses to the stressor. Finally, we compare stress-induced translational programmes to protein synthesis alterations that occur with age and discuss whether these changes are adaptive or deleterious to longevity and healthy ageing. This Review discusses the effects of three age-associated stressors—loss of proteostasis, oxidative damage and dysregulated nutrient sensing—on global protein synthesis and highlights how altered translation is used by the cell as a stress sensor.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1609-1621"},"PeriodicalIF":19.1,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145244798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antagonistic stem cell fates under stress govern decisions between hair greying and melanoma 应激下的拮抗干细胞命运支配着头发变白和黑色素瘤之间的决定。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-06 DOI: 10.1038/s41556-025-01769-9
Yasuaki Mohri, Jialiang Nie, Hironobu Morinaga, Tomoki Kato, Takahiro Aoto, Takashi Yamanashi, Daisuke Nanba, Hiroyuki Matsumura, Sakura Kirino, Kouji Kobiyama, Ken J. Ishii, Masahiro Hayashi, Tamio Suzuki, Takeshi Namiki, Jun Seita, Emi K. Nishimura
The exposome, an individual’s lifelong environmental exposure, profoundly impacts health. Somatic tissues undergo functional decline with age, exhibiting characteristic ageing phenotypes, including hair greying and cancer. However, the specific genotoxins, signals and cellular mechanisms underlying each phenotype remain largely unknown. Here we report that melanocyte stem cells (McSCs) and their niche coordinately determine individual stem cell fate through antagonistic, stress-responsive pathways, depending on the type of genotoxic damage incurred. McSC fate tracking in mice revealed that McSCs undergo cellular senescence-coupled differentiation (seno-differentiation) in response to DNA double-strand breaks, resulting in their selective depletion and hair greying, and effectively protecting against melanoma. Conversely, carcinogens can suppress McSC seno-differentiation, even in cells harbouring double-strand breaks, by activating arachidonic acid metabolism and the niche-derived KIT ligand, thereby promoting McSC self-renewal. Collectively, the fate of individual stem cell clones—expansion versus exhaustion—cumulatively and antagonistically governs ageing phenotypes through interaction with the niche. Mohri et al. show that, in response to genotoxic stress, melanocyte stem cells undergo senescence-associated differentiation, causing their depletion and protecting them against melanomagenesis. This process is suppressed by carcinogens.
暴露量,即个人一生的环境暴露,会对健康产生深远的影响。体细胞组织随着年龄的增长功能衰退,表现出典型的衰老表型,包括头发变白和癌症。然而,每种表型背后的特定基因毒素、信号和细胞机制在很大程度上仍然未知。在这里,我们报告了黑素细胞干细胞(McSCs)和它们的生态位通过拮抗、应激反应途径协调地决定了个体干细胞的命运,这取决于所发生的基因毒性损伤的类型。小鼠McSC命运追踪显示,McSC在DNA双链断裂的反应下发生细胞衰老偶联分化(seno-differentiation),导致其选择性耗竭和头发变白,有效地预防黑色素瘤。相反,即使在双链断裂的细胞中,致癌物也可以通过激活花生四烯酸代谢和利基来源的KIT配体来抑制McSC的衰老分化,从而促进McSC的自我更新。总的来说,单个干细胞克隆的命运——扩增与衰竭——通过与生态位的相互作用,累积和拮抗地控制着衰老表型。
{"title":"Antagonistic stem cell fates under stress govern decisions between hair greying and melanoma","authors":"Yasuaki Mohri, Jialiang Nie, Hironobu Morinaga, Tomoki Kato, Takahiro Aoto, Takashi Yamanashi, Daisuke Nanba, Hiroyuki Matsumura, Sakura Kirino, Kouji Kobiyama, Ken J. Ishii, Masahiro Hayashi, Tamio Suzuki, Takeshi Namiki, Jun Seita, Emi K. Nishimura","doi":"10.1038/s41556-025-01769-9","DOIUrl":"10.1038/s41556-025-01769-9","url":null,"abstract":"The exposome, an individual’s lifelong environmental exposure, profoundly impacts health. Somatic tissues undergo functional decline with age, exhibiting characteristic ageing phenotypes, including hair greying and cancer. However, the specific genotoxins, signals and cellular mechanisms underlying each phenotype remain largely unknown. Here we report that melanocyte stem cells (McSCs) and their niche coordinately determine individual stem cell fate through antagonistic, stress-responsive pathways, depending on the type of genotoxic damage incurred. McSC fate tracking in mice