首页 > 最新文献

Nature Electronics最新文献

英文 中文
Hardware design and the fairness of a neural network 硬件设计与神经网络的公平性
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-25 DOI: 10.1038/s41928-024-01213-0
Yuanbo Guo, Zheyu Yan, Xiaoting Yu, Qingpeng Kong, Joy Xie, Kevin Luo, Dewen Zeng, Yawen Wu, Zhenge Jia, Yiyu Shi
Ensuring the fairness of neural networks is crucial when applying deep learning techniques to critical applications such as medical diagnosis and vital signal monitoring. However, maintaining fairness becomes increasingly challenging when deploying these models on platforms with limited hardware resources, as existing fairness-aware neural network designs typically overlook the impact of resource constraints. Here we analyse the impact of the underlying hardware on the task of pursuing fairness. We use neural network accelerators with compute-in-memory architecture as examples. We first investigate the relationship between hardware platform and fairness-aware neural network design. We then discuss how hardware advancements in emerging computing-in-memory devices—in terms of on-chip memory capacity and device variability management—affect neural network fairness. We also identify challenges in designing fairness-aware neural networks on such resource-constrained hardware and consider potential approaches to overcome them. An analysis of the relationship between hardware platforms and fairness-aware neural network design shows how hardware advancements can affect the fairness of neural networks and highlights the need for future designs to consider this factor.
将深度学习技术应用于医疗诊断和生命信号监测等关键应用时,确保神经网络的公平性至关重要。然而,在硬件资源有限的平台上部署这些模型时,保持公平性变得越来越具有挑战性,因为现有的公平性感知神经网络设计通常会忽略资源限制的影响。在此,我们分析了底层硬件对追求公平性任务的影响。我们以采用内存计算架构的神经网络加速器为例。我们首先研究了硬件平台与公平感知神经网络设计之间的关系。然后,我们讨论了新兴内存计算设备在片上内存容量和设备可变性管理方面的硬件进步如何影响神经网络的公平性。我们还指出了在这种资源受限的硬件上设计公平感知神经网络所面临的挑战,并考虑了克服这些挑战的潜在方法。
{"title":"Hardware design and the fairness of a neural network","authors":"Yuanbo Guo, Zheyu Yan, Xiaoting Yu, Qingpeng Kong, Joy Xie, Kevin Luo, Dewen Zeng, Yawen Wu, Zhenge Jia, Yiyu Shi","doi":"10.1038/s41928-024-01213-0","DOIUrl":"10.1038/s41928-024-01213-0","url":null,"abstract":"Ensuring the fairness of neural networks is crucial when applying deep learning techniques to critical applications such as medical diagnosis and vital signal monitoring. However, maintaining fairness becomes increasingly challenging when deploying these models on platforms with limited hardware resources, as existing fairness-aware neural network designs typically overlook the impact of resource constraints. Here we analyse the impact of the underlying hardware on the task of pursuing fairness. We use neural network accelerators with compute-in-memory architecture as examples. We first investigate the relationship between hardware platform and fairness-aware neural network design. We then discuss how hardware advancements in emerging computing-in-memory devices—in terms of on-chip memory capacity and device variability management—affect neural network fairness. We also identify challenges in designing fairness-aware neural networks on such resource-constrained hardware and consider potential approaches to overcome them. An analysis of the relationship between hardware platforms and fairness-aware neural network design shows how hardware advancements can affect the fairness of neural networks and highlights the need for future designs to consider this factor.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tension-driven three-dimensional printing of free-standing Field’s metal structures 独立菲尔德金属结构的张力驱动三维打印
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-25 DOI: 10.1038/s41928-024-01207-y
Shaohua Ling, Xi Tian, Qihang Zeng, Zhihang Qin, Selman A. Kurt, Yu Jun Tan, Jerry Y. H. Fuh, Zhuangjian Liu, Michael D. Dickey, John S. Ho, Benjamin C. K. Tee
The direct writing of complex three-dimensional (3D) metallic structures is of use in the development of advanced electronics. However, conventional direct ink writing primarily uses composite inks that have low electrical conductivity and require support materials to create 3D architectures. Here we show that Field’s metal—a eutectic alloy with a relatively low melting point—can be 3D printed using a process in which tension between the molten metal in a nozzle and the leading edge of the printed part allows 3D structures to be directly written. The use of tension avoids using external pressure for extrusion (which can cause beading of the printed structure), allowing uniform and smooth microwire structures to be printed on various substrates with speeds of up to 100 mm s−1. We use the approach to print various free-standing 3D structures—including vertical letters, a cubic framework and scalable helixes—without post-treatment, and the resulting Field’s metal structures can offer electrical conductivity of 2 × 104 S cm−1, self-healing capability and recyclability. We also use the technique to print a 3D circuit for wearable battery-free temperature sensing, hemispherical helical antennas for wireless vital sign monitoring and 3D metamaterials for electromagnetic-wave manipulation. Free-standing metallic structures with high conductivities and aspect ratios can be 3D printed from Field’s metal using a direct ink writing method that avoids using external pressure to drive ink through the nozzle.
