首页 > 最新文献

Nanomedicine : nanotechnology, biology, and medicine最新文献

英文 中文
Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel 海藻酸-透明质酸水凝胶结合淫羊藿苷和间充质干细胞来源的细胞外囊泡促进软骨再生。
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-11-23 DOI: 10.1016/j.nano.2023.102723
Shuyi Li MSc , Qian Yuan MSc , Minghui Yang BSc , Xinyi Long BSc , Jianwu Sun MSc , Xin Yuan BSc , Lang Liu BSc , Wanting Zhang BSc , Quanjiang Li BSc , Zhujie Deng BSc , Rui Tian BSc , Renhao Xu BSc , Lingna Xie MSc , Jingna Yuan BSc , Yue He MD , Yi Liu MD , Hongmei Liu MD , Zhengqiang Yuan PhD

Objective

Osteoarthritis (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs.

Materials and methods

MSC-EVs were isolated from sodium alginate (SA) and hyaluronic acid (HA) composite hydrogel (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo.

Results

EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers.

Conclusion

The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.

目的:骨关节炎(OA)的特点是进行性软骨变性和缺乏根治性治疗。因此,迫切需要更有效的治疗方法。间充质干细胞(MSCs)衍生的细胞外囊泡(EVs)和淫羊藿苷(ICA)在软骨缺损的修复中都有很好的应用前景。本研究提出ICA可能联合增强msc - ev的软骨修复能力。材料和方法:从海藻酸钠(SA)和透明质酸(HA)复合水凝胶(SA-HA)细胞球体培养中分离出msc - ev。采用SA-HA水凝胶联合ev和ICA,观察其对软骨缺损的体内治疗效果。结果:EVs和ICA在促进MSCs和炎性软骨细胞增殖和迁移方面具有协同作用。联合治疗显著增强了大鼠软骨缺损的修复,其机制涉及软骨降解和合成因子的伴随调节。结论:msc - ev - ica /SA-HA水凝胶是一种治疗骨性关节炎软骨缺损的新方法。
{"title":"Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel","authors":"Shuyi Li MSc ,&nbsp;Qian Yuan MSc ,&nbsp;Minghui Yang BSc ,&nbsp;Xinyi Long BSc ,&nbsp;Jianwu Sun MSc ,&nbsp;Xin Yuan BSc ,&nbsp;Lang Liu BSc ,&nbsp;Wanting Zhang BSc ,&nbsp;Quanjiang Li BSc ,&nbsp;Zhujie Deng BSc ,&nbsp;Rui Tian BSc ,&nbsp;Renhao Xu BSc ,&nbsp;Lingna Xie MSc ,&nbsp;Jingna Yuan BSc ,&nbsp;Yue He MD ,&nbsp;Yi Liu MD ,&nbsp;Hongmei Liu MD ,&nbsp;Zhengqiang Yuan PhD","doi":"10.1016/j.nano.2023.102723","DOIUrl":"10.1016/j.nano.2023.102723","url":null,"abstract":"<div><h3>Objective</h3><p><span>Osteoarthritis<span> (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both </span></span>mesenchymal stem cells<span> (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs.</span></p></div><div><h3>Materials and methods</h3><p><span>MSC-EVs were isolated from sodium alginate<span> (SA) and hyaluronic acid (HA) </span></span>composite hydrogel<span> (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo.</span></p></div><div><h3>Results</h3><p>EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers.</p></div><div><h3>Conclusion</h3><p>The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102723"},"PeriodicalIF":5.4,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138440970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic variability of fluorescence calibrators impacts the assignment of MESF or ERF values to nanoparticles and extracellular vesicles by flow cytometry 荧光校准器的内在可变性影响了流式细胞术对纳米颗粒和细胞外囊泡的MESF或ERF值的分配。
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-11-23 DOI: 10.1016/j.nano.2023.102720
Estefanía Lozano-Andrés PhD , Tina Van Den Broeck PhD , Lili Wang PhD , Majid Mehrpouyan PhD , Ye Tian PhD , Xiaomei Yan PhD , Ger J.A. Arkesteijn PhD , Marca H.M. Wauben PhD

Flow cytometry allows to characterize nanoparticles (NPs) and extracellular vesicles (EVs) but results are often expressed in arbitrary units of fluorescence. We evaluated the precision and accuracy of molecules of equivalent soluble fluorophores (MESF) beads for calibration of NPs and EVs. Firstly, two FITC-MESF bead sets, 2 and 6 um in size, were measured on three flow cytometers. We showed that arbitrary units could not be compared between instruments but after calibration, comparable FITC MESF units were achieved. However, the two calibration bead sets displayed varying slopes that were consistent across platforms.

Further investigation revealed that the intrinsic uncertainty related to the MESF beads impacts the robust assignment of values to NPs and EVs based on extrapolation into the dim fluorescence range. Similar variations were found with PE MESF calibration.

