首页 > 最新文献

Molecular Plant最新文献

英文 中文
Pm6 from Triticum timopheevii encodes an NLR receptor that directly recognizes AvrPm6 to confer powdery mildew resistance in wheat. 来自timopheevii的Pm6编码一个NLR受体,该受体直接识别AvrPm6,从而赋予小麦抗白粉病的能力。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-21 DOI: 10.1016/j.molp.2025.10.012
Zongkuan Wang, Jingzhong Xie, Huajian Zhang, Jianpeng Zhang, Fei He, Baofeng Cui, Jaroslav Dolezel, Xingxing Cai, Zijun Ding, Qiaoling Luo, István Molnár, Jin Xiao, Haiyan Wang, Wei Wang, Xiue Wang
{"title":"Pm6 from Triticum timopheevii encodes an NLR receptor that directly recognizes AvrPm6 to confer powdery mildew resistance in wheat.","authors":"Zongkuan Wang, Jingzhong Xie, Huajian Zhang, Jianpeng Zhang, Fei He, Baofeng Cui, Jaroslav Dolezel, Xingxing Cai, Zijun Ding, Qiaoling Luo, István Molnár, Jin Xiao, Haiyan Wang, Wei Wang, Xiue Wang","doi":"10.1016/j.molp.2025.10.012","DOIUrl":"10.1016/j.molp.2025.10.012","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2040-2044"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145346100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exciting membranes: Meeting report for EMBO Workshop on Plant Membrane Biology 2025. 2025年EMBO植物膜生物学研讨会会议报告。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-22 DOI: 10.1016/j.molp.2025.10.013
Michael Palmgren, Deyang Xu
{"title":"Exciting membranes: Meeting report for EMBO Workshop on Plant Membrane Biology 2025.","authors":"Michael Palmgren, Deyang Xu","doi":"10.1016/j.molp.2025.10.013","DOIUrl":"10.1016/j.molp.2025.10.013","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2035-2039"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145345855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation as a switch: How plants fine-tune eATP-induced calcium signaling. 磷酸化作为开关:植物如何微调eap诱导的钙信号。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-09-05 DOI: 10.1016/j.molp.2025.08.006
Bryony C I C Jacobs, Wolfgang Moeder, Julia M Davies, Keiko Yoshioka
{"title":"Phosphorylation as a switch: How plants fine-tune eATP-induced calcium signaling.","authors":"Bryony C I C Jacobs, Wolfgang Moeder, Julia M Davies, Keiko Yoshioka","doi":"10.1016/j.molp.2025.08.006","DOIUrl":"10.1016/j.molp.2025.08.006","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2048-2050"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145008323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative gene regulatory networks and machine learning unveil the functions of novel maize regulators. 整合基因调控网络和机器学习揭示了新型玉米调控因子的功能。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-09-20 DOI: 10.1016/j.molp.2025.09.014
Klaas Vandepoele
{"title":"Integrative gene regulatory networks and machine learning unveil the functions of novel maize regulators.","authors":"Klaas Vandepoele","doi":"10.1016/j.molp.2025.09.014","DOIUrl":"10.1016/j.molp.2025.09.014","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2057-2059"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145113878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-regulated plastoglobule ABC1K1-ABC1K3 kinase complex controls plastoquinone mobilization for chloroplast photosynthetic adaptation to red light. 氧化还原调控的质体红蛋白ABC1K1-ABC1K3激酶复合体控制叶绿体对红光的光合适应的质体醌动员。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-04 DOI: 10.1016/j.molp.2025.10.002
Mei Yang, Hao Huang, Chao Xu, Xue Han, Guochen Qin, Le Chang, Fang Lin, Xuncheng Wang, Hang He, Xing Wang Deng

