首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
Single-cell new RNA sequencing reveals principles of transcription at the resolution of individual bursts 单细胞新 RNA 测序揭示了单个突变的转录原理
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-28 DOI: 10.1038/s41556-024-01486-9
Daniel Ramsköld, Gert-Jan Hendriks, Anton J. M. Larsson, Juliane V. Mayr, Christoph Ziegenhain, Michael Hagemann-Jensen, Leonard Hartmanis, Rickard Sandberg
Analyses of transcriptional bursting from single-cell RNA-sequencing data have revealed patterns of variation and regulation in the kinetic parameters that could be inferred. Here we profiled newly transcribed (4-thiouridine-labelled) RNA across 10,000 individual primary mouse fibroblasts to more broadly infer bursting kinetics and coordination. We demonstrate that inference from new RNA profiles could separate the kinetic parameters that together specify the burst size, and that the synthesis rate (and not the transcriptional off rate) controls the burst size. Importantly, transcriptome-wide inference of transcriptional on and off rates provided conclusive evidence that RNA polymerase II transcribes genes in bursts. Recent reports identified examples of transcriptional co-bursting, yet no global analyses have been performed. The deep new RNA profiles we generated with allelic resolution demonstrated that co-bursting rarely appears more frequently than expected by chance, except for certain gene pairs, notably paralogues located in close genomic proximity. Altogether, new RNA single-cell profiling critically improves the inference of transcriptional bursting and provides strong evidence for independent transcriptional bursting of mammalian genes. Ramskold, Hendriks, Larsson et al. use deep single-cell profiling of newly transcribed RNA to uncover the kinetics and dynamics of transcriptional bursting at allelic resolution in primary mouse cells.
从单细胞 RNA 测序数据对转录猝灭进行的分析揭示了可以推断出的动力学参数的变化和调控模式。在这里,我们分析了 10,000 个小鼠原代成纤维细胞中新转录的(4-硫尿苷标记的)RNA,以更广泛地推断猝灭动力学和协调性。我们证明,从新的 RNA 图谱推断可以分离出共同决定猝发大小的动力学参数,并且合成率(而非转录关闭率)控制着猝发大小。重要的是,对整个转录组的转录开启和关闭速率的推断提供了确凿的证据,证明 RNA 聚合酶 II 在爆发中转录基因。最近的报道发现了转录共突变的例子,但还没有进行过全局分析。我们生成的具有等位基因分辨率的深度新 RNA 图谱表明,除了某些基因对,特别是位于基因组附近的旁系基因,共突变出现的频率很少超过偶然的预期。总之,新的 RNA 单细胞图谱极大地改进了转录突变的推断,为哺乳动物基因的独立转录突变提供了有力证据。
{"title":"Single-cell new RNA sequencing reveals principles of transcription at the resolution of individual bursts","authors":"Daniel Ramsköld, Gert-Jan Hendriks, Anton J. M. Larsson, Juliane V. Mayr, Christoph Ziegenhain, Michael Hagemann-Jensen, Leonard Hartmanis, Rickard Sandberg","doi":"10.1038/s41556-024-01486-9","DOIUrl":"10.1038/s41556-024-01486-9","url":null,"abstract":"Analyses of transcriptional bursting from single-cell RNA-sequencing data have revealed patterns of variation and regulation in the kinetic parameters that could be inferred. Here we profiled newly transcribed (4-thiouridine-labelled) RNA across 10,000 individual primary mouse fibroblasts to more broadly infer bursting kinetics and coordination. We demonstrate that inference from new RNA profiles could separate the kinetic parameters that together specify the burst size, and that the synthesis rate (and not the transcriptional off rate) controls the burst size. Importantly, transcriptome-wide inference of transcriptional on and off rates provided conclusive evidence that RNA polymerase II transcribes genes in bursts. Recent reports identified examples of transcriptional co-bursting, yet no global analyses have been performed. The deep new RNA profiles we generated with allelic resolution demonstrated that co-bursting rarely appears more frequently than expected by chance, except for certain gene pairs, notably paralogues located in close genomic proximity. Altogether, new RNA single-cell profiling critically improves the inference of transcriptional bursting and provides strong evidence for independent transcriptional bursting of mammalian genes. Ramskold, Hendriks, Larsson et al. use deep single-cell profiling of newly transcribed RNA to uncover the kinetics and dynamics of transcriptional bursting at allelic resolution in primary mouse cells.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1725-1733"},"PeriodicalIF":17.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01486-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gasdermins as evolutionarily conserved executors of inflammation and cell death Gasdermins 作为炎症和细胞死亡的进化保守执行者。
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-26 DOI: 10.1038/s41556-024-01474-z
Kaiwen W. Chen, Petr Broz
The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction. Gasdermins are a family of proteins that form membrane pores and elicit pyroptosis. This Review discusses recent work highlighting their regulation and emerging biological roles, including in non-lethal pore formation and host defence.