Therefore, the same calibration materials and numbers of calibration points should be used for reliable comparison of submicron sized particles.

流式细胞术可以表征纳米颗粒(NPs)和细胞外囊泡(ev),但结果通常以任意单位的荧光表达。我们评估了等效可溶性荧光团(MESF)微球分子的精度和准确性,用于NPs和ev的校准。首先,在三台流式细胞仪上测量两个FITC-MESF头组,大小分别为2 um和6 um。我们发现任意单位不能在仪器之间进行比较,但在校准后,可以获得可比较的FITC MESF单位。然而,两个校准头组显示不同的斜度,在各个平台上是一致的。进一步的研究表明,与MESF珠相关的固有不确定性影响了基于外推到微弱荧光范围的np和ev值的稳健分配。在PE MESF校准中也发现了类似的变化。因此,为了对亚微米级颗粒进行可靠的比较,应使用相同的校准材料和校准点的数量。
{"title":"Intrinsic variability of fluorescence calibrators impacts the assignment of MESF or ERF values to nanoparticles and extracellular vesicles by flow cytometry","authors":"Estefanía Lozano-Andrés PhD ,&nbsp;Tina Van Den Broeck PhD ,&nbsp;Lili Wang PhD ,&nbsp;Majid Mehrpouyan PhD ,&nbsp;Ye Tian PhD ,&nbsp;Xiaomei Yan PhD ,&nbsp;Ger J.A. Arkesteijn PhD ,&nbsp;Marca H.M. Wauben PhD","doi":"10.1016/j.nano.2023.102720","DOIUrl":"10.1016/j.nano.2023.102720","url":null,"abstract":"<div><p>Flow cytometry allows to characterize nanoparticles (NPs) and extracellular vesicles (EVs) but results are often expressed in arbitrary units of fluorescence. We evaluated the precision and accuracy of molecules of equivalent soluble fluorophores (MESF) beads for calibration of NPs and EVs. Firstly, two FITC-MESF bead sets, 2 and 6 um in size, were measured on three flow cytometers. We showed that arbitrary units could not be compared between instruments but after calibration, comparable FITC MESF units were achieved. However, the two calibration bead sets displayed varying slopes that were consistent across platforms.</p><p>Further investigation revealed that the intrinsic uncertainty related to the MESF beads impacts the robust assignment of values to NPs and EVs based on extrapolation into the dim fluorescence range. Similar variations were found with PE MESF calibration.</p><p>Therefore, the same calibration materials and numbers of calibration points should be used for reliable comparison of submicron sized particles.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"56 ","pages":"Article 102720"},"PeriodicalIF":5.4,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963423000710/pdfft?md5=7ce6e8120251cac93c9d5492d02b8d27&pid=1-s2.0-S1549963423000710-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138440971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ready-to-use nanopore platform for label-free small molecule quantification: Ethanolamine as first example 现成的纳米孔平台,用于无标记的小分子定量:乙醇胺为第一个例子。
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-11-23 DOI: 10.1016/j.nano.2023.102724
Isabel Quint MSc , Jonathan Simantzik MSc , Lars Kaiser PhD , Stefan Laufer PhD , Rene' Csuk PhD , David Smith PhD , Matthias Kohl PhD , Hans-Peter Deigner PhD

In recent decades, nanopores have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as HPLC or LC-MS. DNA aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described.

Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.

近几十年来,纳米孔已成为一种很有前途的诊断工具。蛋白质和固态纳米孔越来越多地用于RNA/DNA测序和小分子检测。后者非常重要,因为使用HPLC或LC-MS等现有方法检测它们困难或昂贵。DNA适体是一种灵敏、特异的小分子检测元件。本文描述了一种利用即用型测序平台定量小分子的方法。以乙醇胺为例,开发了一种链置换法,其中目标结合适体被乙醇胺从磁性颗粒表面置换。通过纳米孔系统检测非位移适配体和乙醇胺浓度,并可以使用我们内部开发的分析软件在微摩尔范围内进行量化。因此,该方法首次描述了一种用于检测蛋白质纳米孔系统中的小分子的无标记方法。
{"title":"Ready-to-use nanopore platform for label-free small molecule quantification: Ethanolamine as first example","authors":"Isabel Quint MSc ,&nbsp;Jonathan Simantzik MSc ,&nbsp;Lars Kaiser PhD ,&nbsp;Stefan Laufer PhD ,&nbsp;Rene' Csuk PhD ,&nbsp;David Smith PhD ,&nbsp;Matthias Kohl PhD ,&nbsp;Hans-Peter Deigner PhD","doi":"10.1016/j.nano.2023.102724","DOIUrl":"10.1016/j.nano.2023.102724","url":null,"abstract":"<div><p><span>In recent decades, nanopores<span> have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as </span></span>HPLC<span><span> or LC-MS. DNA </span>aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described.</span></p><p>Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102724"},"PeriodicalIF":5.4,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138440973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-targeted nanoparticles with removing ROS inside and outside mitochondria for acute kidney injury treatment 去除线粒体内外活性氧的双靶向纳米颗粒治疗急性肾损伤。
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-11-23 DOI: 10.1016/j.nano.2023.102725
Mengmeng Zhao MD , Jialing Guo PhD , Chaoying Tian MD , Mei Yan MD , Yingying Zhou MD , Chenxin Liu MD , Mengxue Pang MD , Bin Du Prof , Genyang Cheng Prof