Plastoglobules, lipoprotein particles associated with thylakoid membranes, serve as critical hubs for chloroplast acclimation to environmental perturbations. However, the molecular mechanisms underlying plastoglobuli-associated signal perception and transduction remain poorly understood. Here, we identify a redox-regulated kinase complex in Arabidopsis that mediates plastoglobules' response to red light. Two plastoglobule-localized kinases, ACTIVITY OF BC1 COMPLEX KINASE 1 and 3 (ABC1K1 and ABC1K3), form a dynamic hetero-oligomeric complex essential for maintaining plastoquinone (PQ) pool homeostasis and optimizing photosynthetic efficiency. These kinases dynamically adjust their conformational states in response to PQ redox-state changes induced by environmental light conditions. Under preferential photosystem II (PSII) excitation induced by red light, reduced PQ pool initiates a signaling cascade through activation of the thylakoid oxidoreductase LUMEN THIOL OXIDOREDUCTASE 1 (LTO1). Activated LTO1 then oxidizes ABC1K1 at Cys107, triggering its oligomerization via inter-molecular disulfide-bond formation. This oligomeric state change leads to enhanced interaction between ABC1K1 and ABC1K3 oligomers, reconfiguring the kinase complex to relieve ABC1K3-mediated inhibition of PQ mobilization. Consequently, by restoring PQ-pool homeostasis, the ABC1K1-ABC1K3 complex mitigates PSII photodamage and safeguards photosynthesis, thereby enabling chloroplast adaptation to red light. Taken together, our findings reveal a redox-regulation mechanism by which plastoglobules integrate environmental cues with chloroplast homeostasis, providing new insights into plastoglobule-mediated stress acclimation.

质体红蛋白是与类囊体膜相关的脂蛋白颗粒,是叶绿体适应环境扰动的关键枢纽。然而,分子机制背后的微球的信号感知和转导仍然知之甚少。在这里,我们在拟南芥中鉴定了一种氧化还原调节的激酶复合物,该复合物介导质体红蛋白对红光的反应。BC1复合物激酶1和3的活性(ABC1K1和ABC1K3)是两个质体红蛋白定位的激酶,形成了一个动态的异聚复合物,对维持质体醌(PQ)池的稳态和优化光合效率至关重要。这些激酶动态调整其构象状态,以响应环境光条件诱导的PQ氧化还原状态的变化。在红光诱导的优先光系统II (PSII)激发下,PQ池减少通过激活类囊体氧化还原酶LUMEN THIOL oxidoreductase 1 (LTO1)启动信号级联。然后活化的LTO1在Cys107处氧化ABC1K1,通过分子间二硫键形成触发其寡聚化。这种低聚物状态的改变导致ABC1K1和ABC1K3低聚物之间的相互作用增强,重新配置激酶复合物以减轻ABC1K3介导的PQ动员抑制。因此,通过恢复PQ池稳态,ABC1K1-ABC1K3复合物减轻PSII光损伤,保护光合作用,从而使叶绿体适应红光。因此,我们的研究结果揭示了一种氧化还原调节机制,通过这种机制,质体红蛋白将环境信号与叶绿体稳态相结合,为质体红蛋白介导的应激适应提供了新的见解。
{"title":"Redox-regulated plastoglobule ABC1K1-ABC1K3 kinase complex controls plastoquinone mobilization for chloroplast photosynthetic adaptation to red light.","authors":"Mei Yang, Hao Huang, Chao Xu, Xue Han, Guochen Qin, Le Chang, Fang Lin, Xuncheng Wang, Hang He, Xing Wang Deng","doi":"10.1016/j.molp.2025.10.002","DOIUrl":"10.1016/j.molp.2025.10.002","url":null,"abstract":"<p><p>Plastoglobules, lipoprotein particles associated with thylakoid membranes, serve as critical hubs for chloroplast acclimation to environmental perturbations. However, the molecular mechanisms underlying plastoglobuli-associated signal perception and transduction remain poorly understood. Here, we identify a redox-regulated kinase complex in Arabidopsis that mediates plastoglobules' response to red light. Two plastoglobule-localized kinases, ACTIVITY OF BC1 COMPLEX KINASE 1 and 3 (ABC1K1 and ABC1K3), form a dynamic hetero-oligomeric complex essential for maintaining plastoquinone (PQ) pool homeostasis and optimizing photosynthetic efficiency. These kinases dynamically adjust their conformational states in response to PQ redox-state changes induced by environmental light conditions. Under preferential photosystem II (PSII) excitation induced by red light, reduced PQ pool initiates a signaling cascade through activation of the thylakoid oxidoreductase LUMEN THIOL OXIDOREDUCTASE 1 (LTO1). Activated LTO1 then oxidizes ABC1K1 at Cys107, triggering its oligomerization via inter-molecular disulfide-bond formation. This oligomeric state change leads to enhanced interaction between ABC1K1 and ABC1K3 oligomers, reconfiguring the kinase complex to relieve ABC1K3-mediated inhibition of PQ mobilization. Consequently, by restoring PQ-pool homeostasis, the ABC1K1-ABC1K3 complex mitigates PSII photodamage and safeguards photosynthesis, thereby enabling chloroplast adaptation to red light. Taken together, our findings reveal a redox-regulation mechanism by which plastoglobules integrate environmental cues with chloroplast homeostasis, providing new insights into plastoglobule-mediated stress acclimation.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2119-2133"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145233114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gibberellin triggers ATG8-dependent autophagic degradation of DELLA proteins to promote seed germination and skotomorphogenesis under nutrient starvation in Arabidopsis. 赤霉素触发atg8依赖的DELLA蛋白自噬降解,促进营养饥饿下的拟南芥种子萌发和形态形成。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-16 DOI: 10.1016/j.molp.2025.10.011
Shilong Zhang, Lu Jiang, Huiru Chen, Huishan Liu, Minyu Xiong, Yuting Niu, Lingyi Xie, Lu Wang, Zhilei Mao, Tongtong Guo, Wenxiu Wang, Hong-Quan Yang

Gibberellin (GA) is a phytohormone that regulates key developmental processes in plants, including seed germination and photomorphogenesis. It is well established that GA signaling involves GA-triggered, 26S proteasome-dependent degradation of DELLA proteins. Whether DELLA proteins also undergo autophagic degradation to mediate GA signaling remains unclear. In this study, we investigated the responsiveness of Arabidopsis seedlings to GA and the dynamics of DELLA proteins under nutrient starvation in darkness. We found that GA-induced seed germination and skotomorphogenesis are impaired in autophagy mutants and that GA promotes the autophagic degradation of DELLA proteins. Biochemical and protein localization analyses revealed that GA promotes the nuclear export of DELLA proteins and ATG8, their co-localization in autophagosomes, and autophagosome formation. Further biochemical studies demonstrated that GA enhances the interaction between ATG8 and GID1, thereby promoting the association of ATG8 with DELLA proteins and their autophagic degradation. Through this mechanism, GA promotes seed germination and skotomorphogenesis under nutrient starvation in darkness, enabling seedlings to penetrate the soil rapidly, capture sunlight, and shift to autotrophic growth to overcome nutrient deficiency.

赤霉素(giberellin, GA)是一种调节植物种子萌发、光形态发生等关键发育过程的激素。已经确定GA的信号机制涉及GA触发的26S蛋白酶体途径依赖的DELLA蛋白降解。DELLA蛋白是否通过自噬降解介导GA信号仍不清楚。本研究研究了黑暗条件下拟南芥幼苗对GA和DELLA蛋白的响应动态。我们发现,GA诱导的自噬突变体种子萌发和脑形态发生受到损害,并且GA促进了DELLA蛋白的自噬降解。生化和蛋白细胞定位分析表明,GA促进了DELLA蛋白和ATG8蛋白的核输出及其向自噬体的共定位,促进了自噬体的形成。进一步的生化研究表明,GA增强了ATG8与GID1的相互作用,从而促进了ATG8与DELLA蛋白的结合以及DELLA蛋白的自噬降解。通过这种方式,GA能够促进种子在黑暗中营养饥饿下的萌发和皮肤形态形成,使植物能够迅速穿透土壤,捕捉阳光,进行自养生长,尽快摆脱营养缺乏。