气孔形成蛋白(gasdermins)是一个气孔形成蛋白家族,最近新出现的气孔形成蛋白(gasdermins)是热核变性(pyroptosis)的执行者,热核变性是一种溶解性细胞死亡形式,由先天性免疫系统诱导,以消灭受感染的细胞或恶性细胞。哺乳动物的气蛋白由一个细胞毒性 N 端结构域、一个柔性连接体和一个 C 端抑制结构域组成。连接体上的蛋白水解裂解释放出细胞毒性结构域,从而使其能够形成β-桶状膜孔。质膜上气孔的形成最终会导致电化学梯度的丧失、细胞死亡和膜破裂。在此,我们回顾了最近的研究工作,这些工作通过揭示气孔蛋白的激活机制、调控及其在自身免疫、宿主防御和癌症中的作用,拓展了我们对哺乳动物气孔蛋白生物学和功能的认识。我们进一步强调了真菌和细菌气孔的形成,指出了诱导细胞死亡的保守机制。
{"title":"Gasdermins as evolutionarily conserved executors of inflammation and cell death","authors":"Kaiwen W. Chen, Petr Broz","doi":"10.1038/s41556-024-01474-z","DOIUrl":"10.1038/s41556-024-01474-z","url":null,"abstract":"The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction. Gasdermins are a family of proteins that form membrane pores and elicit pyroptosis. This Review discusses recent work highlighting their regulation and emerging biological roles, including in non-lethal pore formation and host defence.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1394-1406"},"PeriodicalIF":17.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive microtubule reinforcement enables cell migration through 3D environments 自适应微管强化实现细胞在三维环境中迁移
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-23 DOI: 10.1038/s41556-024-01477-w
In cells migrating through complex three-dimensional microenvironments, microtubules are adaptively reinforced at areas of high compressive stress. This reinforcement controls the release of microtubule-bound contractility effectors to locally modify force generation in space and time, enabling motility and cell survival in mechanically strenuous settings.
细胞在复杂的三维微环境中迁移时,微管会在高压缩应力区域进行适应性强化。这种强化控制着与微管结合的收缩效应物质的释放,从而在空间和时间上局部改变力的产生,使细胞能够在机械应力环境中运动和存活。
{"title":"Adaptive microtubule reinforcement enables cell migration through 3D environments","authors":"","doi":"10.1038/s41556-024-01477-w","DOIUrl":"10.1038/s41556-024-01477-w","url":null,"abstract":"In cells migrating through complex three-dimensional microenvironments, microtubules are adaptively reinforced at areas of high compressive stress. This reinforcement controls the release of microtubule-bound contractility effectors to locally modify force generation in space and time, enabling motility and cell survival in mechanically strenuous settings.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1382-1383"},"PeriodicalIF":17.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosome regulation by Rubicon in ageing 外泌体在衰老过程中受卢比肯的调控
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-22 DOI: 10.1038/s41556-024-01482-z
Yan Zhen, Harald Stenmark
Autophagy decreases with age, and this is in part attributed to increasing levels of the autophagy-suppressing protein Rubicon. Cell biologists now find another ageing-associated function for Rubicon — the release of exosomes containing microRNAs that control senescence and longevity.
