首页 > 最新文献

Nanomedicine : nanotechnology, biology, and medicine最新文献

英文 中文
Exploiting the ferroaddiction of pancreatic cancer cells using Fe-doped nanoparticles 利用掺铁纳米颗粒研究胰腺癌细胞的铁依赖性
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-10-30 DOI: 10.1016/j.nano.2023.102714
Thanpisit Lomphithak M.Sc. , Apiwit Sae-Fung M.Sc. , Simone Sprio Ph.D. , Anna Tampieri Ph.D. , Siriporn Jitkaew Ph.D. , Bengt Fadeel M.D., Ph.D.

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in KRAS mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type versus mutant KRAS. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe3+ to Fe2+. Taken together, our data show that FeHA is capable of triggering cancer cell death in a KRAS-selective, STEAP3-dependent manner in PDAC cells.

胰腺导管腺癌(PDAC)是一种生存率低的毁灭性疾病。在这里,我们评估了铁掺杂羟基磷灰石(FeHA)作为一种潜在的基于纳米医学的方法来对抗PDAC。研究发现,FeHA与亚致死剂量的谷胱甘肽过氧化物酶4 (GPX4)抑制剂RSL3联合使用可触发KRAS突变体PANC-1细胞的铁凋亡,但在BxPC3细胞中没有,而正常的人类细胞(成纤维细胞和外周血单核细胞)则不受影响。这些发现在使用PDAC细胞生成的3D球体中得到了概括,这些细胞含有野生型和突变型KRAS。此外,FeHA + RSL3诱导的铁死亡可以通过敲低STEAP3(一种负责将Fe3+转化为Fe2+的金属还原酶)而逆转。综上所述,我们的数据表明FeHA能够在PDAC细胞中以kras选择性、steap3依赖性的方式触发癌细胞死亡。
{"title":"Exploiting the ferroaddiction of pancreatic cancer cells using Fe-doped nanoparticles","authors":"Thanpisit Lomphithak M.Sc. ,&nbsp;Apiwit Sae-Fung M.Sc. ,&nbsp;Simone Sprio Ph.D. ,&nbsp;Anna Tampieri Ph.D. ,&nbsp;Siriporn Jitkaew Ph.D. ,&nbsp;Bengt Fadeel M.D., Ph.D.","doi":"10.1016/j.nano.2023.102714","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102714","url":null,"abstract":"<div><p>Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in <em>KRAS</em> mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type <em>versus</em> mutant <em>KRAS</em>. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe<sup>3+</sup> to Fe<sup>2+</sup>. Taken together, our data show that FeHA is capable of triggering cancer cell death in a <em>KRAS</em>-selective, STEAP3-dependent manner in PDAC cells.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92055142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review 金属基纳米颗粒在临床相关细菌中的抗菌活性逃逸机制:系统综述。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-10-29 DOI: 10.1016/j.nano.2023.102715
Marco Felipe Salas-Orozco PhD , Ana Cecilia Lorenzo-Leal PhD , Idania de Alba Montero PhD , Nuria Patiño Marín PhD , Miguel Angel Casillas Santana PhD , Horacio Bach PhD

The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.

严重感染中抗生素耐药性细菌的紧急情况正在增加,尤其是在医院环境中。ESKAPE组在多重耐药菌群中具有特殊的重要性,因为它对抗生素和杀菌剂具有很高的耐药性。因此,金属基纳米材料是对抗它们的一种有吸引力的替代品,因为它们已被证明会破坏细菌细胞中的生物分子。然而,人们担心细菌对NP产生耐药性,以及由于环境积累而产生的有害影响。因此,本系统综述旨在报告对NP产生耐药性的临床相关细菌。根据这一系统综述的结果,已经提出了抵消各种NP类型的抗菌活性的各种机制。这些机制可分为以下几类:细胞外化合物的产生、金属外排泵、ROS反应、遗传变化、DNA修复、适应性形态发生和质膜变化。
{"title":"Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review","authors":"Marco Felipe Salas-Orozco PhD ,&nbsp;Ana Cecilia Lorenzo-Leal PhD ,&nbsp;Idania de Alba Montero PhD ,&nbsp;Nuria Patiño Marín PhD ,&nbsp;Miguel Angel Casillas Santana PhD ,&nbsp;Horacio Bach PhD","doi":"10.1016/j.nano.2023.102715","DOIUrl":"10.1016/j.nano.2023.102715","url":null,"abstract":"<div><p>The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-phenolic capsules with ROS scavenging reshape the oxidative microenvironment of atherosclerosis 具有清除ROS的金属酚类胶囊重塑动脉粥样硬化的氧化微环境。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102700
Aiai Zhang MD , Kaijing Liu PhD , Xiaoyu Liang PhD , Huiyang Li PhD , Xue Fu PhD , Ni Zhu MD , Fangjiang Li BS , Jing Yang PhD