{"title":"Gibberellin triggers ATG8-dependent autophagic degradation of DELLA proteins to promote seed germination and skotomorphogenesis under nutrient starvation in Arabidopsis.","authors":"Shilong Zhang, Lu Jiang, Huiru Chen, Huishan Liu, Minyu Xiong, Yuting Niu, Lingyi Xie, Lu Wang, Zhilei Mao, Tongtong Guo, Wenxiu Wang, Hong-Quan Yang","doi":"10.1016/j.molp.2025.10.011","DOIUrl":"10.1016/j.molp.2025.10.011","url":null,"abstract":"<p><p>Gibberellin (GA) is a phytohormone that regulates key developmental processes in plants, including seed germination and photomorphogenesis. It is well established that GA signaling involves GA-triggered, 26S proteasome-dependent degradation of DELLA proteins. Whether DELLA proteins also undergo autophagic degradation to mediate GA signaling remains unclear. In this study, we investigated the responsiveness of Arabidopsis seedlings to GA and the dynamics of DELLA proteins under nutrient starvation in darkness. We found that GA-induced seed germination and skotomorphogenesis are impaired in autophagy mutants and that GA promotes the autophagic degradation of DELLA proteins. Biochemical and protein localization analyses revealed that GA promotes the nuclear export of DELLA proteins and ATG8, their co-localization in autophagosomes, and autophagosome formation. Further biochemical studies demonstrated that GA enhances the interaction between ATG8 and GID1, thereby promoting the association of ATG8 with DELLA proteins and their autophagic degradation. Through this mechanism, GA promotes seed germination and skotomorphogenesis under nutrient starvation in darkness, enabling seedlings to penetrate the soil rapidly, capture sunlight, and shift to autotrophic growth to overcome nutrient deficiency.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2101-2118"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145313349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OsIMP1-OsRLK5 immunopeptide-receptor pair confers bacterial and fungal disease resistance in rice. OsIMP1-OsRLK5免疫肽受体对赋予水稻对细菌和真菌疾病的抗性。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-09-23 DOI: 10.1016/j.molp.2025.09.015
Liangpeng Sun, Nan Nan, Minxuan Jiang, Jiaqing Xu, Zhicheng Huang, Jiyun Yang, Lina Ji, Jialin Zhang, Jiyang Wang, Dan Zhao, Ling Liu, Guohua Duan, Dayong Li, Wenxian Sun

Plant receptor-like kinases (RLKs) often function as immune receptors for exogenous and endogenous elicitors. However, only a few immune ligand-receptor pairs have been identified in rice. In this study, we report that a rice gene encoding the secretory immunopeptide OsIMP1 is induced by pathogen-associated molecular patterns. The OsIMP1 peptide triggers immune responses and positively regulates rice disease resistance. Furthermore, the leucine-rich repeat receptor-like kinases OsRLK5 and OsRLK5-L and the somatic embryogenesis receptor-like kinase 2 (OsSERK2) are essential for OsIMP1-triggered immunity. OsRLK5 interacts with and phosphorylates OsSERK2. OsIMP1 directly binds to the extracellular domain of OsRLK5, positively regulating pattern-triggered immunity. Notably, overexpression of OsRLK5 confers increased resistance to bacterial and fungal diseases without a yield penalty in rice. Taken together, these results indicate that OsIMP1 and OsRLK5/OsRLK5-L form ligand-receptor pairs that confer rice resistance to multiple pathogens without incurring a growth penalty, providing important targets for developing rice varieties with broad-spectrum disease resistance.