自噬会随着年龄的增长而减少,这部分归因于自噬抑制蛋白Rubicon水平的增加。细胞生物学家现在发现了 Rubicon 的另一个与衰老相关的功能--释放含有控制衰老和长寿的 microRNA 的外泌体。
{"title":"Exosome regulation by Rubicon in ageing","authors":"Yan Zhen, Harald Stenmark","doi":"10.1038/s41556-024-01482-z","DOIUrl":"10.1038/s41556-024-01482-z","url":null,"abstract":"Autophagy decreases with age, and this is in part attributed to increasing levels of the autophagy-suppressing protein Rubicon. Cell biologists now find another ageing-associated function for Rubicon — the release of exosomes containing microRNAs that control senescence and longevity.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1380-1381"},"PeriodicalIF":17.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Rubicon–WIPI axis regulates exosome biogenesis during ageing Rubicon-WIPI轴调节衰老过程中的外泌体生物生成
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-22 DOI: 10.1038/s41556-024-01481-0
Kyosuke Yanagawa, Akiko Kuma, Maho Hamasaki, Shunbun Kita, Tadashi Yamamuro, Kohei Nishino, Shuhei Nakamura, Hiroko Omori, Tatsuya Kaminishi, Satoshi Oikawa, Yoshio Kato, Ryuya Edahiro, Ryosuke Kawagoe, Takako Taniguchi, Yoko Tanaka, Takayuki Shima, Keisuke Tabata, Miki Iwatani, Nao Bekku, Rikinari Hanayama, Yukinori Okada, Takayuki Akimoto, Hidetaka Kosako, Akiko Takahashi, Iichiro Shimomura, Yasushi Sakata, Tamotsu Yoshimori
Cells release intraluminal vesicles in multivesicular bodies as exosomes to communicate with other cells. Although recent studies suggest an intimate link between exosome biogenesis and autophagy, the detailed mechanism is not fully understood. Here we employed comprehensive RNA interference screening for autophagy-related factors and discovered that Rubicon, a negative regulator of autophagy, is essential for exosome release. Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Interactome analysis of WIPI2d identified the ESCRT components that are required for intraluminal vesicle formation. Notably, we found that Rubicon is required for an age-dependent increase of exosome release in mice. In addition, small RNA sequencing of serum exosomes revealed that Rubicon determines the fate of exosomal microRNAs associated with cellular senescence and longevity pathways. Taken together, our current results suggest that the Rubicon–WIPI axis functions as a key regulator of exosome biogenesis and is responsible for age-dependent changes in exosome quantity and quality. Yanagawa et al. show that the autophagy-related protein Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Rubicon promotes both an increase in exosome release during ageing and the pro-senescent effects of these exosomes.
细胞释放多囊体中的腔内囊泡作为外泌体,与其他细胞进行交流。尽管最近的研究表明外泌体的生物生成与自噬之间存在密切联系,但其详细机制尚未完全明了。在这里,我们对自噬相关因子进行了全面的RNA干扰筛选,发现自噬的负调控因子Rubicon对外泌体的释放至关重要。Rubicon 将 WIPI2d 募集到内体以促进外泌体的生物生成。WIPI2d的相互作用组分析确定了腔内囊泡形成所需的ESCRT成分。值得注意的是,我们发现 Rubicon 是小鼠外泌体释放随年龄增长而增加的必要条件。此外,血清外泌体的小 RNA 测序显示,Rubicon 决定着与细胞衰老和长寿途径相关的外泌体 microRNA 的命运。综上所述,我们目前的研究结果表明,Rubicon-WIPI 轴是外泌体生物生成的关键调节因子,是外泌体数量和质量随年龄变化的原因。
{"title":"The Rubicon–WIPI axis regulates exosome biogenesis during ageing","authors":"Kyosuke Yanagawa, Akiko Kuma, Maho Hamasaki, Shunbun Kita, Tadashi Yamamuro, Kohei Nishino, Shuhei Nakamura, Hiroko Omori, Tatsuya Kaminishi, Satoshi Oikawa, Yoshio Kato, Ryuya Edahiro, Ryosuke Kawagoe, Takako Taniguchi, Yoko Tanaka, Takayuki Shima, Keisuke Tabata, Miki Iwatani, Nao Bekku, Rikinari Hanayama, Yukinori Okada, Takayuki Akimoto, Hidetaka Kosako, Akiko Takahashi, Iichiro Shimomura, Yasushi Sakata, Tamotsu Yoshimori","doi":"10.1038/s41556-024-01481-0","DOIUrl":"10.1038/s41556-024-01481-0","url":null,"abstract":"Cells release intraluminal vesicles in multivesicular bodies as exosomes to communicate with other cells. Although recent studies suggest an intimate link between exosome biogenesis and autophagy, the detailed mechanism is not fully understood. Here we employed comprehensive RNA interference screening for autophagy-related factors and discovered that Rubicon, a negative regulator of autophagy, is essential for exosome release. Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Interactome analysis of WIPI2d identified the ESCRT components that are required for intraluminal vesicle formation. Notably, we found that Rubicon is required for an age-dependent increase of exosome release in mice. In addition, small RNA sequencing of serum exosomes revealed that Rubicon determines the fate of exosomal microRNAs associated with cellular senescence and longevity pathways. Taken together, our current results suggest that the Rubicon–WIPI axis functions as a key regulator of exosome biogenesis and is responsible for age-dependent changes in exosome quantity and quality. Yanagawa et al. show that the autophagy-related protein Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Rubicon promotes both an increase in exosome release during ageing and the pro-senescent effects of these exosomes.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1558-1570"},"PeriodicalIF":17.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA sequestration in P-bodies sustains myeloid leukaemia P 型体中的 RNA 封存使髓性白血病得以持续