Arterial injury makes the tissue in a state of high oxidative stress. At the same time, abnormal lipid metabolism can further lead to bleeding and thrombosis. Therefore, the anti-inflammatory and anti-oxidant polyphenol, EGCG was organically complexed with Fe3+ to form a metal-phenolic framework carrier. And the antihyperlipidemic drug, atorvastatin (ATV) was loaded into the carrier to enhance the bioavailability, and simultaneously alleviate the oxidative stress of the inflammatory site and abnormal lipid metabolism. The results confirmed that the obtained material EGCG-Fe-ATV had good biocompatibility and biosafety effect. In addition, EGCG-Fe-ATV showed outstanding anti-inflammatory, anti-oxidant and lipid-lowering properties. These therapeutic outcomes of EGCG-Fe-ATV were achieved by reducing systemic and local oxidative stress and inflammation, alleviating inflammatory cell infiltration in plaques, and modulating lipid synthesis and transferase to alter cholesterol transport. In conclusion, the combination of metal-phenolic capsules with ATV provides a new strategy for reshaping the oxidative microenvironment of atherosclerosis.

动脉损伤使组织处于高度氧化应激状态。同时,脂质代谢异常会进一步导致出血和血栓形成。因此,将抗炎抗氧化多酚EGCG与Fe3+有机络合,形成金属酚骨架载体。并将抗高血压药物阿托伐他汀(ATV)装入载体中,以提高生物利用度,同时缓解炎症部位的氧化应激和脂质代谢异常。结果证实,所制备的材料EGCG-Fe-ATV具有良好的生物相容性和生物安全性。此外,EGCG-Fe-ATV表现出突出的抗炎、抗氧化和降脂特性。EGCG-Fe-ATV的这些治疗结果是通过减少全身和局部氧化应激和炎症、减轻斑块中的炎症细胞浸润以及调节脂质合成和转移酶以改变胆固醇转运来实现的。总之,金属酚胶囊与ATV的结合为重塑动脉粥样硬化的氧化微环境提供了一种新的策略。
{"title":"Metal-phenolic capsules with ROS scavenging reshape the oxidative microenvironment of atherosclerosis","authors":"Aiai Zhang MD ,&nbsp;Kaijing Liu PhD ,&nbsp;Xiaoyu Liang PhD ,&nbsp;Huiyang Li PhD ,&nbsp;Xue Fu PhD ,&nbsp;Ni Zhu MD ,&nbsp;Fangjiang Li BS ,&nbsp;Jing Yang PhD","doi":"10.1016/j.nano.2023.102700","DOIUrl":"10.1016/j.nano.2023.102700","url":null,"abstract":"<div><p><span>Arterial injury<span><span> makes the tissue in a state of high oxidative stress. At the same time, abnormal </span>lipid metabolism<span> can further lead to bleeding and thrombosis. Therefore, the anti-inflammatory and anti-oxidant polyphenol, EGCG was organically complexed with Fe</span></span></span><sup>3+</sup><span><span><span> to form a metal-phenolic framework carrier. And the antihyperlipidemic drug, </span>atorvastatin<span> (ATV) was loaded into the carrier to enhance the bioavailability, and simultaneously alleviate the oxidative stress of the inflammatory site and abnormal lipid<span> metabolism. The results confirmed that the obtained material EGCG-Fe-ATV had good biocompatibility and biosafety effect. In addition, EGCG-Fe-ATV showed outstanding anti-inflammatory, anti-oxidant and lipid-lowering properties. These therapeutic outcomes of EGCG-Fe-ATV were achieved by reducing systemic and local oxidative stress and inflammation, alleviating </span></span></span>inflammatory cell<span><span><span> infiltration in plaques, and modulating </span>lipid synthesis<span> and transferase<span> to alter cholesterol transport. In conclusion, the combination of metal-phenolic capsules<span> with ATV provides a new strategy for reshaping the oxidative microenvironment of </span></span></span></span>atherosclerosis.</span></span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9981744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of primary myelofibrosis in blood serum via Raman spectroscopy assisted by machine learning approaches; correlation with clinical diagnosis 拉曼光谱辅助机器学习方法检测血清中的原发性骨髓纤维化;与临床诊断的相关性。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102706
Zozan Guleken PhD , Zeynep Ceylan PhD , Aynur Aday PhD , Ayşe Gül Bayrak PhD , İpek Yönal Hindilerden MD, Prof. , Meliha Nalçacı MD, Prof. , Paweł Jakubczyk Prof. , Dorota Jakubczyk PhD , Monika Kula-Maximenko PhD , Joanna Depciuch PhD