revealed that McSCs undergo cellular senescence-coupled differentiation (seno-differentiation) in response to DNA double-strand breaks, resulting in their selective depletion and hair greying, and effectively protecting against melanoma. Conversely, carcinogens can suppress McSC seno-differentiation, even in cells harbouring double-strand breaks, by activating arachidonic acid metabolism and the niche-derived KIT ligand, thereby promoting McSC self-renewal. Collectively, the fate of individual stem cell clones—expansion versus exhaustion—cumulatively and antagonistically governs ageing phenotypes through interaction with the niche. Mohri et al. show that, in response to genotoxic stress, melanocyte stem cells undergo senescence-associated differentiation, causing their depletion and protecting them against melanomagenesis. This process is suppressed by carcinogens.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1647-1659"},"PeriodicalIF":19.1,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145235667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering glioma susceptibility 破解神经胶质瘤易感性。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-03 DOI: 10.1038/s41556-025-01782-y
Andrea Fratton, Boyan Bonev
The regulatory mechanisms that drive oncogene expression in gliomas remain poorly understood. A study now identifies a role for widespread rearrangements of the enhancer connectome. Such rearrangements are linked to known genetic risk variants, revealing how genetic predisposition contributes to malignancy.
在胶质瘤中驱动癌基因表达的调控机制仍然知之甚少。一项研究现在确定了增强子连接体广泛重排的作用。这种重排与已知的遗传风险变异有关,揭示了遗传易感性是如何导致恶性肿瘤的。
{"title":"Deciphering glioma susceptibility","authors":"Andrea Fratton, Boyan Bonev","doi":"10.1038/s41556-025-01782-y","DOIUrl":"10.1038/s41556-025-01782-y","url":null,"abstract":"The regulatory mechanisms that drive oncogene expression in gliomas remain poorly understood. A study now identifies a role for widespread rearrangements of the enhancer connectome. Such rearrangements are linked to known genetic risk variants, revealing how genetic predisposition contributes to malignancy.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1603-1604"},"PeriodicalIF":19.1,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145225592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CellNavi predicts genes directing cellular transitions by learning a gene graph-enhanced cell state manifold CellNavi通过学习基因图增强的细胞状态歧管来预测指导细胞转变的基因。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-03 DOI: 10.1038/s41556-025-01755-1
Tianze Wang, Yan Pan, Fusong Ju, Shuxin Zheng, Chang Liu, Yaosen Min, Qun Jiang, Xinwei Liu, Huanhuan Xia, Guoqing Liu, Haiguang Liu, Pan Deng
A select few genes act as pivotal drivers in the process of cell state transitions. However, finding key genes involved in different transitions is challenging. Here, to address this problem, we present CellNavi, a deep learning-based framework designed to predict genes that drive cell state transitions. CellNavi builds a driver gene predictor upon a cell state manifold, which captures the intrinsic features of cells by learning from large-scale, high-dimensional transcriptomics data and integrating gene graphs with directional connections. Our analysis shows that CellNavi can accurately predict driver genes for transitions induced by genetic, chemical and cytokine perturbations across diverse cell types, conditions and studies. By leveraging a biologically meaningful cell state manifold, it is proficient in tasks involving critical transitions such as cellular differentiation, disease progression and drug response. CellNavi represents a substantial advancement in driver gene prediction and cell state manipulation, opening new avenues in disease biology and therapeutic discovery. The authors integrate single-cell transcriptomic data with prior gene graphs to produce a biologically meaningful cell state manifold that can predict driver genes for genetic perturbations and differentiation events across diverse cell types.