受体样激酶(Receptor-like kinase, RLKs)在植物中经常作为外源性和内源性激发子的免疫受体。然而,在水稻中仅鉴定出少数免疫配体-受体对。在这项研究中,我们报道了一个编码分泌性免疫肽OsIMP1的水稻基因被病原体相关的分子模式诱导。该肽触发免疫反应,并积极调节水稻抗病能力。此外,我们发现富含亮氨酸的重复受体样激酶OsRLK5、OsRLK5- l和体细胞胚胎发生受体样激酶2 (OsSERK2)对osimp1触发的免疫至关重要。OsRLK5与OsSERK2相互作用并磷酸化OsSERK2。OsIMP1直接结合OsRLK5的胞外结构域,积极调节模式触发的免疫。值得注意的是,OsRLK5的过表达增加了水稻对细菌和真菌疾病的抗性,而不影响产量。总的来说,本研究揭示了OsIMP1和OsRLK5/ OsRLK5- l形成的配体受体对调节多种抗病性,并揭示了水稻植物如何在不损害生长的情况下防御多种病原体的重要策略。
{"title":"The OsIMP1-OsRLK5 immunopeptide-receptor pair confers bacterial and fungal disease resistance in rice.","authors":"Liangpeng Sun, Nan Nan, Minxuan Jiang, Jiaqing Xu, Zhicheng Huang, Jiyun Yang, Lina Ji, Jialin Zhang, Jiyang Wang, Dan Zhao, Ling Liu, Guohua Duan, Dayong Li, Wenxian Sun","doi":"10.1016/j.molp.2025.09.015","DOIUrl":"10.1016/j.molp.2025.09.015","url":null,"abstract":"<p><p>Plant receptor-like kinases (RLKs) often function as immune receptors for exogenous and endogenous elicitors. However, only a few immune ligand-receptor pairs have been identified in rice. In this study, we report that a rice gene encoding the secretory immunopeptide OsIMP1 is induced by pathogen-associated molecular patterns. The OsIMP1 peptide triggers immune responses and positively regulates rice disease resistance. Furthermore, the leucine-rich repeat receptor-like kinases OsRLK5 and OsRLK5-L and the somatic embryogenesis receptor-like kinase 2 (OsSERK2) are essential for OsIMP1-triggered immunity. OsRLK5 interacts with and phosphorylates OsSERK2. OsIMP1 directly binds to the extracellular domain of OsRLK5, positively regulating pattern-triggered immunity. Notably, overexpression of OsRLK5 confers increased resistance to bacterial and fungal diseases without a yield penalty in rice. Taken together, these results indicate that OsIMP1 and OsRLK5/OsRLK5-L form ligand-receptor pairs that confer rice resistance to multiple pathogens without incurring a growth penalty, providing important targets for developing rice varieties with broad-spectrum disease resistance.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1983-1998"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145138093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warm temperature activates the TCP15-HDA4 module to suppress shoot branching by promoting auxin biosynthesis and signaling in tomato. 温暖温度激活TCP15-HDA4模块,通过促进番茄生长素的生物合成和信号传导抑制茎枝分枝。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-15 DOI: 10.1016/j.molp.2025.10.010
Xuewei Song, Yue Liu, Xiaole Meng, Shangyu Chen, Kangqi Sang, Qixiang Zheng, Yanhong Zhou, Michael Considine, Jingquan Yu, Xiaojian Xia

Shoot branching, an important agronomic trait, is environmentally and developmentally regulated. Epigenetic modifications play a pivotal role in regulating transcriptional responses to light and temperature cues that control plant growth. Nevertheless, the roles of epigenetic modifiers in regulating shoot branching under varying temperatures remain elusive. In this study, we reveal that elevated temperature suppresses lateral bud outgrowth in tomato (Solanum lycopersicum), accompanied by increased HISTONE DEACETYLASE 4 (HDA4) levels. Loss of function of SlHDA4 augments lateral bud outgrowth, resulting from a reduced auxin response. Notably, increased lateral bud outgrowth observed in slhda4 mutants is insensitive to elevated temperature but can be restored by SlHDA4 overexpression. Furthermore, we found that the histone deacetylase SlHDA4 interacts with the transcription factor SlTCP15 to suppress the expression of genes encoding the light receptor SlPHYB1 and auxin signaling repressor SlIAA12 by decreasing the H3K9ac levels at their promoters. In summary, our work demonstrates that the SlTCP15-SlHDA4 module participates in the regulation of lateral bud outgrowth at warm temperatures by enhancing auxin biosynthesis and signaling in tomato.