Primary myelofibrosis (PM) is one of the myeloproliferative neoplasm, where stem cell-derived clonal neoplasms was noticed. Diagnosis of this disease is based on: physical examination, peripheral blood findings, bone marrow morphology, cytogenetics, and molecular markers. However, the molecular marker of PM, which is a mutation in the JAK2V617F gene, was observed also in other myeloproliferative neoplasms such as polycythemia vera and essential thrombocythemia. Therefore, there is a need to find methods that provide a marker unique to PM and allow for higher accuracy of PM diagnosis and consequently the treatment of the disease. Continuing, in this study, we used Raman spectroscopy, Principal Components Analysis (PCA), and Partial Least Squares (PLS) analysis as helpful diagnostic tools for PM. Consequently, we used serum collected from PM patients, which were classified using clinical parameters of PM such as the dynamic international prognostic scoring system (DIPSS) for primary myelofibrosis plus score, the JAK2V617F mutation, spleen size, bone marrow reticulin fibrosis degree and use of hydroxyurea drug features. Raman spectra showed higher amounts of C-H, C-C and C-C/C-N and amide II and lower amounts of amide I and vibrations of CH3 groups in PM patients than in healthy ones. Furthermore, shifts of amides II and I vibrations in PM patients were noticed. Machine learning methods were used to analyze Raman regions: (i) 800 cm−1 and 1800 cm−1, (ii) 1600 cm−1–1700 cm−1, and (iii) 2700 cm−1–3000 cm−1 showed 100 % accuracy, sensitivity, and specificity. Differences in the spectral dynamic showed that differences in the amide II and amide I regions were the most significant in distinguishing between PM and healthy subjects. Importantly, until now, the efficacy of Raman spectroscopy has not been established in clinical diagnostics of PM disease using the correlation between Raman spectra and PM clinical prognostic scoring. Continuing, our results showed the correlation between Raman signals and bone marrow fibrosis, as well as JAKV617F. Consequently, the results revealed that Raman spectroscopy has a high potential for use in medical laboratory diagnostics to quantify multiple biomarkers simultaneously, especially in the selected Raman regions.

