首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
Diet and longevity 饮食与长寿
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01535-3
Melina Casadio
{"title":"Diet and longevity","authors":"Melina Casadio","doi":"10.1038/s41556-024-01535-3","DOIUrl":"10.1038/s41556-024-01535-3","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1629-1629"},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of TFEB lactylation TFEB 乳化作用
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01533-5
Petra Gross
{"title":"Role of TFEB lactylation","authors":"Petra Gross","doi":"10.1038/s41556-024-01533-5","DOIUrl":"10.1038/s41556-024-01533-5","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1629-1629"},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinoid-enhanced human gastruloids 维甲酸增强型人类胃泌素
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-10 DOI: 10.1038/s41556-024-01517-5
Alexandra Schauer, Jesse V. Veenvliet
Hidden by the womb, early human development remains cloaked in mystery. To unveil developmental processes in health and disease, pluripotent stem cells can be coaxed into structures recapitulating aspects of the embryo. A study now establishes an advanced stem-cell-based model of the human embryonic trunk.
人类的早期发育被子宫所掩盖,至今仍是个谜。为了揭示健康和疾病的发育过程,可以将多能干细胞诱导成重现胚胎各方面的结构。现在,一项研究建立了基于干细胞的人类胚胎躯干先进模型。
{"title":"Retinoid-enhanced human gastruloids","authors":"Alexandra Schauer, Jesse V. Veenvliet","doi":"10.1038/s41556-024-01517-5","DOIUrl":"10.1038/s41556-024-01517-5","url":null,"abstract":"Hidden by the womb, early human development remains cloaked in mystery. To unveil developmental processes in health and disease, pluripotent stem cells can be coaxed into structures recapitulating aspects of the embryo. A study now establishes an advanced stem-cell-based model of the human embryonic trunk.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1634-1636"},"PeriodicalIF":17.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and functional separation of mTORC1 signalling in response to different amino acid sources mTORC1 信号对不同氨基酸源的响应在空间和功能上的分离
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-09 DOI: 10.1038/s41556-024-01523-7
Stephanie A. Fernandes, Danai-Dimitra Angelidaki, Julian Nüchel, Jiyoung Pan, Peter Gollwitzer, Yoav Elkis, Filippo Artoni, Sabine Wilhelm, Marija Kovacevic-Sarmiento, Constantinos Demetriades
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future. Fernandes, Angelidaki et al. provide evidence supporting the spatial separation of mTORC1 activation and signalling. Differentially localized mTORC1 complexes phosphorylate distinct substrates in response to different amino acid supplies.
氨基酸(AA)的可用性通过控制雷帕霉素复合体 1(mTORC1)的机理/哺乳动物靶标活性而成为细胞生长的有力决定因素。根据该领域的主流模型,AA 的充足性会通过异源二聚体 Rag GTP 酶驱动 mTORC1 在溶酶体表面的招募和激活,并从那里协调大多数细胞过程。然而,重要的是,溶酶体对 mTORC1 的调控机制以及 mTORC1 在何处作用于其效应蛋白仍然是个谜。在这里,我们利用多种药理学和遗传学手段来扰乱溶酶体AA传感和蛋白质循环机制,描述了哺乳动物细胞中mTORC1调控和下游功能的空间分离,溶酶体和非溶酶体mTORC1在不同的AA来源下磷酸化不同的底物。此外,我们还发现,即使细胞在有细胞外营养物质存在的情况下生长,由于溶酶体的基础蛋白水解会在局部提供新的 AA,因此一部分 mTOR 会定位在溶酶体,而细胞质中的 mTORC1 则受外源 AA 的调控。总之,我们的研究大大拓宽了我们对mTORC1受AAs调控的拓扑结构的认识,并暗示了存在不同的、依赖于Rag和溶酶体的机制来控制其在其他亚细胞位置的活性。鉴于 mTORC1 信号传导和 AA 传感对人类衰老和疾病的重要性,我们的研究结果很可能会为鉴定功能特异性 mTORC1 调节因子铺平道路,从而为将来发现治疗 mTORC1 活性失调疾病的药物找到更有效的靶点。