茎枝分枝是一种重要的农艺性状,受环境控制。表观遗传修饰在控制植物生长对光和温度信号的转录反应中起着关键作用。然而,表观遗传修饰因子在不同温度下调控茎枝分枝的作用仍不明确。我们的研究表明,升高的温度会抑制番茄(Solanum lycopersicum)的侧芽生长,并伴随着组蛋白去乙酰化酶4 (HDA4)水平的升高。SlHDA4的功能丧失导致生长素反应降低,从而增加了侧芽的生长。值得注意的是,slhda4突变体的侧芽生长增加对温度升高不敏感,但通过过表达slhda4恢复。此外,组蛋白去乙酰化酶SlHDA4与SlTCP15转录因子相互作用,通过降低光受体SlPHYB1和生长素信号抑制因子SlIAA12的启动子上的H3K9ac水平,抑制它们的表达。综上所述,SlTCP15-SlHDA4模块通过促进番茄生长素的生物合成和信号传导参与了暖温调控侧芽生长。
{"title":"Warm temperature activates the TCP15-HDA4 module to suppress shoot branching by promoting auxin biosynthesis and signaling in tomato.","authors":"Xuewei Song, Yue Liu, Xiaole Meng, Shangyu Chen, Kangqi Sang, Qixiang Zheng, Yanhong Zhou, Michael Considine, Jingquan Yu, Xiaojian Xia","doi":"10.1016/j.molp.2025.10.010","DOIUrl":"10.1016/j.molp.2025.10.010","url":null,"abstract":"<p><p>Shoot branching, an important agronomic trait, is environmentally and developmentally regulated. Epigenetic modifications play a pivotal role in regulating transcriptional responses to light and temperature cues that control plant growth. Nevertheless, the roles of epigenetic modifiers in regulating shoot branching under varying temperatures remain elusive. In this study, we reveal that elevated temperature suppresses lateral bud outgrowth in tomato (Solanum lycopersicum), accompanied by increased HISTONE DEACETYLASE 4 (HDA4) levels. Loss of function of SlHDA4 augments lateral bud outgrowth, resulting from a reduced auxin response. Notably, increased lateral bud outgrowth observed in slhda4 mutants is insensitive to elevated temperature but can be restored by SlHDA4 overexpression. Furthermore, we found that the histone deacetylase SlHDA4 interacts with the transcription factor SlTCP15 to suppress the expression of genes encoding the light receptor SlPHYB1 and auxin signaling repressor SlIAA12 by decreasing the H3K9ac levels at their promoters. In summary, our work demonstrates that the SlTCP15-SlHDA4 module participates in the regulation of lateral bud outgrowth at warm temperatures by enhancing auxin biosynthesis and signaling in tomato.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"2082-2100"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145308612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant-derived peptides: From identification to agronomic applications. 植物源肽:从鉴定到农艺应用。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-11-15 DOI: 10.1016/j.molp.2025.11.004
Xiaosong Yu, Jiuer Liu, Wei Wang, Jinbo Shen, Kai Shi, Jian-Feng Li, Jian Ye, Jack Rhodes, Cyril Zipfel, Chuanyou Li, Jia Li, Jianbing Yan, Yanli Lu, Yi Cai

Global agriculture faces critical challenges due to the overreliance on chemical pesticides, driving an urgent need for eco-friendly biopesticides and biostimulants (BioP&S). Plant-derived peptides, evolved as natural regulators of growth, development, and stress adaptation, offer immense potential as biodegradable and biocompatible alternatives. However, their commercialization remains constrained by limited exploration of the diversity and activity, high production costs, incomplete ecological risk evaluations, and undefined application scenarios. This Perspective overviews emerging discoveries and proposes integrated frameworks for plant peptide identification, molecular design, biomanufacturing, and ecological impact assessments integrated with germplasm development and field application systems. To overcome existing bottlenecks, we discuss the integrative potential of emerging technologies that synergistically combine artificial intelligence for high-throughput peptide discovery and de novo structural refinement, nanotechnology for enhancing environmental resilience and targeted delivery, and synthetic biology for developing industrial biomanufacturing platforms. We emphasize the need to align phytopeptide BioP&S with compatible germplasm resources, stage-specific crop requirements, and complementary chemical pesticides to maximize their efficacy, cost-effectiveness, and trait-specific agronomic performance by integrating with precision agriculture systems. Future advancements will rely on interdisciplinary innovations and policy support to unlock their full potential in enhancing crop resilience, productivity, and quality while ensuring ecological sustainability.