原发性骨髓纤维化(PM)是骨髓增生性肿瘤之一,其中干细胞来源的克隆性肿瘤备受关注。这种疾病的诊断基于:身体检查、外周血检查、骨髓形态学、细胞遗传学和分子标记。然而,在其他骨髓增生性肿瘤如真性红细胞增多症和原发性血小板增多症中也观察到PM的分子标记物,它是JAK2V617F基因的突变。因此,需要找到提供PM特有的标志物的方法,并允许PM诊断的更高准确性,从而允许疾病的治疗。继续,在这项研究中,我们使用拉曼光谱、主成分分析(PCA)和偏最小二乘(PLS)分析作为PM的有用诊断工具。因此,我们使用了从PM患者收集的血清,这些血清使用PM的临床参数进行分类,如原发性骨髓纤维化的动态国际预后评分系统(DIPSS)加评分,JAK2V617F突变、脾脏大小、骨髓网织蛋白纤维化程度及羟基脲类药物的使用特点。拉曼光谱显示,与健康患者相比,PM患者的C-H、C-C和C-C/C-N以及酰胺II的量更高,酰胺I的量和CH3基团的振动量更低。此外,PM患者的酰胺II和I振动发生了变化。使用机器学习方法分析拉曼区域:(i)800 cm-1和1800 cm-1,(ii)1600 cm-1至1700 cm-1,和(iii)2700 cm-1至3000 cm-1显示出100%的准确性、敏感性和特异性。光谱动力学的差异表明,酰胺II和酰胺I区域的差异在区分PM和健康受试者方面最为显著。重要的是,到目前为止,还没有利用拉曼光谱和PM临床预后评分之间的相关性来确定拉曼光谱在PM疾病的临床诊断中的疗效。继续,我们的结果显示了拉曼信号与骨髓纤维化以及JAKV617F之间的相关性。因此,结果表明,拉曼光谱在医学实验室诊断中具有很高的潜力,可以同时量化多种生物标志物,特别是在选定的拉曼区域。
{"title":"Detection of primary myelofibrosis in blood serum via Raman spectroscopy assisted by machine learning approaches; correlation with clinical diagnosis","authors":"Zozan Guleken PhD ,&nbsp;Zeynep Ceylan PhD ,&nbsp;Aynur Aday PhD ,&nbsp;Ayşe Gül Bayrak PhD ,&nbsp;İpek Yönal Hindilerden MD, Prof. ,&nbsp;Meliha Nalçacı MD, Prof. ,&nbsp;Paweł Jakubczyk Prof. ,&nbsp;Dorota Jakubczyk PhD ,&nbsp;Monika Kula-Maximenko PhD ,&nbsp;Joanna Depciuch PhD","doi":"10.1016/j.nano.2023.102706","DOIUrl":"10.1016/j.nano.2023.102706","url":null,"abstract":"<div><p><span><span><span>Primary myelofibrosis<span> (PM) is one of the myeloproliferative neoplasm, where stem cell-derived clonal neoplasms was noticed. Diagnosis of this disease is based on: physical examination, peripheral blood findings, bone marrow morphology, cytogenetics, and </span></span>molecular markers<span><span>. However, the molecular marker of PM, which is a mutation in the JAK2V617F gene, was observed also in other myeloproliferative neoplasms such as polycythemia vera<span> and essential thrombocythemia. Therefore, there is a need to find methods that provide a marker unique to PM and allow for higher accuracy of PM diagnosis and consequently the </span></span>treatment<span><span><span> of the disease. Continuing, in this study, we used Raman spectroscopy, </span>Principal Components Analysis<span> (PCA), and Partial Least Squares (PLS) analysis as helpful diagnostic tools for PM. Consequently, we used serum collected from PM patients, which were classified using clinical parameters of PM such as the dynamic </span></span>international prognostic scoring system<span><span> (DIPSS) for primary myelofibrosis plus score, the JAK2V617F mutation, spleen size, bone marrow </span>reticulin<span> fibrosis degree and use of </span></span></span></span></span>hydroxyurea<span><span> drug features. </span>Raman spectra showed higher amounts of C-H, C-C and C-C/C-N and amide II and lower amounts of amide I and vibrations of CH</span></span><sub>3</sub><span> groups in PM patients than in healthy ones. Furthermore, shifts of amides<span> II and I vibrations in PM patients were noticed. Machine learning methods were used to analyze Raman regions: (i) 800 cm</span></span><sup>−1</sup> and 1800 cm<sup>−1</sup>, (ii) 1600 cm<sup>−1</sup>–1700 cm<sup>−1</sup>, and (iii) 2700 cm<sup>−1</sup>–3000 cm<sup>−1</sup><span> showed 100 % accuracy, sensitivity, and specificity. Differences in the spectral dynamic showed that differences in the amide II and amide I regions were the most significant in distinguishing between PM and healthy subjects. Importantly, until now, the efficacy of Raman spectroscopy has not been established in clinical diagnostics of PM disease using the correlation between Raman spectra and PM clinical prognostic scoring. Continuing, our results showed the correlation between Raman signals and bone marrow fibrosis, as well as JAKV617F. Consequently, the results revealed that Raman spectroscopy has a high potential for use in medical laboratory diagnostics to quantify multiple biomarkers simultaneously, especially in the selected Raman regions.</span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10522993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organization of collagen fibers and tissue hardening: Markers of fibrotic scarring after spinal cord injury in mice revealed by multiphoton-atomic force microscopy imaging 胶原纤维的组织和组织硬化:多光子原子力显微镜成像揭示的小鼠脊髓损伤后纤维瘢痕形成的标志物。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102699
Clara Manesco MSc , Oscar Saavedra-Villanueva PhD , Marta Martin PhD , Joshua de Lizaraga MSc , Béla Varga PhD , Thierry Cloitre PhD , Yannick Nicolas Gerber PhD , Florence Evelyne Perrin Prof. , Csilla Gergely Prof.

Spinal cord injury is a dramatic disease leading to severe motor, sensitive and autonomic impairments. After injury the axonal regeneration is partly inhibited by the glial scar, acting as a physical and chemical barrier. The scarring process involves microglia, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar. To investigate the role of collagen, we used a multimodal label-free imaging approach combining multiphoton and atomic force microscopy. The second harmonic generation signal exhibited by fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen density and the formation of more tortuous fibers over time after injury are observed. Nano-mechanical investigations revealed a noticeable hardening of the injured area, correlated with collagen fibers' formation. These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution.