Mitochondrial oxidative stress and inflammation are the main pathological features of acute kidney injury (AKI). However, systemic toxicity of anti-inflammatory drugs and low bioavailability of antioxidants limit the treatment of AKI. Here, the lipid micelle nanosystem modified with l-serine was designed to improve treatment of AKI. The micelle kernels coating the antioxidant drug 4-carboxybutyl triphenylph-osphine bromide-modified curcumin (Cur-TPP) and quercetin (Que). In the cisplatin (CDDP)-induced AKI model, the nanosystem protected mitochondrial structure and improved renal function. Compared to mono-targeted group, the mitochondrial ROS content of renal tubular epithelial cells acting in the dual-target group decreased about 1.66-fold in vitro, serum creatinine (Scr) and urea nitrogen (BUN) levels were reduced by 1.5 and 1.2 mmol/L in vivo, respectively. Mechanistic studies indicated that the nanosystem inhibited the inflammatory response by interfering with the NF-κB and Nrf2 pathways. This study provides an efficient and low-toxicity strategy for AKI therapy.

线粒体氧化应激和炎症是急性肾损伤(AKI)的主要病理特征。然而,抗炎药物的全身毒性和抗氧化剂的低生物利用度限制了AKI的治疗。本研究设计了l-丝氨酸修饰的脂质胶束纳米系统,以改善AKI的治疗。用胶束包覆抗氧化药物4-羧基丁基三苯基溴化膦改性姜黄素(Cur-TPP)和槲皮素(Que)。在顺铂(CDDP)诱导的AKI模型中,纳米系统保护线粒体结构并改善肾功能。与单靶点组相比,双靶点组肾小管上皮细胞线粒体ROS含量在体外降低约1.66倍,体内血清肌酐(Scr)和尿素氮(BUN)水平分别降低1.5和1.2 mmol/L。机制研究表明,纳米系统通过干扰NF-κB和Nrf2通路抑制炎症反应。本研究为AKI治疗提供了一种高效、低毒的策略。
{"title":"Dual-targeted nanoparticles with removing ROS inside and outside mitochondria for acute kidney injury treatment","authors":"Mengmeng Zhao MD ,&nbsp;Jialing Guo PhD ,&nbsp;Chaoying Tian MD ,&nbsp;Mei Yan MD ,&nbsp;Yingying Zhou MD ,&nbsp;Chenxin Liu MD ,&nbsp;Mengxue Pang MD ,&nbsp;Bin Du Prof ,&nbsp;Genyang Cheng Prof","doi":"10.1016/j.nano.2023.102725","DOIUrl":"10.1016/j.nano.2023.102725","url":null,"abstract":"<div><p><span><span>Mitochondrial oxidative stress and inflammation are the main pathological features of </span>acute kidney injury<span> (AKI). However, systemic toxicity of anti-inflammatory drugs and low bioavailability of antioxidants limit the treatment<span><span> of AKI. Here, the lipid<span> micelle </span></span>nanosystem modified with </span></span></span><span>l</span><span><span><span><span>-serine was designed to improve treatment of AKI. The micelle kernels coating the antioxidant drug 4-carboxybutyl triphenylph-osphine bromide-modified </span>curcumin<span><span> (Cur-TPP) and quercetin (Que). In the </span>cisplatin (CDDP)-induced AKI model, the nanosystem protected mitochondrial structure and improved </span></span>renal function<span>. Compared to mono-targeted group, the mitochondrial ROS content of renal tubular epithelial cells acting in the dual-target group decreased about 1.66-fold in vitro, </span></span>serum creatinine (Scr) and urea nitrogen (BUN) levels were reduced by 1.5 and 1.2 mmol/L in vivo, respectively. Mechanistic studies indicated that the nanosystem inhibited the inflammatory response by interfering with the NF-κB and Nrf2 pathways. This study provides an efficient and low-toxicity strategy for AKI therapy.</span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102725"},"PeriodicalIF":5.4,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138440969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic peptides of IL-1Ra and HSP70 have anti-inflammatory activity on human primary monocytes and macrophages: Potential treatments for inflammatory diseases IL-1Ra和HSP70合成肽对人原代单核细胞和巨噬细胞具有抗炎活性:炎症性疾病的潜在治疗方法
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-11-17 DOI: 10.1016/j.nano.2023.102719
Alba Pensado-López PhD , Aldo Ummarino PhD Student , Sophia Khan PhD , Anna Guildford PhD , Iain U. Allan PhD , Matteo Santin PhD , Nathalie Chevallier PhD , Elina Varaillon MSc, PhD , Elizaveta Kon MD , Paola Allavena MD , Fernando Torres Andón PhD

Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity in vitro in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.