直接书写复杂的三维(3D)金属结构在先进电子产品的开发中非常有用。然而,传统的直接写入油墨主要使用导电性较低的复合油墨,并且需要辅助材料来创建三维结构。在这里,我们展示了菲尔德的金属--一种熔点相对较低的共晶合金--可以通过喷嘴中的熔融金属与打印部件前缘之间的张力进行三维打印,从而直接写入三维结构。张力的使用避免了使用外部压力进行挤压(这可能会导致打印结构出现串珠),从而可以在各种基底上以高达 100 mm s-1 的速度打印出均匀光滑的微线结构。我们利用这种方法打印出各种独立的三维结构,包括垂直字母、立方体框架和可扩展的螺旋线,而无需进行后处理,所打印出的 Field 金属结构可提供 2 × 104 S cm-1 的导电性、自愈能力和可回收性。我们还利用这项技术打印了用于可穿戴无电池温度传感的三维电路、用于无线生命体征监测的半球形螺旋天线以及用于电磁波操纵的三维超材料。
{"title":"Tension-driven three-dimensional printing of free-standing Field’s metal structures","authors":"Shaohua Ling, Xi Tian, Qihang Zeng, Zhihang Qin, Selman A. Kurt, Yu Jun Tan, Jerry Y. H. Fuh, Zhuangjian Liu, Michael D. Dickey, John S. Ho, Benjamin C. K. Tee","doi":"10.1038/s41928-024-01207-y","DOIUrl":"10.1038/s41928-024-01207-y","url":null,"abstract":"The direct writing of complex three-dimensional (3D) metallic structures is of use in the development of advanced electronics. However, conventional direct ink writing primarily uses composite inks that have low electrical conductivity and require support materials to create 3D architectures. Here we show that Field’s metal—a eutectic alloy with a relatively low melting point—can be 3D printed using a process in which tension between the molten metal in a nozzle and the leading edge of the printed part allows 3D structures to be directly written. The use of tension avoids using external pressure for extrusion (which can cause beading of the printed structure), allowing uniform and smooth microwire structures to be printed on various substrates with speeds of up to 100 mm s−1. We use the approach to print various free-standing 3D structures—including vertical letters, a cubic framework and scalable helixes—without post-treatment, and the resulting Field’s metal structures can offer electrical conductivity of 2 × 104 S cm−1, self-healing capability and recyclability. We also use the technique to print a 3D circuit for wearable battery-free temperature sensing, hemispherical helical antennas for wireless vital sign monitoring and 3D metamaterials for electromagnetic-wave manipulation. Free-standing metallic structures with high conductivities and aspect ratios can be 3D printed from Field’s metal using a direct ink writing method that avoids using external pressure to drive ink through the nozzle.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale spin rectifiers for harvesting ambient radiofrequency energy 用于采集环境射频能量的纳米级自旋整流器
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-24 DOI: 10.1038/s41928-024-01212-1
Raghav Sharma, Tung Ngo, Eleonora Raimondo, Anna Giordano, Junta Igarashi, Butsurin Jinnai, Shishun Zhao, Jiayu Lei, Yong-Xin Guo, Giovanni Finocchio, Shunsuke Fukami, Hideo Ohno, Hyunsoo Yang
Radiofrequency harvesting using ambient wireless energy could be used to reduce the carbon footprint of electronic devices. However, ambient radiofrequency energy is weak (less than −20 dBm), and the performance of state-of-the-art radiofrequency rectifiers is restricted by thermodynamic limits and high-frequency parasitic impedance. Nanoscale spin rectifiers based on magnetic tunnel junctions have recently demonstrated high sensitivity, but suffer from a low a.c.-to-d.c. conversion efficiency (less than 1%). Here we report a sensitive spin rectifier rectenna that can harvest ambient radiofrequency signals between −62 and −20 dBm. We also develop an on-chip co-planar-waveguide-based spin rectifier array with a large zero-bias sensitivity (around 34,500 mV mW−1) and high efficiency (7.81%). The performance of our spin rectifier array relies on self-parametric excitation, driven by voltage-controlled magnetic anisotropy. We show that these spin rectifiers can be used to wirelessly power a sensor at a radiofrequency power of −27 dBm. Sensitive spin rectifier devices can be used to create rectennas that harvest ambient radiofrequency signals between –62 and –20 dBm, and can be used to create on-chip co-planar-waveguide-based spin rectifier arrays with large zero-bias sensitivity and high efficiency.