脊髓损伤是一种严重的疾病,会导致严重的运动、敏感和自主神经损伤。损伤后,轴突再生部分受到神经胶质瘢痕的抑制,起到物理和化学屏障的作用。瘢痕形成过程涉及小胶质细胞、星形胶质细胞和细胞外基质成分,如胶原蛋白,构成瘢痕的纤维化成分。为了研究胶原蛋白的作用,我们使用了多光子和原子力显微镜相结合的多模式无标记成像方法。原纤维胶原表现出的二次谐波生成信号能够将其作为病变的生物标志物进行特异性监测。随着时间的推移,观察到损伤后胶原密度的增加和更多弯曲纤维的形成。纳米力学研究显示,损伤区域明显硬化,与胶原纤维的形成有关。这些观察结果表明,在纤维瘢痕的演变过程中,伴随着重要的结构和机械改变。
{"title":"Organization of collagen fibers and tissue hardening: Markers of fibrotic scarring after spinal cord injury in mice revealed by multiphoton-atomic force microscopy imaging","authors":"Clara Manesco MSc ,&nbsp;Oscar Saavedra-Villanueva PhD ,&nbsp;Marta Martin PhD ,&nbsp;Joshua de Lizaraga MSc ,&nbsp;Béla Varga PhD ,&nbsp;Thierry Cloitre PhD ,&nbsp;Yannick Nicolas Gerber PhD ,&nbsp;Florence Evelyne Perrin Prof. ,&nbsp;Csilla Gergely Prof.","doi":"10.1016/j.nano.2023.102699","DOIUrl":"10.1016/j.nano.2023.102699","url":null,"abstract":"<div><p><span><span>Spinal cord injury is a dramatic disease leading to severe motor, sensitive and </span>autonomic<span><span> impairments. After injury the axonal regeneration is partly inhibited by the </span>glial scar, acting as a physical and chemical barrier. The scarring process involves </span></span>microglia<span><span><span>, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar. To investigate the role of collagen, we used a multimodal label-free imaging approach combining multiphoton and </span>atomic force microscopy<span>. The second harmonic generation signal exhibited by </span></span>fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen density and the formation of more tortuous fibers over time after injury are observed. Nano-mechanical investigations revealed a noticeable hardening of the injured area, correlated with collagen fibers' formation. These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution.</span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10064900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apolipoprotein-mimetic nanodiscs reduce lipid accumulation and improve liver function in acid sphingomyelinase deficiency 在酸性鞘磷脂酶缺乏症中,模拟载脂蛋白纳米盘可减少脂质积聚并改善肝功能。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102705
Troy A. Halseth PhD , Adele B. Correia BS , Mark L. Schultz PhD , Maria V. Fawaz PhD , Esmée Q. Kuiper BS , Preethi Kumaran BS , Kristen Hong Dorsey MS , Edward H. Schuchman PhD , Andrew P. Lieberman MD,PhD , Anna Schwendeman PhD

Acid sphingomyelinase deficiency (ASMD) is a severe lipid storage disorder caused by the diminished activity of the acid sphingomyelinase enzyme. ASMD is characterized by the accumulation of sphingomyelin in late endosomes and lysosomes leading to progressive neurological dysfunction and hepatosplenomegaly. Our objective was to investigate the utility of synthetic apolipoprotein A-I (ApoA-I) mimetics designed to act as lipid scavengers for the treatment of ASMD. We determined the lead peptide, 22A, could reduce sphingomyelin accumulation in ASMD patient skin fibroblasts in a dose dependent manner. Intraperitoneal administration of 22A formulated as a synthetic high-density lipoprotein (sHDL) nanodisc mobilized sphingomyelin from peripheral tissues into circulation and improved liver function in a mouse model of ASMD. Together, our data demonstrates that apolipoprotein mimetics could serve as a novel therapeutic strategy for modulating the pathology observed in ASMD.

酸性鞘磷脂酶缺乏症(ASMD)是一种严重的脂质储存障碍,由酸性鞘磷脂蛋白酶活性降低引起。ASMD的特征是鞘磷脂在晚期内体和溶酶体中积聚,导致进行性神经功能障碍和肝脾肿大。我们的目的是研究设计用作脂质清除剂的合成载脂蛋白A-I(ApoA-I)模拟物在治疗ASMD中的效用。我们确定,先导肽22A可以以剂量依赖的方式减少ASMD患者皮肤成纤维细胞中鞘磷脂的积累。在ASMD小鼠模型中,腹膜内施用配制为合成高密度脂蛋白(sHDL)纳米盘的22A将鞘磷脂从外周组织动员到循环中,并改善肝功能。总之,我们的数据表明,载脂蛋白模拟物可以作为一种新的治疗策略来调节ASMD中观察到的病理。
{"title":"Apolipoprotein-mimetic nanodiscs reduce lipid accumulation and improve liver function in acid sphingomyelinase deficiency","authors":"Troy A. Halseth PhD ,&nbsp;Adele B. Correia BS ,&nbsp;Mark L. Schultz PhD ,&nbsp;Maria V. Fawaz PhD ,&nbsp;Esmée Q. Kuiper BS ,&nbsp;Preethi Kumaran BS ,&nbsp;Kristen Hong Dorsey MS ,&nbsp;Edward H. Schuchman PhD ,&nbsp;Andrew P. Lieberman MD,PhD ,&nbsp;Anna Schwendeman PhD","doi":"10.1016/j.nano.2023.102705","DOIUrl":"10.1016/j.nano.2023.102705","url":null,"abstract":"<div><p><span><span>Acid sphingomyelinase deficiency (ASMD) is a severe </span>lipid<span> storage disorder caused by the diminished activity of the acid sphingomyelinase enzyme. ASMD is characterized by the accumulation of </span></span>sphingomyelin<span> in late endosomes and lysosomes<span><span> leading to progressive neurological dysfunction and hepatosplenomegaly<span>. Our objective was to investigate the utility of synthetic apolipoprotein A-I (ApoA-I) mimetics designed to act as lipid scavengers for the </span></span>treatment<span><span> of ASMD. We determined the lead peptide, 22A, could reduce sphingomyelin accumulation in ASMD patient skin fibroblasts<span> in a dose dependent manner. Intraperitoneal administration of 22A formulated as a synthetic high-density lipoprotein (sHDL) </span></span>nanodisc mobilized sphingomyelin from peripheral tissues into circulation and improved liver function in a mouse model of ASMD. Together, our data demonstrates that apolipoprotein mimetics could serve as a novel therapeutic strategy for modulating the pathology observed in ASMD.</span></span></span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10145234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ruthenium metallodendrimer against triple-negative breast cancer in mice 钌金属树枝状大分子抗小鼠癌症三阴性。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102703
Sylwia Michlewska PhD , Dagmara Wójkowska PhD , Cezary Watala Professor , Elżbieta Skiba PhD , Paula Ortega Professor , Francisco Javier de la Mata Professor , Maria Bryszewska Professor , Maksim Ionov Professor

Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.

基于芳烃Ru(II)复合物(CRD13)并整合到亚氨基吡啶表面基团的碳硅烷金属树枝状聚合物已被研究为癌症三阴性小鼠模型中的抗癌剂。树枝状大分子有效地进入细胞,并表现出对4T1细胞的选择性毒性。体内研究证明,局部注射CRD13可减少肿瘤质量,且无毒。ICP分析表明,Ru(II)在所有测试组织中积累,在肿瘤中检测到更高的含量。
{"title":"Ruthenium metallodendrimer against triple-negative breast cancer in mice","authors":"Sylwia Michlewska PhD ,&nbsp;Dagmara Wójkowska PhD ,&nbsp;Cezary Watala Professor ,&nbsp;Elżbieta Skiba PhD ,&nbsp;Paula Ortega Professor ,&nbsp;Francisco Javier de la Mata Professor ,&nbsp;Maria Bryszewska Professor ,&nbsp;Maksim Ionov Professor","doi":"10.1016/j.nano.2023.102703","DOIUrl":"10.1016/j.nano.2023.102703","url":null,"abstract":"<div><p>Carbosilane metallodendrimers, based on the arene Ru(II) complex (<strong>CRD13</strong>) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. <em>In vivo</em> investigations proved that a local injection of <strong>CRD13</strong> caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963423000540/pdfft?md5=910f44dfd820b4b18cc03e60680c80ec&pid=1-s2.0-S1549963423000540-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10081397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-vaccines combining customized in situ anti-PD-L1 depot for enhanced tumor immunotherapy 纳米疫苗结合定制的原位抗PD-L1库用于增强肿瘤免疫治疗。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102693
Qian Chen PhD , Mengjuan Sun MD , Yanan Li PhD , Liping Huang PhD , Chang Zu PhD , Xiaoqin Kuang BD , Jianing Zhao BD , Mingyu Hao BD , Tingting Ma BD , Chunjiayu Li BD , Jiasheng Tu PhD , Chunmeng Sun PhD , Yunai Du PhD

Low response rate of immune checkpoint blockade (ICB) has limited its clinical application. A promising strategy to overcome this limitation is the use of therapeutic cancer vaccines, which aim to induce robust immune responses that synergize with ICB through immune enhancement and immune normalization strategies. Herein, we developed a combination immunotherapy by combining nano-vaccines consisting of whole tumor cell lysates/CpG liposomes (LCLs) with an anti-PD-L1 loaded lipid gel (aPD-L1@LG). The LCLs were fabricated using cationic liposomes, while the lipid gels (LGs) were prepared by using soybean phosphatidylcholine (SPC) and glycerol dioleate (GDO). Subcutaneous administration of LCLs successfully activated dendritic cells (DCs), and intratumoral administration of anti-PD-L1@LG ensured sustained ICB activity. These results demonstrated that this combination immunotherapy enhanced anti-tumor efficacy and prolonged the survival time in melanoma by activating systemic anti-tumor immune responses. These findings highlight the potential of this rational design as a promising strategy for tumor treatment.