{"title":"Spatial and functional separation of mTORC1 signalling in response to different amino acid sources","authors":"Stephanie A. Fernandes, Danai-Dimitra Angelidaki, Julian Nüchel, Jiyoung Pan, Peter Gollwitzer, Yoav Elkis, Filippo Artoni, Sabine Wilhelm, Marija Kovacevic-Sarmiento, Constantinos Demetriades","doi":"10.1038/s41556-024-01523-7","DOIUrl":"10.1038/s41556-024-01523-7","url":null,"abstract":"Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future. Fernandes, Angelidaki et al. provide evidence supporting the spatial separation of mTORC1 activation and signalling. Differentially localized mTORC1 complexes phosphorylate distinct substrates in response to different amino acid supplies.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1918-1933"},"PeriodicalIF":17.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01523-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart 造血心脏形成器官再现了人类造血系统和胚胎心脏的共同发育过程
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-08 DOI: 10.1038/s41556-024-01526-4
Miriana Dardano, Felix Kleemiß, Maike Kosanke, Dorina Lang, Liam Wilson, Annika Franke, Jana Teske, Akshatha Shivaraj, Jeanne de la Roche, Martin Fischer, Lucas Lange, Axel Schambach, Lika Drakhlis, Robert Zweigerdt
Despite the biomedical importance of haematopoietic stem cells and haematopoietic progenitor cells, their in vitro stabilization in a developmental context has not been achieved due to limited knowledge of signals and markers specifying the multiple haematopoietic waves as well as ethically restricted access to the human embryo. Thus, an in vitro approach resembling aspects of haematopoietic development in the context of neighbouring tissues is of interest. Our established human pluripotent stem cell-derived heart-forming organoids (HFOs) recapitulate aspects of heart, vasculature and foregut co-development. Modulating HFO differentiation, we here report the generation of blood-generating HFOs. While maintaining a functional ventricular-like heart anlagen, blood-generating HFOs comprise a mesenchyme-embedded haemogenic endothelial layer encompassing multiple haematopoietic derivatives and haematopoietic progenitor cells with erythro-myeloid and lymphoid potential, reflecting aspects of primitive and definitive haematopoiesis. The model enables the morphologically structured co-development of cardiac, endothelial and multipotent haematopoietic tissues equivalent to the intra-embryonic haematopoietic region in vivo, promoting research on haematopoiesis in vitro. Dardano et al. generate human pluripotent stem cell-derived cardiac organoids capable of undergoing endothelial-to-haematopoietic transition and producing haematopoietic cells.
尽管造血干细胞和造血祖细胞具有重要的生物医学意义,但由于对多种造血波信号和标记的了解有限,以及人类胚胎的伦理限制,这些细胞在体外发育环境中的稳定性尚未实现。因此,一种类似于邻近组织造血发育的体外方法很有意义。我们已建立的人类多能干细胞衍生心脏形成器官组织(HFO)再现了心脏、血管和前肠共同发育的各个方面。通过调节 HFO 的分化,我们在此报告了生成血液的 HFO。在保持类似心室的功能性心脏结构的同时,造血型 HFO 包括一个间充质包埋的造血内皮层,其中包含多种造血衍生物和具有红髓和淋巴潜能的造血祖细胞,反映了原始和最终造血的各个方面。该模型能使心脏、内皮和多能造血组织在形态结构上共同发育,相当于体内胚胎内的造血区域,促进了体外造血的研究。
{"title":"Blood-generating heart-forming organoids recapitulate co-development of the human haematopoietic system and the embryonic heart","authors":"Miriana Dardano, Felix Kleemiß, Maike Kosanke, Dorina Lang, Liam Wilson, Annika Franke, Jana Teske, Akshatha Shivaraj, Jeanne de la Roche, Martin Fischer, Lucas Lange, Axel Schambach, Lika Drakhlis, Robert Zweigerdt","doi":"10.1038/s41556-024-01526-4","DOIUrl":"10.1038/s41556-024-01526-4","url":null,"abstract":"Despite the biomedical importance of haematopoietic stem cells and haematopoietic progenitor cells, their in vitro stabilization in a developmental context has not been achieved due to limited knowledge of signals and markers specifying the multiple haematopoietic waves as well as ethically restricted access to the human embryo. Thus, an