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-21 DOI: 10.1038/s41556-024-01489-6
Srikanth Kodali, Ludovica Proietti, Gemma Valcarcel, Anna V. López-Rubio, Patrizia Pessina, Thomas Eder, Junchao Shi, Annie Jen, Núria Lupión-Garcia, Anne C. Starner, Mason D. Bartels, Yingzhi Cui, Caroline M. Sands, Ainoa Planas-Riverola, Alba Martínez, Talia Velasco-Hernandez, Laureano Tomás-Daza, Bernhard Alber, Gabriele Manhart, Isabella Maria Mayer, Karoline Kollmann, Alessandro Fatica, Pablo Menendez, Evgenia Shishkova, Rachel E. Rau, Biola M. Javierre, Joshua Coon, Qi Chen, Eric L. Van Nostrand, Jose L. Sardina, Florian Grebien, Bruno Di Stefano
Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions. Kodali, Proietti et al. report that increased numbers of P-bodies in leukaemia cells account for sequestration and prevention of tumour-suppressive mRNAs from being translated, which could be targeted as a potential intervention in myeloid leukaemia.
转录后机制是祖细胞特性的基本保障,在癌症中往往会出现失调。在这里,我们通过在正常和恶性造血祖细胞中进行全基因组 CRISPR 筛选,确定了 P-抗体的调控因子是急性髓性白血病(AML)的关键漏洞。我们发现白血病细胞中的 P 型体数量异常增多,并表明 P 型体的组装对急性髓性白血病的发生和维持至关重要。值得注意的是,P-抗体的缺失对同源造血几乎没有影响,但会影响再生造血。从人类急性髓细胞性白血病细胞中纯化的 P-体的分子特征揭示了它们在从翻译机制中封存编码强效肿瘤抑制因子的信使 RNA 方面的关键作用。P 型体的溶解促进了这些 mRNA 的翻译,进而重新连接了白血病细胞中的基因表达和染色质结构。总之,我们的研究结果凸显了在组织稳态和肿瘤发生过程中,RNA在P体中的螯合作用具有鲜明的对比性和独特性。这些见解为了解骨髓性白血病和未来的治疗干预开辟了潜在的途径。
{"title":"RNA sequestration in P-bodies sustains myeloid leukaemia","authors":"Srikanth Kodali, Ludovica Proietti, Gemma Valcarcel, Anna V. López-Rubio, Patrizia Pessina, Thomas Eder, Junchao Shi, Annie Jen, Núria Lupión-Garcia, Anne C. Starner, Mason D. Bartels, Yingzhi Cui, Caroline M. Sands, Ainoa Planas-Riverola, Alba Martínez, Talia Velasco-Hernandez, Laureano Tomás-Daza, Bernhard Alber, Gabriele Manhart, Isabella Maria Mayer, Karoline Kollmann, Alessandro Fatica, Pablo Menendez, Evgenia Shishkova, Rachel E. Rau, Biola M. Javierre, Joshua Coon, Qi Chen, Eric L. Van Nostrand, Jose L. Sardina, Florian Grebien, Bruno Di Stefano","doi":"10.1038/s41556-024-01489-6","DOIUrl":"10.1038/s41556-024-01489-6","url":null,"abstract":"Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions. Kodali, Proietti et al. report that increased numbers of P-bodies in leukaemia cells account for sequestration and prevention of tumour-suppressive mRNAs from being translated, which could be targeted as a potential intervention in myeloid leukaemia.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1745-1758"},"PeriodicalIF":17.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinoic acid induces human gastruloids with posterior embryo-like structures 视黄酸诱导具有后胚胎样结构的人类胃体
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-20 DOI: 10.1038/s41556-024-01487-8
Nobuhiko Hamazaki, Wei Yang, Connor A. Kubo, Chengxiang Qiu, Beth K. Martin, Riddhiman K. Garge, Samuel G. Regalado, Eva K. Nichols, Sriram Pendyala, Nicholas Bradley, Douglas M. Fowler, Choli Lee, Riza M. Daza, Sanjay Srivatsan, Jay Shendure
Gastruloids are a powerful in vitro model of early human development. However, although elongated and composed of all three germ layers, human gastruloids do not morphologically resemble post-implantation human embryos. Here we show that an early pulse of retinoic acid (RA), together with later Matrigel, robustly induces human gastruloids with posterior embryo-like morphological structures, including a neural tube flanked by segmented somites and diverse cell types, including neural crest, neural progenitors, renal progenitors and myocytes. Through in silico staging based on single-cell RNA sequencing, we find that human RA-gastruloids progress further than other human or mouse embryo models, aligning to E9.5 mouse and CS11 cynomolgus monkey embryos. We leverage chemical and genetic perturbations of RA-gastruloids to confirm that WNT and BMP signalling regulate somite formation and neural tube length in the human context, while transcription factors TBX6 and PAX3 underpin presomitic mesoderm and neural crest, respectively. Looking forward, RA-gastruloids are a robust, scalable model for decoding early human embryogenesis. Hamazaki, Yang et al. report that an early pulse of retinoic acid robustly induces human gastruloids with a neural tube, segmented somites and more advanced cell types than conventional gastruloids.