慢性炎症性疾病在发达社会越来越多,因此临床需要新的抗炎方法。合成肽复合物可以被设计成模拟抗炎介质的活性,以减轻炎症。在这里,我们评估了模拟白细胞介素-1受体拮抗剂(IL-1Ra)和热休克蛋白70 (HSP70)的栓系肽的抗炎功效。在TLR激动剂(LPS + IFN-γ)和Pam3CSK4两种不同刺激下,我们在体外测试了它们在原代人单核细胞和分化巨噬细胞中的生物相容性和抗炎活性。我们的研究结果表明,IL-1Ra和HSP70合成肽具有令人满意的生物相容性,并显著抑制几种促炎细胞因子(IL-6、IL-8、IL-1β和TNFα)的分泌。我们进一步证实了它们的抗炎活性,当肽包被在生物相容性材料通常用于外科植入物。总的来说,我们的研究结果支持IL-1Ra和HSP70合成肽治疗炎症的潜在应用。
{"title":"Synthetic peptides of IL-1Ra and HSP70 have anti-inflammatory activity on human primary monocytes and macrophages: Potential treatments for inflammatory diseases","authors":"Alba Pensado-López PhD ,&nbsp;Aldo Ummarino PhD Student ,&nbsp;Sophia Khan PhD ,&nbsp;Anna Guildford PhD ,&nbsp;Iain U. Allan PhD ,&nbsp;Matteo Santin PhD ,&nbsp;Nathalie Chevallier PhD ,&nbsp;Elina Varaillon MSc, PhD ,&nbsp;Elizaveta Kon MD ,&nbsp;Paola Allavena MD ,&nbsp;Fernando Torres Andón PhD","doi":"10.1016/j.nano.2023.102719","DOIUrl":"10.1016/j.nano.2023.102719","url":null,"abstract":"<div><p>Chronic inflammatory diseases are increasing in developed societies, thus new anti-inflammatory approaches are needed in the clinic. Synthetic peptides complexes can be designed to mimic the activity of anti-inflammatory mediators, in order to alleviate inflammation. Here, we evaluated the anti-inflammatory efficacy of tethered peptides mimicking the interleukin-1 receptor antagonist (IL-1Ra) and the heat-shock protein 70 (HSP70). We tested their biocompatibility and anti-inflammatory activity <em>in vitro</em> in primary human monocytes and differentiated macrophages activated with two different stimuli: the TLR agonists (LPS + IFN-γ) or Pam3CSK4. Our results demonstrate that IL-1Ra and HSP70 synthetic peptides present a satisfactory biocompatible profile and significantly inhibit the secretion of several pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNFα). We further confirmed their anti-inflammatory activity when peptides were coated on a biocompatible material commonly employed in surgical implants. Overall, our findings support the potential use of IL-1Ra and HSP70 synthetic peptides for the treatment of inflammatory conditions.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102719"},"PeriodicalIF":5.4,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963423000709/pdfft?md5=db574adb339ebde7fdc666e5c0535ad9&pid=1-s2.0-S1549963423000709-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis 长期运动来源的外泌体LncRNA CRNDE通过miR-489-3p/Nrf2信号轴减轻心肌梗死损伤。
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-11-06 DOI: 10.1016/j.nano.2023.102717
Wujun Chen PhD, Qiaoyi Ye MB, Yi Dong MB

Myocardial infarction (MI) is a cardiovascular disease and troubles patients all over the world. Exosomes produced after long-term exercise training were discovered to mediate intercellular communication and alleviate MI-induced heart injury. However, the detailed roles of long-term exercise-derived exosomal long noncoding RNAs (LncRNAs) in MI remain uncovered. In this study, we collected and identified long-term exercise-derived exosomes, and established MI or hypoxia/reoxygenation (H/R) model after LncRNA colorectal neoplasia differentially expressed (CRNDE) depletion. This work proved that LncRNA CRNDE was highly expressed in long-term exercise-derived exosomes (p = 0.0078). CRNDE knockdown increased cardiomyocytes apoptosis and oxidative stress (p = 0.0036), and suppressed MI progress (p = 0.0005). CRNDE served as the sponge of miR-489-3p to affect Nrf2 expression (p = 0.0001). MiR-489-3p inhibition effectively reversed the effects of CRNDE depletion on hypoxia cardiomyocytes (p = 0.0002). These findings offered a promising therapeutic option for the treatment of MI.