in vitro approach resembling aspects of haematopoietic development in the context of neighbouring tissues is of interest. Our established human pluripotent stem cell-derived heart-forming organoids (HFOs) recapitulate aspects of heart, vasculature and foregut co-development. Modulating HFO differentiation, we here report the generation of blood-generating HFOs. While maintaining a functional ventricular-like heart anlagen, blood-generating HFOs comprise a mesenchyme-embedded haemogenic endothelial layer encompassing multiple haematopoietic derivatives and haematopoietic progenitor cells with erythro-myeloid and lymphoid potential, reflecting aspects of primitive and definitive haematopoiesis. The model enables the morphologically structured co-development of cardiac, endothelial and multipotent haematopoietic tissues equivalent to the intra-embryonic haematopoietic region in vivo, promoting research on haematopoiesis in vitro. Dardano et al. generate human pluripotent stem cell-derived cardiac organoids capable of undergoing endothelial-to-haematopoietic transition and producing haematopoietic cells.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1984-1996"},"PeriodicalIF":17.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01526-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ARF1 compartments direct cargo flow via maturation into recycling endosomes ARF1 区室通过成熟为循环内体引导货物流动
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-04 DOI: 10.1038/s41556-024-01518-4
Alexander Stockhammer, Petia Adarska, Vini Natalia, Anja Heuhsen, Antonia Klemt, Gresy Bregu, Shelly Harel, Carmen Rodilla-Ramirez, Carissa Spalt, Ece Özsoy, Paula Leupold, Alica Grindel, Eleanor Fox, Joy Orezimena Mejedo, Amin Zehtabian, Helge Ewers, Dmytro Puchkov, Volker Haucke, Francesca Bottanelli
Cellular membrane homoeostasis is maintained via a tightly regulated membrane and cargo flow between organelles of the endocytic and secretory pathways. Adaptor protein complexes (APs), which are recruited to membranes by the small GTPase ARF1, facilitate cargo selection and incorporation into trafficking intermediates. According to the classical model, small vesicles would facilitate bi-directional long-range transport between the Golgi, endosomes and plasma membrane. Here we revisit the intracellular organization of the vesicular transport machinery using a combination of CRISPR-Cas9 gene editing, live-cell high temporal (fast confocal) or spatial (stimulated emission depletion) microscopy as well as correlative light and electron microscopy. We characterize tubulo-vesicular ARF1 compartments that harbour clathrin and different APs. Our findings reveal two functionally different classes of ARF1 compartments, each decorated by a different combination of APs. Perinuclear ARF1 compartments facilitate Golgi export of secretory cargo, while peripheral ARF1 compartments are involved in endocytic recycling downstream of early endosomes. Contrary to the classical model of long-range vesicle shuttling, we observe that ARF1 compartments shed ARF1 and mature into recycling endosomes. This maturation process is impaired in the absence of AP-1 and results in trafficking defects. Collectively, these data highlight a crucial role for ARF1 compartments in post-Golgi sorting. Stockhammer, Adarska et al. describe ARF1 compartments as the site of adaptor- and clathrin-dependent post-Golgi sorting. Shedding of ARF1 and maturation into recycling endosomes drives sorting of secretory and endocytic recycling cargo.