少数基因在细胞状态转变过程中起关键驱动作用。然而,寻找参与不同转变的关键基因是具有挑战性的。在这里,为了解决这个问题,我们提出了CellNavi,一个基于深度学习的框架,旨在预测驱动细胞状态转变的基因。CellNavi在细胞状态流形上建立了一个驱动基因预测器,通过学习大规模、高维转录组学数据和整合带有定向连接的基因图来捕捉细胞的内在特征。我们的分析表明,CellNavi可以准确预测不同细胞类型、条件和研究中由遗传、化学和细胞因子扰动引起的转变的驱动基因。通过利用生物学上有意义的细胞状态歧管,它精通涉及关键转变的任务,如细胞分化,疾病进展和药物反应。CellNavi代表了驱动基因预测和细胞状态操纵方面的重大进步,为疾病生物学和治疗发现开辟了新的途径。
{"title":"CellNavi predicts genes directing cellular transitions by learning a gene graph-enhanced cell state manifold","authors":"Tianze Wang, Yan Pan, Fusong Ju, Shuxin Zheng, Chang Liu, Yaosen Min, Qun Jiang, Xinwei Liu, Huanhuan Xia, Guoqing Liu, Haiguang Liu, Pan Deng","doi":"10.1038/s41556-025-01755-1","DOIUrl":"10.1038/s41556-025-01755-1","url":null,"abstract":"A select few genes act as pivotal drivers in the process of cell state transitions. However, finding key genes involved in different transitions is challenging. Here, to address this problem, we present CellNavi, a deep learning-based framework designed to predict genes that drive cell state transitions. CellNavi builds a driver gene predictor upon a cell state manifold, which captures the intrinsic features of cells by learning from large-scale, high-dimensional transcriptomics data and integrating gene graphs with directional connections. Our analysis shows that CellNavi can accurately predict driver genes for transitions induced by genetic, chemical and cytokine perturbations across diverse cell types, conditions and studies. By leveraging a biologically meaningful cell state manifold, it is proficient in tasks involving critical transitions such as cellular differentiation, disease progression and drug response. CellNavi represents a substantial advancement in driver gene prediction and cell state manipulation, opening new avenues in disease biology and therapeutic discovery. The authors integrate single-cell transcriptomic data with prior gene graphs to produce a biologically meaningful cell state manifold that can predict driver genes for genetic perturbations and differentiation events across diverse cell types.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1863-1874"},"PeriodicalIF":19.1,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41556-025-01755-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145215950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair 作者更正:thy1介导的机制汇聚在一起,驱动YAP在皮肤稳态和修复中的激活。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-02 DOI: 10.1038/s41556-025-01726-6
Egor Sedov, Elle Koren, Sucheta Chopra, Roi Ankawa, Yahav Yosefzon, Marianna Yusupova, Lucien E. Weiss, Adnan Mahly, Arad Soffer, Alona Feldman, Chen Luxenburg, Yoav Shechtman, Yaron Fuchs
{"title":"Author Correction: THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair","authors":"Egor Sedov, Elle Koren, Sucheta Chopra, Roi Ankawa, Yahav Yosefzon, Marianna Yusupova, Lucien E. Weiss, Adnan Mahly, Arad Soffer, Alona Feldman, Chen Luxenburg, Yoav Shechtman, Yaron Fuchs","doi":"10.1038/s41556-025-01726-6","DOIUrl":"10.1038/s41556-025-01726-6","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 11","pages":"2032-2032"},"PeriodicalIF":19.1,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41556-025-01726-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microtubule architecture connects AMOT stability to YAP/TAZ mechanotransduction and Hippo signalling 微管结构将AMOT稳定性与YAP/TAZ机械转导和Hippo信号传导联系起来。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-01 DOI: 10.1038/s41556-025-01773-z
Giada Vanni, Anna Citron, Ambela Suli, Paolo Contessotto, Robin Caire, Alessandro Gandin, Giovanna Mantovan, Francesca Zanconato, Giovanna Brusatin, Michele Di Palma, Elisa Peirano, Lisa Sofia Pozzer, Carlo Albanese Jr, Roberto A. Steiner, Michelangelo Cordenonsi, Tito Panciera, Stefano Piccolo
Cellular mechanotransduction is a key informational system, yet its mechanisms remain elusive. Here we unveil the role of microtubules in mechanosignalling, operating downstream of subnuclear F-actin and nuclear envelope mechanics. Upon mechanical activation, microtubules reorganize from a perinuclear cage into a radial array nucleated by centrosomes. This structural rearrangement triggers degradation of AMOT proteins, which we identify as key mechanical rheostats that sequester YAP/TAZ in the cytoplasm. AMOT is stable in mechano-OFF but degraded in mechano-ON cell states, where microtubules allow AMOT rapid transport to the pericentrosomal proteasome in complex with dynein/dynactin. This process ensures swift control of YAP/TAZ function in response to changes in cell mechanics, with experimental loss of AMOT proteins rendering cells insensitive to mechanical modulations. Ras/RTK oncogenes promote YAP/TAZ-dependent tumorigenesis by corrupting this AMOT-centred mechanical checkpoint. Notably, the Hippo pathway fine-tunes mechanotransduction: LATS kinases phosphorylate AMOT, shielding it from degradation, thereby indirectly restraining YAP/TAZ. Thus, AMOT protein stability serves as a hub linking cytoskeletal reorganization and Hippo signalling to YAP/TAZ mechanosignalling. Vanni et al. show a role for microtubules in YAP/TAZ mechanosignalling. Mechanoresponsive microtubule reorganization into centrosomal arrays allows for AMOT delivery to pericentrosomal proteasomes and degradation, leading to YAP/TAZ activation.