心肌梗死(MI)是一种困扰世界各地患者的心血管疾病。长期运动训练后产生的外泌体被发现可以介导细胞间通讯并减轻MI诱导的心脏损伤。然而,长期运动衍生的外泌体长非编码RNA(LncRNA)在心肌梗死中的详细作用仍不清楚。在本研究中,我们收集并鉴定了长期运动衍生的外泌体,并在LncRNA结直肠肿瘤差异表达(CRNDE)缺失后建立了MI或缺氧/复氧(H/R)模型。这项工作证明LncRNACRNDE在长期运动衍生的外泌体中高度表达(p = 0.0078)。CRNDE敲低增加心肌细胞凋亡和氧化应激(p = 0.0036),并抑制MI进展(p = 0.0005)。CRNDE作为miR-489-3p的海绵,影响Nrf2的表达(p = 0.0001)。MiR-489-3p抑制有效逆转了CRNDE耗竭对缺氧心肌细胞的影响(p = 0.0002)。这些发现为MI的治疗提供了一种有前景的治疗选择。
{"title":"Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis","authors":"Wujun Chen PhD,&nbsp;Qiaoyi Ye MB,&nbsp;Yi Dong MB","doi":"10.1016/j.nano.2023.102717","DOIUrl":"10.1016/j.nano.2023.102717","url":null,"abstract":"<div><p><span><span><span>Myocardial infarction (MI) is a cardiovascular disease and troubles patients all over the world. Exosomes produced after long-term exercise training were discovered to mediate intercellular communication and alleviate MI-induced heart injury. However, the detailed roles of long-term exercise-derived exosomal </span>long noncoding RNAs (LncRNAs) in MI remain uncovered. In this study, we collected and identified long-term exercise-derived exosomes, and established MI or hypoxia/reoxygenation (H/R) model after LncRNA </span>colorectal neoplasia differentially expressed (CRNDE) depletion. This work proved that LncRNA CRNDE was highly expressed in long-term exercise-derived exosomes (</span><em>p</em><span><span><span> = 0.0078). CRNDE knockdown increased cardiomyocytes </span>apoptosis and </span>oxidative stress (</span><em>p</em> = 0.0036), and suppressed MI progress (<em>p</em> = 0.0005). CRNDE served as the sponge of miR-489-3p to affect Nrf2 expression (<em>p</em><span> = 0.0001). MiR-489-3p inhibition effectively reversed the effects of CRNDE depletion on hypoxia cardiomyocytes (</span><em>p</em><span> = 0.0002). These findings offered a promising therapeutic option for the treatment of MI.</span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102717"},"PeriodicalIF":5.4,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic activity and biodistribution of a nano-sized polymer-dexamethasone conjugate intended for the targeted treatment of rheumatoid arthritis 用于类风湿性关节炎靶向治疗的纳米聚合物-地塞米松偶联物的治疗活性和生物分布
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-10-30 DOI: 10.1016/j.nano.2023.102716
Daniela Rubanová M.Sc. et M.Sc. , Svitlana Skoroplyas M.Sc., Ph.D. , Alena Libánská M.Sc. , Eva Randárová M.Sc. Ph.D. , Josef Bryja B.Sc. , Michaela Chorvátová M.Sc. , Tomáš Etrych RNDr. Ph.D. DSc. , Lukáš Kubala M.Sc. Ph.D.

Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible N-(2-hydroxypropyl) methacrylamide copolymers. We observed an increased accumulation of dexamethasone polymer nanomedicines in the arthritic mouse paw using non-invasive fluorescent in vivo imaging and confirmed it by the analysis of tissue homogenates. The dexamethasone conjugate exhibited a dose-dependent healing effect on arthritis and an improved therapeutic outcome compared to free dexamethasone. Particularly, significant reduction of accumulation of RA mediator RANKL was observed. Overall, our data suggest that the conjugation of dexamethasone to a polymer nanocarrier by means of stimuli-sensitive spacer is suitable strategy for improving rheumatoid arthritis therapy.