胃胚层是人类早期发育的强大体外模型。然而,尽管人类胃小体是由三个胚层组成的细长体,但在形态上与植入后的人类胚胎并不相似。在这里,我们展示了视黄酸(RA)的早期脉冲与后期的 Matrigel 一起,能强有力地诱导出具有后胚胎样形态结构的人类胃小体,包括神经管两侧的分节体节和多种细胞类型,包括神经嵴、神经祖细胞、肾祖细胞和肌细胞。通过基于单细胞 RNA 测序的硅学分期,我们发现人类 RA 胃小体比其他人类或小鼠胚胎模型进展更快,与 E9.5 小鼠和 CS11 犬猴胚胎一致。我们利用对RA-胃小体的化学和遗传扰动来证实,WNT和BMP信号调控着人类体节的形成和神经管的长度,而转录因子TBX6和PAX3则分别支撑着绒毛膜前中胚层和神经嵴。展望未来,RA-胃泌素是解码人类早期胚胎发生的一个稳健、可扩展的模型。
{"title":"Retinoic acid induces human gastruloids with posterior embryo-like structures","authors":"Nobuhiko Hamazaki, Wei Yang, Connor A. Kubo, Chengxiang Qiu, Beth K. Martin, Riddhiman K. Garge, Samuel G. Regalado, Eva K. Nichols, Sriram Pendyala, Nicholas Bradley, Douglas M. Fowler, Choli Lee, Riza M. Daza, Sanjay Srivatsan, Jay Shendure","doi":"10.1038/s41556-024-01487-8","DOIUrl":"10.1038/s41556-024-01487-8","url":null,"abstract":"Gastruloids are a powerful in vitro model of early human development. However, although elongated and composed of all three germ layers, human gastruloids do not morphologically resemble post-implantation human embryos. Here we show that an early pulse of retinoic acid (RA), together with later Matrigel, robustly induces human gastruloids with posterior embryo-like morphological structures, including a neural tube flanked by segmented somites and diverse cell types, including neural crest, neural progenitors, renal progenitors and myocytes. Through in silico staging based on single-cell RNA sequencing, we find that human RA-gastruloids progress further than other human or mouse embryo models, aligning to E9.5 mouse and CS11 cynomolgus monkey embryos. We leverage chemical and genetic perturbations of RA-gastruloids to confirm that WNT and BMP signalling regulate somite formation and neural tube length in the human context, while transcription factors TBX6 and PAX3 underpin presomitic mesoderm and neural crest, respectively. Looking forward, RA-gastruloids are a robust, scalable model for decoding early human embryogenesis. Hamazaki, Yang et al. report that an early pulse of retinoic acid robustly induces human gastruloids with a neural tube, segmented somites and more advanced cell types than conventional gastruloids.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 10","pages":"1790-1803"},"PeriodicalIF":17.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01487-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compression-dependent microtubule reinforcement enables cells to navigate confined environments 依赖压缩的微管强化使细胞能够在密闭环境中航行
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-19 DOI: 10.1038/s41556-024-01476-x
Robert J. Ju, Alistair D. Falconer, Christanny J. Schmidt, Marco A. Enriquez Martinez, Kevin M. Dean, Reto P. Fiolka, David P. Sester, Max Nobis, Paul Timpson, Alexis J. Lomakin, Gaudenz Danuser, Melanie D. White, Nikolas K. Haass, Dietmar B. Oelz, Samantha J. Stehbens
Cells migrating through complex three-dimensional environments experience considerable physical challenges, including tensile stress and compression. To move, cells need to resist these forces while also squeezing the large nucleus through confined spaces. This requires highly coordinated cortical contractility. Microtubules can both resist compressive forces and sequester key actomyosin regulators to ensure appropriate activation of contractile forces. Yet, how these two roles are integrated to achieve nuclear transmigration in three dimensions is largely unknown. Here, we demonstrate that compression triggers reinforcement of a dedicated microtubule structure at the rear of the nucleus by the mechanoresponsive recruitment of cytoplasmic linker-associated proteins, which dynamically strengthens and repairs the lattice. These reinforced microtubules form the mechanostat: an adaptive feedback mechanism that allows the cell to both withstand compressive force and spatiotemporally organize contractility signalling pathways. The microtubule mechanostat facilitates nuclear positioning and coordinates force production to enable the cell to pass through constrictions. Disruption of the mechanostat imbalances cortical contractility, stalling migration and ultimately resulting in catastrophic cell rupture. Our findings reveal a role for microtubules as cellular sensors that detect and respond to compressive forces, enabling movement and ensuring survival in mechanically demanding environments. Ju et al. show that during three-dimensional cell migration, compression recruits cytoplasmic linker-associated proteins to microtubules; these stabilized microtubules then coordinate nuclear positioning and contractility in confined migration.