细胞机械转导是一个关键的信息系统,但其机制仍然是难以捉摸的。在这里,我们揭示了微管在机械信号传导中的作用,在亚核f -肌动蛋白和核包膜力学的下游操作。机械激活后,微管从核周笼重新排列成由中心体构成的径向阵列。这种结构重排触发AMOT蛋白的降解,我们认为AMOT蛋白是细胞质中隔离YAP/TAZ的关键机械变阻器。AMOT在机械- off状态下是稳定的,但在机械- on细胞状态下会降解,微管允许AMOT与动力蛋白/动力蛋白复合物快速运输到核周围体蛋白酶体。这一过程确保了YAP/TAZ功能在响应细胞力学变化时的快速控制,实验中AMOT蛋白的缺失使细胞对力学调节不敏感。Ras/RTK癌基因通过破坏这种以amot为中心的机械检查点来促进YAP/ taz依赖性肿瘤的发生。值得注意的是,Hippo通路对机械转导进行微调:LATS激酶使AMOT磷酸化,使其免于降解,从而间接抑制YAP/TAZ。因此,AMOT蛋白的稳定性是连接细胞骨架重组和Hippo信号传导到YAP/TAZ机械信号传导的枢纽。
{"title":"Microtubule architecture connects AMOT stability to YAP/TAZ mechanotransduction and Hippo signalling","authors":"Giada Vanni, Anna Citron, Ambela Suli, Paolo Contessotto, Robin Caire, Alessandro Gandin, Giovanna Mantovan, Francesca Zanconato, Giovanna Brusatin, Michele Di Palma, Elisa Peirano, Lisa Sofia Pozzer, Carlo Albanese Jr, Roberto A. Steiner, Michelangelo Cordenonsi, Tito Panciera, Stefano Piccolo","doi":"10.1038/s41556-025-01773-z","DOIUrl":"10.1038/s41556-025-01773-z","url":null,"abstract":"Cellular mechanotransduction is a key informational system, yet its mechanisms remain elusive. Here we unveil the role of microtubules in mechanosignalling, operating downstream of subnuclear F-actin and nuclear envelope mechanics. Upon mechanical activation, microtubules reorganize from a perinuclear cage into a radial array nucleated by centrosomes. This structural rearrangement triggers degradation of AMOT proteins, which we identify as key mechanical rheostats that sequester YAP/TAZ in the cytoplasm. AMOT is stable in mechano-OFF but degraded in mechano-ON cell states, where microtubules allow AMOT rapid transport to the pericentrosomal proteasome in complex with dynein/dynactin. This process ensures swift control of YAP/TAZ function in response to changes in cell mechanics, with experimental loss of AMOT proteins rendering cells insensitive to mechanical modulations. Ras/RTK oncogenes promote YAP/TAZ-dependent tumorigenesis by corrupting this AMOT-centred mechanical checkpoint. Notably, the Hippo pathway fine-tunes mechanotransduction: LATS kinases phosphorylate AMOT, shielding it from degradation, thereby indirectly restraining YAP/TAZ. Thus, AMOT protein stability serves as a hub linking cytoskeletal reorganization and Hippo signalling to YAP/TAZ mechanosignalling. Vanni et al. show a role for microtubules in YAP/TAZ mechanosignalling. Mechanoresponsive microtubule reorganization into centrosomal arrays allows for AMOT delivery to pericentrosomal proteasomes and degradation, leading to YAP/TAZ activation.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1725-1738"},"PeriodicalIF":19.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41556-025-01773-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remodelling bivalent chromatin is essential for mouse peri-implantation embryogenesis 重塑二价染色质是小鼠着床期胚胎发生的必要条件。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-10-01 DOI: 10.1038/s41556-025-01776-w
Yanhe Li, Jincan He, Yingdong Liu, Yi Hui, Shanyao Liu, Yalin Zhang, Yan Xiong, Tingting Xu, Ziwen Xu, Zhuoao Zhang, Yan Zhang, Guang Yang, Jia Zhao, Dandan Bai, Xinyi Lei, Xiaochen Kou, Yanhong Zhao, Jing Du, Zheng Guo, Jiqing Yin, Xiaoqing Zhang, Congling Xu, Yawei Gao, Miaoxin Chen, Hong Wang, Cizhong Jiang, Shaorong Gao, Wenqiang Liu