类风湿性关节炎是一种由免疫系统改变引起的慢性炎症性自身免疫性疾病。目前的治疗方法有一些局限性,而纳米药物的使用代表了一种克服它们的有希望的策略。通过佐剂性关节炎小鼠模型,我们旨在评估糖皮质激素地塞米松与基于生物相容性N-(2-羟丙基)甲基丙烯酰胺共聚物的纳米载体缀合的生物分布和治疗效果。我们使用非侵入性荧光体内成像观察到地塞米松聚合物纳米药物在患关节炎的小鼠爪子中积累增加,并通过组织匀浆分析证实了这一点。与游离地塞米松相比,地塞米松偶联物对关节炎表现出剂量依赖性的愈合效果,并改善了治疗结果。特别是,观察到RA介质RANKL的积累显著减少。总的来说,我们的数据表明,通过刺激敏感间隔剂将地塞米松偶联到聚合物纳米载体上是改善类风湿性关节炎治疗的合适策略。
{"title":"Therapeutic activity and biodistribution of a nano-sized polymer-dexamethasone conjugate intended for the targeted treatment of rheumatoid arthritis","authors":"Daniela Rubanová M.Sc. et M.Sc. ,&nbsp;Svitlana Skoroplyas M.Sc., Ph.D. ,&nbsp;Alena Libánská M.Sc. ,&nbsp;Eva Randárová M.Sc. Ph.D. ,&nbsp;Josef Bryja B.Sc. ,&nbsp;Michaela Chorvátová M.Sc. ,&nbsp;Tomáš Etrych RNDr. Ph.D. DSc. ,&nbsp;Lukáš Kubala M.Sc. Ph.D.","doi":"10.1016/j.nano.2023.102716","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102716","url":null,"abstract":"<div><p>Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible <em>N</em>-(2-hydroxypropyl) methacrylamide copolymers. We observed an increased accumulation of dexamethasone polymer nanomedicines in the arthritic mouse paw using non-invasive fluorescent <em>in vivo</em> imaging and confirmed it by the analysis of tissue homogenates. The dexamethasone conjugate exhibited a dose-dependent healing effect on arthritis and an improved therapeutic outcome compared to free dexamethasone. Particularly, significant reduction of accumulation of RA mediator RANKL was observed. Overall, our data suggest that the conjugation of dexamethasone to a polymer nanocarrier by means of stimuli-sensitive spacer is suitable strategy for improving rheumatoid arthritis therapy.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102716"},"PeriodicalIF":5.4,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92055141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting the ferroaddiction of pancreatic cancer cells using Fe-doped nanoparticles 利用掺铁纳米颗粒研究胰腺癌细胞的铁依赖性
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-10-30 DOI: 10.1016/j.nano.2023.102714
Thanpisit Lomphithak M.Sc. , Apiwit Sae-Fung M.Sc. , Simone Sprio Ph.D. , Anna Tampieri Ph.D. , Siriporn Jitkaew Ph.D. , Bengt Fadeel M.D., Ph.D.

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in KRAS mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type versus mutant KRAS. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe3+ to Fe2+. Taken together, our data show that FeHA is capable of triggering cancer cell death in a KRAS-selective, STEAP3-dependent manner in PDAC cells.

胰腺导管腺癌(PDAC)是一种生存率低的毁灭性疾病。在这里,我们评估了铁掺杂羟基磷灰石(FeHA)作为一种潜在的基于纳米医学的方法来对抗PDAC。研究发现,FeHA与亚致死剂量的谷胱甘肽过氧化物酶4 (GPX4)抑制剂RSL3联合使用可触发KRAS突变体PANC-1细胞的铁凋亡,但在BxPC3细胞中没有,而正常的人类细胞(成纤维细胞和外周血单核细胞)则不受影响。这些发现在使用PDAC细胞生成的3D球体中得到了概括,这些细胞含有野生型和突变型KRAS。此外,FeHA + RSL3诱导的铁死亡可以通过敲低STEAP3(一种负责将Fe3+转化为Fe2+的金属还原酶)而逆转。综上所述,我们的数据表明FeHA能够在PDAC细胞中以kras选择性、steap3依赖性的方式触发癌细胞死亡。
{"title":"Exploiting the ferroaddiction of pancreatic cancer cells using Fe-doped nanoparticles","authors":"Thanpisit Lomphithak M.Sc. ,&nbsp;Apiwit Sae-Fung M.Sc. ,&nbsp;Simone Sprio Ph.D. ,&nbsp;Anna Tampieri Ph.D. ,&nbsp;Siriporn Jitkaew Ph.D. ,&nbsp;Bengt Fadeel M.D., Ph.D.","doi":"10.1016/j.nano.2023.102714","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102714","url":null,"abstract":"<div><p>Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in <em>KRAS</em> mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type <em>versus</em> mutant <em>KRAS</em>. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe<sup>3+</sup> to Fe<sup>2+</sup>. Taken together, our data show that FeHA is capable of triggering cancer cell death in a <em>KRAS</em>-selective, STEAP3-dependent manner in PDAC cells.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102714"},"PeriodicalIF":5.4,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92055142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review 金属基纳米颗粒在临床相关细菌中的抗菌活性逃逸机制:系统综述。
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-10-29 DOI: 10.1016/j.nano.2023.102715
Marco Felipe Salas-Orozco PhD , Ana Cecilia Lorenzo-Leal PhD , Idania de Alba Montero PhD , Nuria Patiño Marín PhD , Miguel Angel Casillas Santana PhD , Horacio Bach PhD

The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.