细胞在复杂的三维环境中迁移时会遇到相当大的物理挑战,包括拉伸应力和压缩力。为了移动,细胞需要抵抗这些力,同时还要挤压庞大的细胞核穿过狭窄的空间。这需要高度协调的皮质收缩力。微管既能抵抗压缩力,又能封闭关键的肌动蛋白调节因子,以确保适当激活收缩力。然而,如何整合这两种作用以实现核在三维空间中的迁移在很大程度上还是未知数。在这里,我们证明了压缩会触发细胞核后部的专用微管结构的加固,这种加固是通过细胞质连接体相关蛋白的机械响应招募来实现的,从而动态地加固和修复晶格。这些加固的微管构成了机械抑制器:一种适应性反馈机制,使细胞既能承受压缩力,又能在时空上组织收缩信号通路。微管机械静止器有助于细胞核定位并协调力的产生,使细胞能够通过收缩。机械促进剂的破坏会导致皮质收缩力失衡、迁移停滞并最终导致细胞灾难性破裂。我们的研究结果揭示了微管作为细胞传感器的作用,它能检测压缩力并做出反应,从而使细胞运动起来,并确保细胞在机械要求极高的环境中存活。
{"title":"Compression-dependent microtubule reinforcement enables cells to navigate confined environments","authors":"Robert J. Ju, Alistair D. Falconer, Christanny J. Schmidt, Marco A. Enriquez Martinez, Kevin M. Dean, Reto P. Fiolka, David P. Sester, Max Nobis, Paul Timpson, Alexis J. Lomakin, Gaudenz Danuser, Melanie D. White, Nikolas K. Haass, Dietmar B. Oelz, Samantha J. Stehbens","doi":"10.1038/s41556-024-01476-x","DOIUrl":"10.1038/s41556-024-01476-x","url":null,"abstract":"Cells migrating through complex three-dimensional environments experience considerable physical challenges, including tensile stress and compression. To move, cells need to resist these forces while also squeezing the large nucleus through confined spaces. This requires highly coordinated cortical contractility. Microtubules can both resist compressive forces and sequester key actomyosin regulators to ensure appropriate activation of contractile forces. Yet, how these two roles are integrated to achieve nuclear transmigration in three dimensions is largely unknown. Here, we demonstrate that compression triggers reinforcement of a dedicated microtubule structure at the rear of the nucleus by the mechanoresponsive recruitment of cytoplasmic linker-associated proteins, which dynamically strengthens and repairs the lattice. These reinforced microtubules form the mechanostat: an adaptive feedback mechanism that allows the cell to both withstand compressive force and spatiotemporally organize contractility signalling pathways. The microtubule mechanostat facilitates nuclear positioning and coordinates force production to enable the cell to pass through constrictions. Disruption of the mechanostat imbalances cortical contractility, stalling migration and ultimately resulting in catastrophic cell rupture. Our findings reveal a role for microtubules as cellular sensors that detect and respond to compressive forces, enabling movement and ensuring survival in mechanically demanding environments. Ju et al. show that during three-dimensional cell migration, compression recruits cytoplasmic linker-associated proteins to microtubules; these stabilized microtubules then coordinate nuclear positioning and contractility in confined migration.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1520-1534"},"PeriodicalIF":17.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lymphotoxin-β promotes breast cancer bone metastasis colonization and osteolytic outgrowth 淋巴毒素-β促进乳腺癌骨转移瘤的定植和溶骨生长
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-15 DOI: 10.1038/s41556-024-01478-9
Xuxiang Wang, Tengjiang Zhang, Bingxin Zheng, Youxue Lu, Yong Liang, Guoyuan Xu, Luyang Zhao, Yuwei Tao, Qianhui Song, Huiwen You, Haitian Hu, Xuan Li, Keyong Sun, Tianqi Li, Zian Zhang, Jianbin Wang, Xun Lan, Deng Pan, Yang-Xin Fu, Bin Yue, Hanqiu Zheng