利用环境无线能量进行射频采集可减少电子设备的碳足迹。然而,环境射频能量较弱(低于-20 dBm),而且最先进的射频整流器的性能受到热力学限制和高频寄生阻抗的制约。基于磁性隧道结的纳米级自旋整流器最近已显示出较高的灵敏度,但其交流到直流的转换效率较低(不到 1%)。在这里,我们报告了一种灵敏的自旋整流器整流天线,它能接收-62 到 -20 dBm 的环境射频信号。我们还开发了一种基于共平面波导的片上自旋整流器阵列,具有高零偏压灵敏度(约 34,500 mV mW-1)和高效率(7.81%)。我们的自旋整流器阵列的性能依赖于由电压控制的磁各向异性驱动的自参数激励。我们的研究表明,这些自旋整流器可用于以 -27 dBm 的射频功率为传感器无线供电。
{"title":"Nanoscale spin rectifiers for harvesting ambient radiofrequency energy","authors":"Raghav Sharma, Tung Ngo, Eleonora Raimondo, Anna Giordano, Junta Igarashi, Butsurin Jinnai, Shishun Zhao, Jiayu Lei, Yong-Xin Guo, Giovanni Finocchio, Shunsuke Fukami, Hideo Ohno, Hyunsoo Yang","doi":"10.1038/s41928-024-01212-1","DOIUrl":"10.1038/s41928-024-01212-1","url":null,"abstract":"Radiofrequency harvesting using ambient wireless energy could be used to reduce the carbon footprint of electronic devices. However, ambient radiofrequency energy is weak (less than −20 dBm), and the performance of state-of-the-art radiofrequency rectifiers is restricted by thermodynamic limits and high-frequency parasitic impedance. Nanoscale spin rectifiers based on magnetic tunnel junctions have recently demonstrated high sensitivity, but suffer from a low a.c.-to-d.c. conversion efficiency (less than 1%). Here we report a sensitive spin rectifier rectenna that can harvest ambient radiofrequency signals between −62 and −20 dBm. We also develop an on-chip co-planar-waveguide-based spin rectifier array with a large zero-bias sensitivity (around 34,500 mV mW−1) and high efficiency (7.81%). The performance of our spin rectifier array relies on self-parametric excitation, driven by voltage-controlled magnetic anisotropy. We show that these spin rectifiers can be used to wirelessly power a sensor at a radiofrequency power of −27 dBm. Sensitive spin rectifier devices can be used to create rectennas that harvest ambient radiofrequency signals between –62 and –20 dBm, and can be used to create on-chip co-planar-waveguide-based spin rectifier arrays with large zero-bias sensitivity and high efficiency.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Powering from behind 从后面提供动力
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-24 DOI: 10.1038/s41928-024-01226-9
Stuart Thomas
{"title":"Powering from behind","authors":"Stuart Thomas","doi":"10.1038/s41928-024-01226-9","DOIUrl":"10.1038/s41928-024-01226-9","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D transistors feel the squeeze 二维晶体管感受挤压
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-24 DOI: 10.1038/s41928-024-01225-w
Stuart Thomas
{"title":"2D transistors feel the squeeze","authors":"Stuart Thomas","doi":"10.1038/s41928-024-01225-w","DOIUrl":"10.1038/s41928-024-01225-w","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intel’s 2.5D Foveros gains a capacitor 英特尔的 2.5D Foveros 增加了一个电容器
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-23 DOI: 10.1038/s41928-024-01224-x
Katharina Zeissler
{"title":"Intel’s 2.5D Foveros gains a capacitor","authors":"Katharina Zeissler","doi":"10.1038/s41928-024-01224-x","DOIUrl":"10.1038/s41928-024-01224-x","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-oxide transistors for vertical stacking 用于垂直堆叠的全氧化物晶体管
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01223-y
Katharina Zeissler
{"title":"All-oxide transistors for vertical stacking","authors":"Katharina Zeissler","doi":"10.1038/s41928-024-01223-y","DOIUrl":"10.1038/s41928-024-01223-y","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A carbon-nanotube-based tensor processing unit 基于碳纳米管的张量处理单元
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01211-2
Jia Si, Panpan Zhang, Chenyi Zhao, Dongyi Lin, Lin Xu, Haitao Xu, Lijun Liu, Jianhua Jiang, Lian-Mao Peng, Zhiyong Zhang
The growth of data-intensive computing tasks requires processing units with higher performance and energy efficiency, but these requirements are increasingly difficult to achieve with conventional semiconductor technology. One potential solution is to combine developments in devices with innovations in system architecture. Here we report a tensor processing unit (TPU) that is based on 3,000 carbon nanotube field-effect transistors and can perform energy-efficient convolution operations and matrix multiplication. The TPU is constructed with a systolic array architecture that allows parallel 2 bit integer multiply–accumulate operations. A five-layer convolutional neural network based on the TPU can perform MNIST image recognition with an accuracy of up to 88% for a power consumption of 295 µW. We use an optimized nanotube fabrication process that offers a semiconductor purity of 99.9999% and ultraclean surfaces, leading to transistors with high on-current densities and uniformity. Using system-level simulations, we estimate that an 8 bit TPU made with nanotube transistors at a 180 nm technology node could reach a main frequency of 850 MHz and an energy efficiency of 1 tera-operations per second per watt. Carbon nanotube networks made with high purity and ultraclean interfaces can be used to make a tensor processing unit that contains 3,000 transistors in a systolic array architecture to improve energy efficiency in accelerating neural network tasks.