严重感染中抗生素耐药性细菌的紧急情况正在增加,尤其是在医院环境中。ESKAPE组在多重耐药菌群中具有特殊的重要性,因为它对抗生素和杀菌剂具有很高的耐药性。因此,金属基纳米材料是对抗它们的一种有吸引力的替代品,因为它们已被证明会破坏细菌细胞中的生物分子。然而,人们担心细菌对NP产生耐药性,以及由于环境积累而产生的有害影响。因此,本系统综述旨在报告对NP产生耐药性的临床相关细菌。根据这一系统综述的结果,已经提出了抵消各种NP类型的抗菌活性的各种机制。这些机制可分为以下几类:细胞外化合物的产生、金属外排泵、ROS反应、遗传变化、DNA修复、适应性形态发生和质膜变化。
{"title":"Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review","authors":"Marco Felipe Salas-Orozco PhD ,&nbsp;Ana Cecilia Lorenzo-Leal PhD ,&nbsp;Idania de Alba Montero PhD ,&nbsp;Nuria Patiño Marín PhD ,&nbsp;Miguel Angel Casillas Santana PhD ,&nbsp;Horacio Bach PhD","doi":"10.1016/j.nano.2023.102715","DOIUrl":"10.1016/j.nano.2023.102715","url":null,"abstract":"<div><p>The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"55 ","pages":"Article 102715"},"PeriodicalIF":5.4,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of primary myelofibrosis in blood serum via Raman spectroscopy assisted by machine learning approaches; correlation with clinical diagnosis 拉曼光谱辅助机器学习方法检测血清中的原发性骨髓纤维化;与临床诊断的相关性。
IF 5.4 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102706
Zozan Guleken PhD , Zeynep Ceylan PhD , Aynur Aday PhD , Ayşe Gül Bayrak PhD , İpek Yönal Hindilerden MD, Prof. , Meliha Nalçacı MD, Prof. , Paweł Jakubczyk Prof. , Dorota Jakubczyk PhD , Monika Kula-Maximenko PhD , Joanna Depciuch PhD

Primary myelofibrosis (PM) is one of the myeloproliferative neoplasm, where stem cell-derived clonal neoplasms was noticed. Diagnosis of this disease is based on: physical examination, peripheral blood findings, bone marrow morphology, cytogenetics, and molecular markers. However, the molecular marker of PM, which is a mutation in the JAK2V617F gene, was observed also in other myeloproliferative neoplasms such as polycythemia vera and essential thrombocythemia. Therefore, there is a need to find methods that provide a marker unique to PM and allow for higher accuracy of PM diagnosis and consequently the treatment of the disease. Continuing, in this study, we used Raman spectroscopy, Principal Components Analysis (PCA), and Partial Least Squares (PLS) analysis as helpful diagnostic tools for PM. Consequently, we used serum collected from PM patients, which were classified using clinical parameters of PM such as the dynamic international prognostic scoring system (DIPSS) for primary myelofibrosis plus score, the JAK2V617F mutation, spleen size, bone marrow reticulin fibrosis degree and use of hydroxyurea drug features. Raman spectra showed higher amounts of C-H, C-C and C-C/C-N and amide II and lower amounts of amide I and vibrations of CH3 groups in PM patients than in healthy ones. Furthermore, shifts of amides II and I vibrations in PM patients were noticed. Machine learning methods were used to analyze Raman regions: (i) 800 cm−1 and 1800 cm−1, (ii) 1600 cm−1–1700 cm−1, and (iii) 2700 cm−1–3000 cm−1 showed 100 % accuracy, sensitivity, and specificity. Differences in the spectral dynamic showed that differences in the amide II and amide I regions were the most significant in distinguishing between PM and healthy subjects. Importantly, until now, the efficacy of Raman spectroscopy has not been established in clinical diagnostics of PM disease using the correlation between Raman spectra and PM clinical prognostic scoring. Continuing, our results showed the correlation between Raman signals and bone marrow fibrosis, as well as JAKV617F. Consequently, the results revealed that Raman spectroscopy has a high potential for use in medical laboratory diagnostics to quantify multiple biomarkers simultaneously, especially in the selected Raman regions.