细胞膜的平衡是通过内吞途径和分泌途径的细胞器之间严格调控的膜和货物流动来维持的。被小 GTP 酶 ARF1 募集到膜上的适配蛋白复合物(APs)促进了货物的选择和纳入贩运中间体。根据经典模型,小囊泡可促进高尔基体、内体和质膜之间的双向长程运输。在这里,我们结合使用 CRISPR-Cas9 基因编辑、活细胞高时间(快速共聚焦)或空间(刺激发射耗竭)显微镜以及相关的光镜和电子显微镜,重新审视了囊泡运输机制的细胞内组织。我们描述了容纳凝集素和不同AP的管泡ARF1区室的特征。我们的发现揭示了两类功能不同的 ARF1 区室,每一类都由不同的 APs 组合装饰。核周ARF1区室有助于高尔基体输出分泌货物,而外周ARF1区室则参与早期内体下游的内细胞再循环。与经典的长程囊泡穿梭模型相反,我们观察到 ARF1 区室脱落 ARF1 并成熟为再循环内体。在缺乏 AP-1 的情况下,这一成熟过程会受损,并导致贩运缺陷。总之,这些数据强调了 ARF1 区室在后高尔基体分拣中的关键作用。
{"title":"ARF1 compartments direct cargo flow via maturation into recycling endosomes","authors":"Alexander Stockhammer, Petia Adarska, Vini Natalia, Anja Heuhsen, Antonia Klemt, Gresy Bregu, Shelly Harel, Carmen Rodilla-Ramirez, Carissa Spalt, Ece Özsoy, Paula Leupold, Alica Grindel, Eleanor Fox, Joy Orezimena Mejedo, Amin Zehtabian, Helge Ewers, Dmytro Puchkov, Volker Haucke, Francesca Bottanelli","doi":"10.1038/s41556-024-01518-4","DOIUrl":"10.1038/s41556-024-01518-4","url":null,"abstract":"Cellular membrane homoeostasis is maintained via a tightly regulated membrane and cargo flow between organelles of the endocytic and secretory pathways. Adaptor protein complexes (APs), which are recruited to membranes by the small GTPase ARF1, facilitate cargo selection and incorporation into trafficking intermediates. According to the classical model, small vesicles would facilitate bi-directional long-range transport between the Golgi, endosomes and plasma membrane. Here we revisit the intracellular organization of the vesicular transport machinery using a combination of CRISPR-Cas9 gene editing, live-cell high temporal (fast confocal) or spatial (stimulated emission depletion) microscopy as well as correlative light and electron microscopy. We characterize tubulo-vesicular ARF1 compartments that harbour clathrin and different APs. Our findings reveal two functionally different classes of ARF1 compartments, each decorated by a different combination of APs. Perinuclear ARF1 compartments facilitate Golgi export of secretory cargo, while peripheral ARF1 compartments are involved in endocytic recycling downstream of early endosomes. Contrary to the classical model of long-range vesicle shuttling, we observe that ARF1 compartments shed ARF1 and mature into recycling endosomes. This maturation process is impaired in the absence of AP-1 and results in trafficking defects. Collectively, these data highlight a crucial role for ARF1 compartments in post-Golgi sorting. Stockhammer, Adarska et al. describe ARF1 compartments as the site of adaptor- and clathrin-dependent post-Golgi sorting. Shedding of ARF1 and maturation into recycling endosomes drives sorting of secretory and endocytic recycling cargo.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1845-1859"},"PeriodicalIF":17.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01518-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recording morphogen signals reveals mechanisms underlying gastruloid symmetry breaking 记录形态发生器信号揭示胃肠对称破缺的内在机制
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-02 DOI: 10.1038/s41556-024-01521-9
Harold M. McNamara, Sabrina C. Solley, Britt Adamson, Michelle M. Chan, Jared E. Toettcher
Aggregates of stem cells can break symmetry and self-organize into embryo-like structures with complex morphologies and gene expression patterns. Mechanisms including reaction-diffusion Turing patterns and cell sorting have been proposed to explain symmetry breaking but distinguishing between these candidate mechanisms of self-organization requires identifying which early asymmetries evolve into subsequent tissue patterns and cell fates. Here we use synthetic ‘signal-recording’ gene circuits to trace the evolution of signalling patterns in gastruloids, three-dimensional stem cell aggregates that form an anterior–posterior axis and structures resembling the mammalian primitive streak and tailbud. We find that cell sorting rearranges patchy domains of Wnt activity into a single pole that defines the gastruloid anterior–posterior axis. We also trace the emergence of Wnt domains to earlier heterogeneity in Nodal activity even before Wnt activity is detectable. Our study defines a mechanism through which aggregates of stem cells can form a patterning axis even in the absence of external spatial cues. Toettcher, McNamara and colleagues use synthetic ‘signal-recording’ gene circuits on mouse gastruloids and find that cell sorting rearranges patchy domains of Wnt activity into a single pole, which defines the gastruloid anterior–posterior axis.