由于过度依赖化学农药,全球农业面临严峻挑战,迫切需要对生态友好型生物农药和生物刺激素(BioP&S)。植物衍生肽作为生长、发育和逆境适应的天然调节剂,作为可生物降解和生物相容性替代品提供了巨大的潜力。然而,它们的商业化仍然受到多样性和活动探索有限、生产成本高、生态风险评估不完整以及应用场景不明确等因素的制约。这一观点回顾了新兴的发现,并提出了植物肽鉴定、分子设计、生物制造和生态影响评估的综合框架,与种质开发和田间应用系统相结合。为了克服现有的瓶颈,我们阐明了新兴技术的整合潜力,这些技术协同结合了高通量肽发现和从头结构改进的人工智能,增强环境恢复力和靶向递送的纳米技术,以及开发工业生物制造平台的合成生物学。通过整合精准农业系统,我们强调需要将多肽生物与农业系统与相容的种质资源、特定阶段的作物需求和互补的化学农药相结合,以最大限度地提高其功效、成本效益和特定性状的农艺性能。未来的进展将依赖于跨学科创新和政策支持,以充分释放它们在提高作物抗灾能力、生产力和质量方面的潜力,同时确保生态可持续性。
{"title":"Plant-derived peptides: From identification to agronomic applications.","authors":"Xiaosong Yu, Jiuer Liu, Wei Wang, Jinbo Shen, Kai Shi, Jian-Feng Li, Jian Ye, Jack Rhodes, Cyril Zipfel, Chuanyou Li, Jia Li, Jianbing Yan, Yanli Lu, Yi Cai","doi":"10.1016/j.molp.2025.11.004","DOIUrl":"10.1016/j.molp.2025.11.004","url":null,"abstract":"<p><p>Global agriculture faces critical challenges due to the overreliance on chemical pesticides, driving an urgent need for eco-friendly biopesticides and biostimulants (BioP&S). Plant-derived peptides, evolved as natural regulators of growth, development, and stress adaptation, offer immense potential as biodegradable and biocompatible alternatives. However, their commercialization remains constrained by limited exploration of the diversity and activity, high production costs, incomplete ecological risk evaluations, and undefined application scenarios. This Perspective overviews emerging discoveries and proposes integrated frameworks for plant peptide identification, molecular design, biomanufacturing, and ecological impact assessments integrated with germplasm development and field application systems. To overcome existing bottlenecks, we discuss the integrative potential of emerging technologies that synergistically combine artificial intelligence for high-throughput peptide discovery and de novo structural refinement, nanotechnology for enhancing environmental resilience and targeted delivery, and synthetic biology for developing industrial biomanufacturing platforms. We emphasize the need to align phytopeptide BioP&S with compatible germplasm resources, stage-specific crop requirements, and complementary chemical pesticides to maximize their efficacy, cost-effectiveness, and trait-specific agronomic performance by integrating with precision agriculture systems. Future advancements will rely on interdisciplinary innovations and policy support to unlock their full potential in enhancing crop resilience, productivity, and quality while ensuring ecological sustainability.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1963-1982"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145534391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognition of a phytocytokine by the DEPR1-SERK2 receptor complex confers multi-pathogen resistance in wheat. DEPR1-SERK2受体复合物对植物细胞因子的识别赋予小麦对多种病原体的抗性。
IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 Epub Date: 2025-10-11 DOI: 10.1016/j.molp.2025.10.005
Lijun Wang, Jun Zhao, Chuanchun Yin, Hongxu Li, Yanan Xiao, Cuicui Du, Zhaoxi Lu, Yongjian Zhang, Fangshuai Jia, Jiaxin Hao, Jinghui Yan, Yi Zhang, Jian Li, Xinhua Ding, Zhifu Han, Haitao Cui, Jijie Chai, Xingwang Deng, Cheng Chi, Shuguo Hou

The recognition of plant-derived immunogenic peptides, known as phytocytokines (PCKs), by cell surface receptors triggers immune signaling pathways that bolster basal plant defense against pathogens. However, little is known about the molecular mechanisms that underlie PCK-mediated immune regulation in wheat. In this study, we identified a wheat PCK, delta-like PCK (DEP), that robustly activates immune responses and confers multi-pathogen resistance. DEP is perceived by the leucine-rich repeat (LRR) receptor kinases (RKs) DEP RECEPTOR 1 (DEPR1) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 2 (SERK2) and triggers DEPR1- and SERK2-dependent immune signaling. Cryogenic electron microscopy structural analysis revealed that DEP2 binds to the extracellular LRR domain of DEPR1 and recruits SERK2 through a disulfide-bond-stabilized loop to promote DEPR1-SERK2 heterodimerization. Furthermore, we showed that the DEP2-DEPR1-SERK2 module confers wheat resistance to Xanthomonas translucens, Fusarium graminearum, and Fusarium pseudograminearum. We also demonstrated that this module enhances wheat resistance to X. translucens by antagonizing abscisic acid signaling. Collectively, our study reveals a novel PCK-mediated immune signaling pathway and suggests a promising strategy for engineering multi-pathogen resistance in wheat.