Bivalency regulates developmental genes during lineage commitment. However, mechanisms governing bivalent domain establishment, maintenance and resolution in early embryogenesis remain unclear. Here we comprehensively trace bivalent chromatin remodelling throughout mouse peri-implantation development, revealing bifurcated establishment modes that partition epiblast and primitive endoderm regulatory programmes. We identify transiently maintained bivalent domains (TB domains) enriched in the epiblast, where gradual resolution fine-tunes pluripotency progression. Through targeted screening in embryos, we uncover 22 TB domain regulators, including the essential factor ZBTB17. Genetic ablation or degradation of ZBTB17 causes peri-implantation arrest. Mechanistically, ZBTB17 collaborates with KDM6A/B to resolve bivalency by removing H3K27me3 and priming the activation of key pluripotency genes. Remarkably, TB domain dynamics are evolutionarily shared in human pluripotent transitions, with ZBTB17 involvement despite species differences. Our work establishes a framework for bivalent chromatin regulation in early mammalian development and elucidates how its resolution precisely controls lineage commitment. Li, He, Liu and colleagues characterize the dynamic bivalent chromatin landscape during mouse peri-implantation development. They find that factor ZBTB17 works with KDM6A/B to resolve transiently maintained bivalent domains and prime gene activation.
二价在谱系承诺过程中调控发育基因。然而,二价结构域在早期胚胎发生中建立、维持和解决的机制尚不清楚。在这里,我们全面追踪了小鼠着床周围发育过程中的二价染色质重塑,揭示了外胚层和原始内胚层调控程序的分裂建立模式。我们在外胚层中发现了短暂维持的二价结构域(TB结构域),其中逐渐的分解微调了多能性的进展。通过在胚胎中进行靶向筛选,我们发现了22个TB结构域调节因子,包括必需因子ZBTB17。基因消融或ZBTB17的降解导致着床期骤停。在机制上,ZBTB17与KDM6A/B合作,通过去除H3K27me3和启动关键多能性基因的激活来解决二价性问题。值得注意的是,在人类多能性转变过程中,TB结构域动力学在进化上是共享的,尽管物种存在差异,但ZBTB17也参与其中。我们的工作建立了早期哺乳动物发育中二价染色质调控的框架,并阐明了其分辨率如何精确控制谱系承诺。
{"title":"Remodelling bivalent chromatin is essential for mouse peri-implantation embryogenesis","authors":"Yanhe Li, Jincan He, Yingdong Liu, Yi Hui, Shanyao Liu, Yalin Zhang, Yan Xiong, Tingting Xu, Ziwen Xu, Zhuoao Zhang, Yan Zhang, Guang Yang, Jia Zhao, Dandan Bai, Xinyi Lei, Xiaochen Kou, Yanhong Zhao, Jing Du, Zheng Guo, Jiqing Yin, Xiaoqing Zhang, Congling Xu, Yawei Gao, Miaoxin Chen, Hong Wang, Cizhong Jiang, Shaorong Gao, Wenqiang Liu","doi":"10.1038/s41556-025-01776-w","DOIUrl":"10.1038/s41556-025-01776-w","url":null,"abstract":"Bivalency regulates developmental genes during lineage commitment. However, mechanisms governing bivalent domain establishment, maintenance and resolution in early embryogenesis remain unclear. Here we comprehensively trace bivalent chromatin remodelling throughout mouse peri-implantation development, revealing bifurcated establishment modes that partition epiblast and primitive endoderm regulatory programmes. We identify transiently maintained bivalent domains (TB domains) enriched in the epiblast, where gradual resolution fine-tunes pluripotency progression. Through targeted screening in embryos, we uncover 22 TB domain regulators, including the essential factor ZBTB17. Genetic ablation or degradation of ZBTB17 causes peri-implantation arrest. Mechanistically, ZBTB17 collaborates with KDM6A/B to resolve