干细胞聚集体可打破对称性,自组织成具有复杂形态和基因表达模式的胚胎状结构。有人提出了包括反应扩散图灵模式和细胞分选在内的机制来解释对称性打破,但要区分这些候选的自组织机制,需要确定哪些早期不对称会演变成随后的组织模式和细胞命运。在这里,我们利用合成的 "信号记录 "基因回路来追踪胃肠中信号模式的演变,胃肠是三维干细胞聚集体,形成前后轴和类似哺乳动物原始条纹和尾芽的结构。我们发现,细胞分拣将成片的Wnt活性域重新排列为单极,从而确定了胃肠的前后轴。我们还将 Wnt 域的出现追溯到早期 Nodal 活动的异质性,甚至在检测到 Wnt 活动之前。我们的研究确定了一种机制,通过这种机制,干细胞聚集体即使在没有外部空间线索的情况下也能形成模式化轴。
{"title":"Recording morphogen signals reveals mechanisms underlying gastruloid symmetry breaking","authors":"Harold M. McNamara, Sabrina C. Solley, Britt Adamson, Michelle M. Chan, Jared E. Toettcher","doi":"10.1038/s41556-024-01521-9","DOIUrl":"10.1038/s41556-024-01521-9","url":null,"abstract":"Aggregates of stem cells can break symmetry and self-organize into embryo-like structures with complex morphologies and gene expression patterns. Mechanisms including reaction-diffusion Turing patterns and cell sorting have been proposed to explain symmetry breaking but distinguishing between these candidate mechanisms of self-organization requires identifying which early asymmetries evolve into subsequent tissue patterns and cell fates. Here we use synthetic ‘signal-recording’ gene circuits to trace the evolution of signalling patterns in gastruloids, three-dimensional stem cell aggregates that form an anterior–posterior axis and structures resembling the mammalian primitive streak and tailbud. We find that cell sorting rearranges patchy domains of Wnt activity into a single pole that defines the gastruloid anterior–posterior axis. We also trace the emergence of Wnt domains to earlier heterogeneity in Nodal activity even before Wnt activity is detectable. Our study defines a mechanism through which aggregates of stem cells can form a patterning axis even in the absence of external spatial cues. Toettcher, McNamara and colleagues use synthetic ‘signal-recording’ gene circuits on mouse gastruloids and find that cell sorting rearranges patchy domains of Wnt activity into a single pole, which defines the gastruloid anterior–posterior axis.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1832-1844"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of PINK1–Parkin in mitochondrial quality control PINK1-Parkin 在线粒体质量控制中的作用
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-02 DOI: 10.1038/s41556-024-01513-9
Derek P. Narendra, Richard J. Youle
Mitophagy mediated by the recessive Parkinson’s disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson’s disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1–Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1–Parkin pathway. Narendra and Youle review the current understanding of the role of PINK1–Parkin in the quality control of mitophagy, highlighting the underlying mechanisms and physiological relevance of the pathway, as well as its role in neuroprotection.