植物来源的免疫原性肽,被称为植物细胞因子(PCKs),与细胞表面驻留受体的识别触发免疫信号通路,增强植物对病原体的基础防御。然而,小麦pck介导的免疫调节的分子机制仍未得到充分研究。在这项研究中,我们鉴定了一种小麦PCK, Delta-like PCK (DEP),它可以激活小麦的免疫反应,并赋予小麦多种病原体的抗性。DEP被富含亮氨酸重复(LRR)受体激酶(RKs)感知DEP受体1 (DEPR1)和体细胞胚胎发生受体样激酶2 (SERK2)并触发DERP1和SERK2依赖性免疫信号。低温电镜(cryo-EM)分析显示,DEP2结合DEPR1的细胞外LRR结构域,并通过二硫键稳定环招募SERK2,促进DEPR1-SERK2异二聚化。此外,我们还发现,DEP2-DEPR1-SERK2模块使小麦对透光黄单胞菌、稻谷镰刀菌和伪稻谷镰刀菌具有抗性。我们还证明了该模块通过拮抗脱落酸(ABA)信号增强小麦对透lucens的抗性。这项工作阐明了一种新的植物细胞因子介导的免疫信号通路,为诱导小麦多病原体抗性提供了一种有希望的策略。
{"title":"Recognition of a phytocytokine by the DEPR1-SERK2 receptor complex confers multi-pathogen resistance in wheat.","authors":"Lijun Wang, Jun Zhao, Chuanchun Yin, Hongxu Li, Yanan Xiao, Cuicui Du, Zhaoxi Lu, Yongjian Zhang, Fangshuai Jia, Jiaxin Hao, Jinghui Yan, Yi Zhang, Jian Li, Xinhua Ding, Zhifu Han, Haitao Cui, Jijie Chai, Xingwang Deng, Cheng Chi, Shuguo Hou","doi":"10.1016/j.molp.2025.10.005","DOIUrl":"10.1016/j.molp.2025.10.005","url":null,"abstract":"<p><p>The recognition of plant-derived immunogenic peptides, known as phytocytokines (PCKs), by cell surface receptors triggers immune signaling pathways that bolster basal plant defense against pathogens. However, little is known about the molecular mechanisms that underlie PCK-mediated immune regulation in wheat. In this study, we identified a wheat PCK, delta-like PCK (DEP), that robustly activates immune responses and confers multi-pathogen resistance. DEP is perceived by the leucine-rich repeat (LRR) receptor kinases (RKs) DEP RECEPTOR 1 (DEPR1) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 2 (SERK2) and triggers DEPR1- and SERK2-dependent immune signaling. Cryogenic electron microscopy structural analysis revealed that DEP2 binds to the extracellular LRR domain of DEPR1 and recruits SERK2 through a disulfide-bond-stabilized loop to promote DEPR1-SERK2 heterodimerization. Furthermore, we showed that the DEP2-DEPR1-SERK2 module confers wheat resistance to Xanthomonas translucens, Fusarium graminearum, and Fusarium pseudograminearum. We also demonstrated that this module enhances wheat resistance to X. translucens by antagonizing abscisic acid signaling. Collectively, our study reveals a novel PCK-mediated immune signaling pathway and suggests a promising strategy for engineering multi-pathogen resistance in wheat.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1999-2017"},"PeriodicalIF":24.1,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145275394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Plant
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1