Bone metastasis is a lethal consequence of breast cancer. Here we used single-cell transcriptomics to investigate the molecular mechanisms underlying bone metastasis colonization—the rate-limiting step in the metastatic cascade. We identified that lymphotoxin-β (LTβ) is highly expressed in tumour cells within the bone microenvironment and this expression is associated with poor bone metastasis-free survival. LTβ promotes tumour cell colonization and outgrowth in multiple breast cancer models. Mechanistically, tumour-derived LTβ activates osteoblasts through nuclear factor-κB2 signalling to secrete CCL2/5, which facilitates tumour cell adhesion to osteoblasts and accelerates osteoclastogenesis, leading to bone metastasis progression. Blocking LTβ signalling with a decoy receptor significantly suppressed bone metastasis in vivo, whereas clinical sample analysis revealed significantly higher LTβ expression in bone metastases than in primary tumours. Our findings highlight LTβ as a bone niche-induced factor that promotes tumour cell colonization and osteolytic outgrowth and underscore its potential as a therapeutic target for patients with bone metastatic disease. Wang, Zhang, Zheng et al. demonstrate that tumour cell-derived lymphotoxin-β activates NF-κB2 signalling and CCL2/5 secretion in osteoblasts to promote bone metastasis in breast cancer, which may potentially be targeted with a decoy receptor in vivo.
骨转移是乳腺癌的致命后果。在这里,我们利用单细胞转录组学研究了骨转移定植的分子机制--骨转移级联过程中的限速步骤。我们发现,淋巴毒素-β(LTβ)在骨微环境中的肿瘤细胞中高表达,而这种表达与骨转移无生存率低有关。在多种乳腺癌模型中,LTβ能促进肿瘤细胞的定植和生长。从机制上讲,肿瘤衍生的LTβ通过核因子-κB2信号激活成骨细胞分泌CCL2/5,从而促进肿瘤细胞粘附到成骨细胞并加速破骨细胞生成,导致骨转移进展。用诱饵受体阻断LTβ信号可明显抑制体内骨转移,而临床样本分析显示,骨转移瘤中LTβ的表达明显高于原发肿瘤。我们的研究结果突出表明,LTβ是一种骨龛诱导因子,可促进肿瘤细胞定植和溶骨生长,并强调了其作为骨转移患者治疗靶点的潜力。
{"title":"Lymphotoxin-β promotes breast cancer bone metastasis colonization and osteolytic outgrowth","authors":"Xuxiang Wang, Tengjiang Zhang, Bingxin Zheng, Youxue Lu, Yong Liang, Guoyuan Xu, Luyang Zhao, Yuwei Tao, Qianhui Song, Huiwen You, Haitian Hu, Xuan Li, Keyong Sun, Tianqi Li, Zian Zhang, Jianbin Wang, Xun Lan, Deng Pan, Yang-Xin Fu, Bin Yue, Hanqiu Zheng","doi":"10.1038/s41556-024-01478-9","DOIUrl":"10.1038/s41556-024-01478-9","url":null,"abstract":"Bone metastasis is a lethal consequence of breast cancer. Here we used single-cell transcriptomics to investigate the molecular mechanisms underlying bone metastasis colonization—the rate-limiting step in the metastatic cascade. We identified that lymphotoxin-β (LTβ) is highly expressed in tumour cells within the bone microenvironment and this expression is associated with poor bone metastasis-free survival. LTβ promotes tumour cell colonization and outgrowth in multiple breast cancer models. Mechanistically, tumour-derived LTβ activates osteoblasts through nuclear factor-κB2 signalling to secrete CCL2/5, which facilitates tumour cell adhesion to osteoblasts and accelerates osteoclastogenesis, leading to bone metastasis progression. Blocking LTβ signalling with a decoy receptor significantly suppressed bone metastasis in vivo, whereas clinical sample analysis revealed significantly higher LTβ expression in bone metastases than in primary tumours. Our findings highlight LTβ as a bone niche-induced factor that promotes tumour cell colonization and osteolytic outgrowth and underscore its potential as a therapeutic target for patients with bone metastatic disease. Wang, Zhang, Zheng et al. demonstrate that tumour cell-derived lymphotoxin-β activates NF-κB2 signalling and CCL2/5 secretion in osteoblasts to promote bone metastasis in breast cancer, which may potentially be targeted with a decoy receptor in vivo.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1597-1612"},"PeriodicalIF":17.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Docking a flexible basket onto the core of the nuclear pore complex 将柔性篮对接到核孔复合体的核心上