bivalency by removing H3K27me3 and priming the activation of key pluripotency genes. Remarkably, TB domain dynamics are evolutionarily shared in human pluripotent transitions, with ZBTB17 involvement despite species differences. Our work establishes a framework for bivalent chromatin regulation in early mammalian development and elucidates how its resolution precisely controls lineage commitment. Li, He, Liu and colleagues characterize the dynamic bivalent chromatin landscape during mouse peri-implantation development. They find that factor ZBTB17 works with KDM6A/B to resolve transiently maintained bivalent domains and prime gene activation.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1797-1811"},"PeriodicalIF":19.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cracking glioblastoma core regulatory codes 破解胶质母细胞瘤核心调控密码。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-30 DOI: 10.1038/s41556-025-01780-0
Yonglong Dang, Yuk Kit Lor, Gonçalo Castelo-Branco
Glioblastoma (GBM) heterogeneity might arise because of the activation of various gene core regulatory circuitries (CRCs). A new study highlights the central role of HOXB3 in GBM CRCs and how peptide-mediated perturbation of HOXB3-related CRCs in GBM holds potential as treatment for a subset of patients.
胶质母细胞瘤(GBM)的异质性可能是由于多种基因核心调控回路(CRCs)的激活而产生的。一项新的研究强调了HOXB3在GBM crc中的核心作用,以及肽介导的HOXB3相关crc在GBM中如何具有治疗一部分患者的潜力。
{"title":"Cracking glioblastoma core regulatory codes","authors":"Yonglong Dang, Yuk Kit Lor, Gonçalo Castelo-Branco","doi":"10.1038/s41556-025-01780-0","DOIUrl":"10.1038/s41556-025-01780-0","url":null,"abstract":"Glioblastoma (GBM) heterogeneity might arise because of the activation of various gene core regulatory circuitries (CRCs). A new study highlights the central role of HOXB3 in GBM CRCs and how peptide-mediated perturbation of HOXB3-related CRCs in GBM holds potential as treatment for a subset of patients.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 10","pages":"1600-1602"},"PeriodicalIF":19.1,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145200369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: ERCC1–XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes 作者更正:ERCC1-XPF与CTCF和内聚蛋白共同促进印迹基因的发育沉默。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-09-30 DOI: 10.1038/s41556-025-01791-x
Georgia Chatzinikolaou, Zivkos Apostolou, Tamara Aid-Pavlidis, Anna Ioannidou, Ismene Karakasilioti, Giorgio L. Papadopoulos, Michalis Aivaliotis, Maria Tsekrekou, John Strouboulis, Theodore Kosteas, George A. Garinis
{"title":"Author Correction: ERCC1–XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes","authors":"Georgia Chatzinikolaou, Zivkos Apostolou, Tamara Aid-Pavlidis, Anna Ioannidou, Ismene Karakasilioti, Giorgio L. Papadopoulos, Michalis Aivaliotis, Maria Tsekrekou, John Strouboulis, Theodore Kosteas, George A. Garinis","doi":"10.1038/s41556-025-01791-x","DOIUrl":"10.1038/s41556-025-01791-x","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"27 12","pages":"2240-2240"},"PeriodicalIF":19.1,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41556-025-01791-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145200395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1