由隐性帕金森病基因 PINK1 和 Parkin 介导的线粒体吞噬对线粒体损伤做出反应,以保护线粒体功能。在该通路中,PINK1 是损伤传感器,探测线粒体导入通路的完整性,并在导入受阻时激活 Parkin。Parkin 是效应器,它选择性地用泛素标记受损线粒体,以进行有丝分裂和其他质量控制过程。这种选择性线粒体质量控制途径可能对帕金森病中的多巴胺神经元尤为重要,在帕金森病中,线粒体网络广泛分布在高度分支的轴突轴上。在此,我们回顾了目前对 PINK1-Parkin 在有丝分裂质量控制中的作用的理解,包括 PINK1 对线粒体窘迫的感知、PINK1 激活 Parkin 以诱导有丝分裂,以及 PINK1-Parkin 通路的生理相关性。
{"title":"The role of PINK1–Parkin in mitochondrial quality control","authors":"Derek P. Narendra, Richard J. Youle","doi":"10.1038/s41556-024-01513-9","DOIUrl":"10.1038/s41556-024-01513-9","url":null,"abstract":"Mitophagy mediated by the recessive Parkinson’s disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson’s disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1–Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1–Parkin pathway. Narendra and Youle review the current understanding of the role of PINK1–Parkin in the quality control of mitophagy, highlighting the underlying mechanisms and physiological relevance of the pathway, as well as its role in neuroprotection.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1639-1651"},"PeriodicalIF":17.3,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNAs kiss and translate in germ granules RNA 在胚芽颗粒中接吻和翻译
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s41556-024-01502-y
Ameya P. Jalihal, Zachary M. Geisterfer, Amy S. Gladfelter
The assembly of germ granules remains unknown, but recent attention to the role of RNA structure in membrane-less organelle assembly is changing our understanding of RNAs in the cell. Two studies now show how RNA–RNA interactions drive germ granule assembly and how germ granules spatially regulate embryonic mRNA translation.
胚芽颗粒的组装仍然未知,但最近对 RNA 结构在无膜细胞器组装中作用的关注正在改变我们对细胞中 RNA 的认识。现在有两项研究显示了 RNA-RNA 相互作用是如何驱动胚芽颗粒组装的,以及胚芽颗粒是如何在空间上调控胚胎 mRNA 翻译的。
{"title":"RNAs kiss and translate in germ granules","authors":"Ameya P. Jalihal, Zachary M. Geisterfer, Amy S. Gladfelter","doi":"10.1038/s41556-024-01502-y","DOIUrl":"10.1038/s41556-024-01502-y","url":null,"abstract":"The assembly of germ granules remains unknown, but recent attention to the role of RNA structure in membrane-less organelle assembly is changing our understanding of RNAs in the cell. Two studies now show how RNA–RNA interactions drive germ granule assembly and how germ granules spatially regulate embryonic mRNA translation.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1828-1829"},"PeriodicalIF":17.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HERD-1 mediates multiphase condensate immiscibility to regulate small RNA-driven transgenerational epigenetic inheritance HERD-1介导多相凝结物不溶性,调节小核糖核酸驱动的转代表观遗传
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-01 DOI: 10.1038/s41556-024-01514-8
Changfeng Zhao, Shiyu Cai, Ruona Shi, Xinru Li, Boyuan Deng, Ruofei Li, Shuhan Yang, Jing Huang, Yonglin Liang, Pu Lu, Zhongping Yuan, Haoxiang Jia, Zongjin Jiang, Xiaofei Zhang, Scott Kennedy, Gang Wan
Biomolecular condensates, such as the nucleolus, stress granules/processing bodies and germ granules, are multiphase assemblages whose formation mechanisms and significance remain poorly understood. Here we identify protein constituents of the spatiotemporally ordered P, Z and M multiphase condensates in Caenorhabditis elegans germ granules using optimized TurboID-mediated proximity biotin labelling. These include 462, 41 and 86 proteins localizing to P, Z and M condensates, respectively, of which 522 were previously unknown protein constituents. Each condensate’s proteins are enriched for distinct classes of structured and intrinsically disordered domains, suggesting divergent functions and assembly mechanisms. Through a functional screen, we identify a germ granule protein, HERD-1, which prevents the mixing of P, Z and M condensates. Mixing in herd-1 mutants correlates with disorganization of germline small RNA pathways and prolonged epigenetic inheritance of RNA interference-induced gene silencing. Forced mixing of these condensate components using a nanobody with specific binding activity against green fluorescent protein also extends epigenetic inheritance. We propose that active maintenance of germ granule immiscibility helps to organize and regulate small RNA-driven transgenerational epigenetic inheritance in C. elegans. Zhao et al. report that the Z compartment protein HERD-1 regulates transgenerational epigenetic inheritance in Caenorhabditis elegans at least in part by preventing the mixing of germ granule condensates.