数据密集型计算任务的增长要求处理单元具有更高的性能和能效,但传统半导体技术越来越难以达到这些要求。一种潜在的解决方案是将器件的发展与系统架构的创新相结合。在这里,我们报告了一种基于 3000 个碳纳米管场效应晶体管的张量处理单元(TPU),它可以执行高能效的卷积运算和矩阵乘法。张量处理单元采用收缩阵列架构,可进行并行的 2 位整数乘积运算。基于 TPU 的五层卷积神经网络可以执行 MNIST 图像识别,准确率高达 88%,功耗为 295 µW。我们采用优化的纳米管制造工艺,其半导体纯度高达 99.9999%,表面超洁净,因此晶体管具有较高的导通电流密度和均匀性。通过系统级仿真,我们估计在 180 纳米技术节点上使用纳米管晶体管制造的 8 位 TPU 的主频可达 850 MHz,能效为每瓦每秒运行 1 太赫兹。
{"title":"A carbon-nanotube-based tensor processing unit","authors":"Jia Si, Panpan Zhang, Chenyi Zhao, Dongyi Lin, Lin Xu, Haitao Xu, Lijun Liu, Jianhua Jiang, Lian-Mao Peng, Zhiyong Zhang","doi":"10.1038/s41928-024-01211-2","DOIUrl":"10.1038/s41928-024-01211-2","url":null,"abstract":"The growth of data-intensive computing tasks requires processing units with higher performance and energy efficiency, but these requirements are increasingly difficult to achieve with conventional semiconductor technology. One potential solution is to combine developments in devices with innovations in system architecture. Here we report a tensor processing unit (TPU) that is based on 3,000 carbon nanotube field-effect transistors and can perform energy-efficient convolution operations and matrix multiplication. The TPU is constructed with a systolic array architecture that allows parallel 2 bit integer multiply–accumulate operations. A five-layer convolutional neural network based on the TPU can perform MNIST image recognition with an accuracy of up to 88% for a power consumption of 295 µW. We use an optimized nanotube fabrication process that offers a semiconductor purity of 99.9999% and ultraclean surfaces, leading to transistors with high on-current densities and uniformity. Using system-level simulations, we estimate that an 8 bit TPU made with nanotube transistors at a 180 nm technology node could reach a main frequency of 850 MHz and an energy efficiency of 1 tera-operations per second per watt. Carbon nanotube networks made with high purity and ultraclean interfaces can be used to make a tensor processing unit that contains 3,000 transistors in a systolic array architecture to improve energy efficiency in accelerating neural network tasks.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 640 Gb s–1 transceiver 640 Gb s-1 收发器
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01222-z
Matthew Parker
{"title":"A 640 Gb s–1 transceiver","authors":"Matthew Parker","doi":"10.1038/s41928-024-01222-z","DOIUrl":"10.1038/s41928-024-01222-z","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxide dielectrics that grow on 2D materials 生长在二维材料上的氧化介质
IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-22 DOI: 10.1038/s41928-024-01221-0
Matthew Parker
{"title":"Oxide dielectrics that grow on 2D materials","authors":"Matthew Parker","doi":"10.1038/s41928-024-01221-0","DOIUrl":"10.1038/s41928-024-01221-0","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1