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-13 DOI: 10.1038/s41556-024-01484-x
Edvinas Stankunas, Alwin Köhler
The nuclear basket attaches to the nucleoplasmic side of the nuclear pore complex (NPC), coupling transcription to mRNA quality control and export. The basket expands the functional repertoire of a subset of NPCs in Saccharomyces cerevisiae by drawing a unique RNA/protein interactome. Yet, how the basket docks onto the NPC core remains unknown. By integrating AlphaFold-based interaction screens, electron microscopy and membrane-templated reconstitution, we uncovered a membrane-anchored tripartite junction between basket and NPC core. The basket subunit Nup60 harbours three adjacent short linear motifs, which connect Mlp1, a parallel homodimer consisting of coiled-coil segments interrupted by flexible hinges, and the Nup85 subunit of the Y-complex. We reconstituted the Y-complex•Nup60•Mlp1 assembly on a synthetic membrane and validated the protein interfaces in vivo. Here we explain how a short linear motif-based protein junction can substantially reshape NPC structure and function, advancing our understanding of compositional and conformational NPC heterogeneity. Stankunas and Köhler define how the nucleoplasmic portion of the nuclear pore complex (NPC), the basket, docks onto the NPC core by integrating AlphaFold-based interaction screens, electron microscopy, and membrane-templated reconstitutions.
核篮子附着在核孔复合体(NPC)的核质侧,将转录与 mRNA 质量控制和输出结合在一起。核篮子通过吸引独特的 RNA 蛋白相互作用组,扩大了酿酒酵母中 NPC 亚群的功能范围。然而,篮子如何与 NPC 核心对接仍是未知数。通过整合基于 AlphaFold 的相互作用筛选、电子显微镜和膜诱导重组,我们发现了篮子和 NPC 核心之间的膜锚定三方连接。篮子亚基 Nup60 包含三个相邻的短线性基团,它们连接着 Mlp1(由柔性铰链中断的盘绕段组成的平行同源二聚体)和 Y 复合物的 Nup85 亚基。我们在合成膜上重建了 Y-复合体-Nup60-Mlp1 组装,并在体内验证了蛋白质界面。在这里,我们解释了基于短线性基团的蛋白质连接是如何大幅重塑 NPC 结构和功能的,从而推进了我们对 NPC 组成和构象异质性的理解。
{"title":"Docking a flexible basket onto the core of the nuclear pore complex","authors":"Edvinas Stankunas, Alwin Köhler","doi":"10.1038/s41556-024-01484-x","DOIUrl":"10.1038/s41556-024-01484-x","url":null,"abstract":"The nuclear basket attaches to the nucleoplasmic side of the nuclear pore complex (NPC), coupling transcription to mRNA quality control and export. The basket expands the functional repertoire of a subset of NPCs in Saccharomyces cerevisiae by drawing a unique RNA/protein interactome. Yet, how the basket docks onto the NPC core remains unknown. By integrating AlphaFold-based interaction screens, electron microscopy and membrane-templated reconstitution, we uncovered a membrane-anchored tripartite junction between basket and NPC core. The basket subunit Nup60 harbours three adjacent short linear motifs, which connect Mlp1, a parallel homodimer consisting of coiled-coil segments interrupted by flexible hinges, and the Nup85 subunit of the Y-complex. We reconstituted the Y-complex•Nup60•Mlp1 assembly on a synthetic membrane and validated the protein interfaces in vivo. Here we explain how a short linear motif-based protein junction can substantially reshape NPC structure and function, advancing our understanding of compositional and conformational NPC heterogeneity. Stankunas and Köhler define how the nucleoplasmic portion of the nuclear pore complex (NPC), the basket, docks onto the NPC core by integrating AlphaFold-based interaction screens, electron microscopy, and membrane-templated reconstitutions.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1504-1519"},"PeriodicalIF":17.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01484-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1