核仁、应激颗粒/加工体和胚芽颗粒等生物分子凝聚体是多相集合体,其形成机制和意义至今仍鲜为人知。在这里,我们利用优化的 TurboID 介导的近距离生物素标记,鉴定了草履虫胚芽颗粒中时空有序的 P、Z 和 M 多相凝聚体的蛋白质成分。其中包括 462、41 和 86 个分别定位到 P、Z 和 M 凝聚物的蛋白质,其中 522 个是以前未知的蛋白质成分。每种缩聚物的蛋白质都富含不同类别的结构域和内在无序域,这表明它们具有不同的功能和组装机制。通过功能筛选,我们发现了一种胚芽颗粒蛋白 HERD-1,它能阻止 P、Z 和 M 缩合物的混合。HERD-1突变体中的混合与种系小RNA通路的混乱和RNA干扰诱导的基因沉默的表观遗传时间延长有关。使用一种对绿色荧光蛋白具有特异性结合活性的纳米抗体强制混合这些凝聚物成分,也会延长表观遗传的时间。我们认为,积极维持胚芽颗粒的不溶性有助于组织和调节小 RNA 驱动的秀丽隐杆线虫转代表观遗传。
{"title":"HERD-1 mediates multiphase condensate immiscibility to regulate small RNA-driven transgenerational epigenetic inheritance","authors":"Changfeng Zhao, Shiyu Cai, Ruona Shi, Xinru Li, Boyuan Deng, Ruofei Li, Shuhan Yang, Jing Huang, Yonglin Liang, Pu Lu, Zhongping Yuan, Haoxiang Jia, Zongjin Jiang, Xiaofei Zhang, Scott Kennedy, Gang Wan","doi":"10.1038/s41556-024-01514-8","DOIUrl":"10.1038/s41556-024-01514-8","url":null,"abstract":"Biomolecular condensates, such as the nucleolus, stress granules/processing bodies and germ granules, are multiphase assemblages whose formation mechanisms and significance remain poorly understood. Here we identify protein constituents of the spatiotemporally ordered P, Z and M multiphase condensates in Caenorhabditis elegans germ granules using optimized TurboID-mediated proximity biotin labelling. These include 462, 41 and 86 proteins localizing to P, Z and M condensates, respectively, of which 522 were previously unknown protein constituents. Each condensate’s proteins are enriched for distinct classes of structured and intrinsically disordered domains, suggesting divergent functions and assembly mechanisms. Through a functional screen, we identify a germ granule protein, HERD-1, which prevents the mixing of P, Z and M condensates. Mixing in herd-1 mutants correlates with disorganization of germline small RNA pathways and prolonged epigenetic inheritance of RNA interference-induced gene silencing. Forced mixing of these condensate components using a nanobody with specific binding activity against green fluorescent protein also extends epigenetic inheritance. We propose that active maintenance of germ granule immiscibility helps to organize and regulate small RNA-driven transgenerational epigenetic inheritance in C. elegans. Zhao et al. report that the Z compartment protein HERD-1 regulates transgenerational epigenetic inheritance in Caenorhabditis elegans at least in part by preventing the mixing of germ granule condensates.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1958-1970"},"PeriodicalIF":17.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1