原发性骨髓纤维化(PM)是骨髓增生性肿瘤之一,其中干细胞来源的克隆性肿瘤备受关注。这种疾病的诊断基于:身体检查、外周血检查、骨髓形态学、细胞遗传学和分子标记。然而,在其他骨髓增生性肿瘤如真性红细胞增多症和原发性血小板增多症中也观察到PM的分子标记物,它是JAK2V617F基因的突变。因此,需要找到提供PM特有的标志物的方法,并允许PM诊断的更高准确性,从而允许疾病的治疗。继续,在这项研究中,我们使用拉曼光谱、主成分分析(PCA)和偏最小二乘(PLS)分析作为PM的有用诊断工具。因此,我们使用了从PM患者收集的血清,这些血清使用PM的临床参数进行分类,如原发性骨髓纤维化的动态国际预后评分系统(DIPSS)加评分,JAK2V617F突变、脾脏大小、骨髓网织蛋白纤维化程度及羟基脲类药物的使用特点。拉曼光谱显示,与健康患者相比,PM患者的C-H、C-C和C-C/C-N以及酰胺II的量更高,酰胺I的量和CH3基团的振动量更低。此外,PM患者的酰胺II和I振动发生了变化。使用机器学习方法分析拉曼区域:(i)800 cm-1和1800 cm-1,(ii)1600 cm-1至1700 cm-1,和(iii)2700 cm-1至3000 cm-1显示出100%的准确性、敏感性和特异性。光谱动力学的差异表明,酰胺II和酰胺I区域的差异在区分PM和健康受试者方面最为显著。重要的是,到目前为止,还没有利用拉曼光谱和PM临床预后评分之间的相关性来确定拉曼光谱在PM疾病的临床诊断中的疗效。继续,我们的结果显示了拉曼信号与骨髓纤维化以及JAKV617F之间的相关性。因此,结果表明,拉曼光谱在医学实验室诊断中具有很高的潜力,可以同时量化多种生物标志物,特别是在选定的拉曼区域。
{"title":"Detection of primary myelofibrosis in blood serum via Raman spectroscopy assisted by machine learning approaches; correlation with clinical diagnosis","authors":"Zozan Guleken PhD ,&nbsp;Zeynep Ceylan PhD ,&nbsp;Aynur Aday PhD ,&nbsp;Ayşe Gül Bayrak PhD ,&nbsp;İpek Yönal Hindilerden MD, Prof. ,&nbsp;Meliha Nalçacı MD, Prof. ,&nbsp;Paweł Jakubczyk Prof. ,&nbsp;Dorota Jakubczyk PhD ,&nbsp;Monika Kula-Maximenko PhD ,&nbsp;Joanna Depciuch PhD","doi":"10.1016/j.nano.2023.102706","DOIUrl":"10.1016/j.nano.2023.102706","url":null,"abstract":"<div><p><span><span><span>Primary myelofibrosis<span> (PM) is one of the myeloproliferative neoplasm, where stem cell-derived clonal neoplasms was noticed. Diagnosis of this disease is based on: physical examination, peripheral blood findings, bone marrow morphology, cytogenetics, and </span></span>molecular markers<span><span>. However, the molecular marker of PM, which is a mutation in the JAK2V617F gene, was observed also in other myeloproliferative neoplasms such as polycythemia vera<span> and essential thrombocythemia. Therefore, there is a need to find methods that provide a marker unique to PM and allow for higher accuracy of PM diagnosis and consequently the </span></span>treatment<span><span><span> of the disease. Continuing, in this study, we used Raman spectroscopy, </span>Principal Components Analysis<span> (PCA), and Partial Least Squares (PLS) analysis as helpful diagnostic tools for PM. Consequently, we used serum collected from PM patients, which were classified using clinical parameters of PM such as the dynamic </span></span>international prognostic scoring system<span><span> (DIPSS) for primary myelofibrosis plus score, the JAK2V617F mutation, spleen size, bone marrow </span>reticulin<span> fibrosis degree and use of </span></span></span></span></span>hydroxyurea<span><span> drug features. </span>Raman spectra showed higher amounts of C-H, C-C and C-C/C-N and amide II and lower amounts of amide I and vibrations of CH</span></span><sub>3</sub><span> groups in PM patients than in healthy ones. Furthermore, shifts of amides<span> II and I vibrations in PM patients were noticed. Machine learning methods were used to analyze Raman regions: (i) 800 cm</span></span><sup>−1</sup> and 1800 cm<sup>−1</sup>, (ii) 1600 cm<sup>−1</sup>–1700 cm<sup>−1</sup>, and (iii) 2700 cm<sup>−1</sup>–3000 cm<sup>−1</sup><span> showed 100 % accuracy, sensitivity, and specificity. Differences in the spectral dynamic showed that differences in the amide II and amide I regions were the most significant in distinguishing between PM and healthy subjects. Importantly, until now, the efficacy of Raman spectroscopy has not been established in clinical diagnostics of PM disease using the correlation between Raman spectra and PM clinical prognostic scoring. Continuing, our results showed the correlation between Raman signals and bone marrow fibrosis, as well as JAKV617F. Consequently, the results revealed that Raman spectroscopy has a high potential for use in medical laboratory diagnostics to quantify multiple biomarkers simultaneously, especially in the selected Raman regions.</span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"53 ","pages":"Article 102706"},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10522993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomedicine : nanotechnology, biology, and medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1