免疫检查点阻断(ICB)的低应答率限制了其临床应用。克服这一限制的一个有前景的策略是使用治疗性癌症疫苗,其目的是通过免疫增强和免疫正常化策略诱导与ICB协同作用的强大免疫反应。在此,我们开发了一种联合免疫疗法,将由全肿瘤细胞裂解物/CpG脂质体(LCLs)组成的纳米疫苗与负载抗PD-L1的脂质凝胶相结合(aPD-L1@LG)。使用阳离子脂质体制备LCL,而使用大豆磷脂酰胆碱(SPC)和甘油二醇酯(GDO)制备脂质凝胶(LGs)。LCLs皮下给药成功激活树突状细胞(DC),肿瘤内给药anti-PD-L1@LG确保了持续的洲际弹道导弹活动。这些结果表明,这种联合免疫疗法通过激活全身抗肿瘤免疫反应,增强了黑色素瘤的抗肿瘤疗效并延长了生存时间。这些发现突出了这种合理设计作为一种有前途的肿瘤治疗策略的潜力。
{"title":"Nano-vaccines combining customized in situ anti-PD-L1 depot for enhanced tumor immunotherapy","authors":"Qian Chen PhD ,&nbsp;Mengjuan Sun MD ,&nbsp;Yanan Li PhD ,&nbsp;Liping Huang PhD ,&nbsp;Chang Zu PhD ,&nbsp;Xiaoqin Kuang BD ,&nbsp;Jianing Zhao BD ,&nbsp;Mingyu Hao BD ,&nbsp;Tingting Ma BD ,&nbsp;Chunjiayu Li BD ,&nbsp;Jiasheng Tu PhD ,&nbsp;Chunmeng Sun PhD ,&nbsp;Yunai Du PhD","doi":"10.1016/j.nano.2023.102693","DOIUrl":"10.1016/j.nano.2023.102693","url":null,"abstract":"<div><p><span>Low response rate of immune checkpoint blockade (ICB) has limited its clinical application. A promising strategy to overcome this limitation is the use of therapeutic </span>cancer vaccines<span>, which aim to induce robust immune responses that synergize with ICB through immune enhancement and immune normalization strategies. Herein, we developed a combination immunotherapy<span><span> by combining nano-vaccines consisting of whole tumor cell lysates/CpG liposomes<span> (LCLs) with an anti-PD-L1 loaded lipid gel (aPD-L1@LG). The LCLs were fabricated using cationic liposomes, while the lipid gels (LGs) were prepared by using soybean </span></span>phosphatidylcholine<span><span> (SPC) and glycerol dioleate (GDO). Subcutaneous administration of LCLs successfully activated dendritic cells (DCs), and </span>intratumoral administration<span><span> of anti-PD-L1@LG ensured sustained ICB activity. These results demonstrated that this combination immunotherapy enhanced anti-tumor efficacy and prolonged the survival time in melanoma by activating systemic anti-tumor immune responses. These findings highlight the potential of this rational design as a promising strategy for </span>tumor treatment.</span></span></span></span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9983918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles 研究DNA负载聚乙二醇化脂质纳米粒子的作用机制。
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102697
Luca Digiacomo PhD , Serena Renzi MSc , Erica Quagliarini PhD , Daniela Pozzi PhD , Heinz Amenitsch PhD , Gianmarco Ferri PhD , Luca Pesce PhD , Valentina De Lorenzi PhD , Giulia Matteoli MSc , Francesco Cardarelli PhD , Giulio Caracciolo (Prof.)

PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.

聚乙二醇化脂质纳米颗粒(LNP)通常用于递送生物活性分子,但聚乙二醇化在细胞和亚细胞水平的DNA负载的LNP相互作用中的作用仍知之甚少。在本研究中,我们使用基因报告子技术、动态光散射(DLS)、同步加速器小角度X射线散射(SAXS)和荧光共聚焦显微镜(FCS)研究了DNA负载PEG化LNP的作用机制。我们发现PEG对DNA LNP的大小或纳米结构没有显著影响,但降低了它们的ζ电位和与阴离子细胞膜的相互作用。聚乙二醇化增加了LNP的结构稳定性,并导致较低的DNA卸载。FCS实验表明,PEG化的LNP在细胞内完整地内化,并在很大程度上穿梭于溶酶体,而未PEG化的LN在质膜上经历大量的不稳定。这些发现可以为基因递送和疫苗开发的DNA负载LNP的设计、优化和验证提供信息。
{"title":"Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles","authors":"Luca Digiacomo PhD ,&nbsp;Serena Renzi MSc ,&nbsp;Erica Quagliarini PhD ,&nbsp;Daniela Pozzi PhD ,&nbsp;Heinz Amenitsch PhD ,&nbsp;Gianmarco Ferri PhD ,&nbsp;Luca Pesce PhD ,&nbsp;Valentina De Lorenzi PhD ,&nbsp;Giulia Matteoli MSc ,&nbsp;Francesco Cardarelli PhD ,&nbsp;Giulio Caracciolo (Prof.)","doi":"10.1016/j.nano.2023.102697","DOIUrl":"10.1016/j.nano.2023.102697","url":null,"abstract":"<div><p>PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1549963423000485/pdfft?md5=67c4c107222b327ba2036e697171b843&pid=1-s2.0-S1549963423000485-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9937475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C60 adduct with L-arginine as a promising nanomaterial for treating cerebral ischemic stroke 含l -精氨酸的C60加合物是治疗缺血性脑卒中的一种有前景的纳米材料
IF 5.4 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-09-01 DOI: 10.1016/j.nano.2023.102698
Olegi N. Kukaliia MD , Sergei V. Ageev MSc , Andrey V. Petrov MSc , Olga V. Kirik PhD , Dmitrii E. Korzhevskii PhD , Anatolii A. Meshcheriakov PhD , Anastasia A. Jakovleva PhD , Liudmila S. Poliakova PhD , Tatiana A. Novikova PhD , Maria E. Kolpakova PhD , Timur D. Vlasov DSc , Oleg E. Molchanov DSc , Dmitriy N. Maistrenko DSc , Igor V. Murin DSc , Vladimir V. Sharoyko DSc , Konstantin N. Semenov DSc

The work aimed to investigate the biocompatibility and biological activity of the water-soluble fullerene adduct C60-Arg. It was found that the material is haemocompatible, is not cyto- and genotoxic, possesses pronounced antioxidant activity. Additionally, this paper outlines the direction of application of water-soluble fullerene adducts in the creation of neuroprotectors. It has been suggested that a putative mechanism of the protective action of the C60-Arg adduct is associated with its antioxidant properties, the ability to penetrate the blood-brain barrier, and release nitrogen monoxide as a result of the catabolism of L-arginine residues, which promote vascular relaxation. The action of the C60-Arg adduct was compared with the action of such an antioxidant as Edaravone, which is approved in Japan for the treatment of ischemic and haemorrhagic strokes.

研究了水溶性富勒烯加合物c60 -精氨酸的生物相容性和生物活性。结果表明,该材料具有血液相容性,不具有细胞毒性和基因毒性,具有明显的抗氧化活性。并对水溶性富勒烯加合物在神经保护剂合成中的应用方向进行了展望。据推测,c60 -精氨酸加合物的保护作用机制与其抗氧化特性、穿透血脑屏障的能力以及l -精氨酸残基分解代谢释放一氧化氮有关,从而促进血管舒张。c60 -精氨酸加合物的作用与依达拉奉等抗氧化剂的作用进行了比较,依达拉奉在日本被批准用于治疗缺血性和出血性中风。
{"title":"C60 adduct with L-arginine as a promising nanomaterial for treating cerebral ischemic stroke","authors":"Olegi N. Kukaliia MD ,&nbsp;Sergei V. Ageev MSc ,&nbsp;Andrey V. Petrov MSc ,&nbsp;Olga V. Kirik PhD ,&nbsp;Dmitrii E. Korzhevskii PhD ,&nbsp;Anatolii A. Meshcheriakov PhD ,&nbsp;Anastasia A. Jakovleva PhD ,&nbsp;Liudmila S. Poliakova PhD ,&nbsp;Tatiana A. Novikova PhD ,&nbsp;Maria E. Kolpakova PhD ,&nbsp;Timur D. Vlasov DSc ,&nbsp;Oleg E. Molchanov DSc ,&nbsp;Dmitriy N. Maistrenko DSc ,&nbsp;Igor V. Murin DSc ,&nbsp;Vladimir V. Sharoyko DSc ,&nbsp;Konstantin N. Semenov DSc","doi":"10.1016/j.nano.2023.102698","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102698","url":null,"abstract":"<div><p><span><span><span>The work aimed to investigate the biocompatibility and </span>biological activity of the water-soluble </span>fullerene adduct C</span><sub>60</sub><span><span>-Arg. It was found that the material is haemocompatible, is not cyto- and genotoxic, possesses pronounced antioxidant activity. Additionally, this paper outlines the direction of application of water-soluble fullerene adducts in the creation of </span>neuroprotectors. It has been suggested that a putative mechanism of the protective action of the C</span><sub>60</sub><span>-Arg adduct is associated with its antioxidant properties, the ability to penetrate the blood-brain barrier, and release nitrogen monoxide as a result of the catabolism of L-arginine residues, which promote vascular relaxation. The action of the C</span><sub>60</sub><span><span>-Arg adduct was compared with the action of such an antioxidant as Edaravone, which is approved in </span>Japan<span> for the treatment of ischemic and haemorrhagic strokes.</span></span></p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92141685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomedicine : nanotechnology, biology, and medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1